Spaces:
Sleeping
Sleeping
from sympy.core import ( | |
S, pi, oo, Symbol, symbols, Rational, Integer, Float, Function, Mod, GoldenRatio, EulerGamma, Catalan, | |
Lambda, Dummy, nan, Mul, Pow, UnevaluatedExpr | |
) | |
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne) | |
from sympy.functions import ( | |
Abs, acos, acosh, asin, asinh, atan, atanh, atan2, ceiling, cos, cosh, erf, | |
erfc, exp, floor, gamma, log, loggamma, Max, Min, Piecewise, sign, sin, sinh, | |
sqrt, tan, tanh, fibonacci, lucas | |
) | |
from sympy.sets import Range | |
from sympy.logic import ITE, Implies, Equivalent | |
from sympy.codegen import For, aug_assign, Assignment | |
from sympy.testing.pytest import raises, XFAIL | |
from sympy.printing.codeprinter import PrintMethodNotImplementedError | |
from sympy.printing.c import C89CodePrinter, C99CodePrinter, get_math_macros | |
from sympy.codegen.ast import ( | |
AddAugmentedAssignment, Element, Type, FloatType, Declaration, Pointer, Variable, value_const, pointer_const, | |
While, Scope, Print, FunctionPrototype, FunctionDefinition, FunctionCall, Return, | |
real, float32, float64, float80, float128, intc, Comment, CodeBlock, stderr, QuotedString | |
) | |
from sympy.codegen.cfunctions import expm1, log1p, exp2, log2, fma, log10, Cbrt, hypot, Sqrt | |
from sympy.codegen.cnodes import restrict | |
from sympy.utilities.lambdify import implemented_function | |
from sympy.tensor import IndexedBase, Idx | |
from sympy.matrices import Matrix, MatrixSymbol, SparseMatrix | |
from sympy.printing.codeprinter import ccode | |
x, y, z = symbols('x,y,z') | |
def test_printmethod(): | |
class fabs(Abs): | |
def _ccode(self, printer): | |
return "fabs(%s)" % printer._print(self.args[0]) | |
assert ccode(fabs(x)) == "fabs(x)" | |
def test_ccode_sqrt(): | |
assert ccode(sqrt(x)) == "sqrt(x)" | |
assert ccode(x**0.5) == "sqrt(x)" | |
assert ccode(sqrt(x)) == "sqrt(x)" | |
def test_ccode_Pow(): | |
assert ccode(x**3) == "pow(x, 3)" | |
assert ccode(x**(y**3)) == "pow(x, pow(y, 3))" | |
g = implemented_function('g', Lambda(x, 2*x)) | |
assert ccode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ | |
"pow(3.5*2*x, -x + pow(y, x))/(pow(x, 2) + y)" | |
assert ccode(x**-1.0) == '1.0/x' | |
assert ccode(x**Rational(2, 3)) == 'pow(x, 2.0/3.0)' | |
assert ccode(x**Rational(2, 3), type_aliases={real: float80}) == 'powl(x, 2.0L/3.0L)' | |
_cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi"), | |
(lambda base, exp: not exp.is_integer, "pow")] | |
assert ccode(x**3, user_functions={'Pow': _cond_cfunc}) == 'dpowi(x, 3)' | |
assert ccode(x**0.5, user_functions={'Pow': _cond_cfunc}) == 'pow(x, 0.5)' | |
assert ccode(x**Rational(16, 5), user_functions={'Pow': _cond_cfunc}) == 'pow(x, 16.0/5.0)' | |
_cond_cfunc2 = [(lambda base, exp: base == 2, lambda base, exp: 'exp2(%s)' % exp), | |
(lambda base, exp: base != 2, 'pow')] | |
# Related to gh-11353 | |
assert ccode(2**x, user_functions={'Pow': _cond_cfunc2}) == 'exp2(x)' | |
assert ccode(x**2, user_functions={'Pow': _cond_cfunc2}) == 'pow(x, 2)' | |
# For issue 14160 | |
assert ccode(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False), | |
evaluate=False)) == '-2*x/(y*y)' | |
def test_ccode_Max(): | |
# Test for gh-11926 | |
assert ccode(Max(x,x*x),user_functions={"Max":"my_max", "Pow":"my_pow"}) == 'my_max(x, my_pow(x, 2))' | |
def test_ccode_Min_performance(): | |
#Shouldn't take more than a few seconds | |
big_min = Min(*symbols('a[0:50]')) | |
for curr_standard in ('c89', 'c99', 'c11'): | |
output = ccode(big_min, standard=curr_standard) | |
assert output.count('(') == output.count(')') | |
def test_ccode_constants_mathh(): | |
assert ccode(exp(1)) == "M_E" | |
assert ccode(pi) == "M_PI" | |
assert ccode(oo, standard='c89') == "HUGE_VAL" | |
assert ccode(-oo, standard='c89') == "-HUGE_VAL" | |
assert ccode(oo) == "INFINITY" | |
assert ccode(-oo, standard='c99') == "-INFINITY" | |
assert ccode(pi, type_aliases={real: float80}) == "M_PIl" | |
def test_ccode_constants_other(): | |
assert ccode(2*GoldenRatio) == "const double GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17) | |
assert ccode( | |
2*Catalan) == "const double Catalan = %s;\n2*Catalan" % Catalan.evalf(17) | |
assert ccode(2*EulerGamma) == "const double EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17) | |
def test_ccode_Rational(): | |
assert ccode(Rational(3, 7)) == "3.0/7.0" | |
assert ccode(Rational(3, 7), type_aliases={real: float80}) == "3.0L/7.0L" | |
assert ccode(Rational(18, 9)) == "2" | |
assert ccode(Rational(3, -7)) == "-3.0/7.0" | |
assert ccode(Rational(3, -7), type_aliases={real: float80}) == "-3.0L/7.0L" | |
assert ccode(Rational(-3, -7)) == "3.0/7.0" | |
assert ccode(Rational(-3, -7), type_aliases={real: float80}) == "3.0L/7.0L" | |
assert ccode(x + Rational(3, 7)) == "x + 3.0/7.0" | |
assert ccode(x + Rational(3, 7), type_aliases={real: float80}) == "x + 3.0L/7.0L" | |
assert ccode(Rational(3, 7)*x) == "(3.0/7.0)*x" | |
assert ccode(Rational(3, 7)*x, type_aliases={real: float80}) == "(3.0L/7.0L)*x" | |
def test_ccode_Integer(): | |
assert ccode(Integer(67)) == "67" | |
assert ccode(Integer(-1)) == "-1" | |
def test_ccode_functions(): | |
assert ccode(sin(x) ** cos(x)) == "pow(sin(x), cos(x))" | |
def test_ccode_inline_function(): | |
x = symbols('x') | |
g = implemented_function('g', Lambda(x, 2*x)) | |
assert ccode(g(x)) == "2*x" | |
g = implemented_function('g', Lambda(x, 2*x/Catalan)) | |
assert ccode( | |
g(x)) == "const double Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17) | |
A = IndexedBase('A') | |
i = Idx('i', symbols('n', integer=True)) | |
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x))) | |
assert ccode(g(A[i]), assign_to=A[i]) == ( | |
"for (int i=0; i<n; i++){\n" | |
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n" | |
"}" | |
) | |
def test_ccode_exceptions(): | |
assert ccode(gamma(x), standard='C99') == "tgamma(x)" | |
with raises(PrintMethodNotImplementedError): | |
ccode(gamma(x), standard='C89') | |
with raises(PrintMethodNotImplementedError): | |
ccode(gamma(x), standard='C89', allow_unknown_functions=False) | |
ccode(gamma(x), standard='C89', allow_unknown_functions=True) | |
def test_ccode_functions2(): | |
assert ccode(ceiling(x)) == "ceil(x)" | |
assert ccode(Abs(x)) == "fabs(x)" | |
assert ccode(gamma(x)) == "tgamma(x)" | |
r, s = symbols('r,s', real=True) | |
assert ccode(Mod(ceiling(r), ceiling(s))) == '((ceil(r) % ceil(s)) + '\ | |
'ceil(s)) % ceil(s)' | |
assert ccode(Mod(r, s)) == "fmod(r, s)" | |
p1, p2 = symbols('p1 p2', integer=True, positive=True) | |
assert ccode(Mod(p1, p2)) == 'p1 % p2' | |
assert ccode(Mod(p1, p2 + 3)) == 'p1 % (p2 + 3)' | |
assert ccode(Mod(-3, -7, evaluate=False)) == '(-3) % (-7)' | |
assert ccode(-Mod(3, 7, evaluate=False)) == '-(3 % 7)' | |
assert ccode(r*Mod(p1, p2)) == 'r*(p1 % p2)' | |
assert ccode(Mod(p1, p2)**s) == 'pow(p1 % p2, s)' | |
n = symbols('n', integer=True, negative=True) | |
assert ccode(Mod(-n, p2)) == '(-n) % p2' | |
assert ccode(fibonacci(n)) == '((1.0/5.0)*pow(2, -n)*sqrt(5)*(-pow(1 - sqrt(5), n) + pow(1 + sqrt(5), n)))' | |
assert ccode(lucas(n)) == '(pow(2, -n)*(pow(1 - sqrt(5), n) + pow(1 + sqrt(5), n)))' | |
def test_ccode_user_functions(): | |
x = symbols('x', integer=False) | |
n = symbols('n', integer=True) | |
custom_functions = { | |
"ceiling": "ceil", | |
"Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")], | |
} | |
assert ccode(ceiling(x), user_functions=custom_functions) == "ceil(x)" | |
assert ccode(Abs(x), user_functions=custom_functions) == "fabs(x)" | |
assert ccode(Abs(n), user_functions=custom_functions) == "abs(n)" | |
expr = Symbol('a') | |
muladd = Function('muladd') | |
for i in range(0, 100): | |
# the large number of terms acts as a regression test for gh-23839 | |
expr = muladd(Rational(1, 2), Symbol(f'a{i}'), expr) | |
out = ccode(expr, user_functions={'muladd':'muladd'}) | |
assert 'a99' in out | |
assert out.count('muladd') == 100 | |
def test_ccode_boolean(): | |
assert ccode(True) == "true" | |
assert ccode(S.true) == "true" | |
assert ccode(False) == "false" | |
assert ccode(S.false) == "false" | |
assert ccode(x & y) == "x && y" | |
assert ccode(x | y) == "x || y" | |
assert ccode(~x) == "!x" | |
assert ccode(x & y & z) == "x && y && z" | |
assert ccode(x | y | z) == "x || y || z" | |
assert ccode((x & y) | z) == "z || x && y" | |
assert ccode((x | y) & z) == "z && (x || y)" | |
# Automatic rewrites | |
assert ccode(x ^ y) == '(x || y) && (!x || !y)' | |
assert ccode((x ^ y) ^ z) == '(x || y || z) && (x || !y || !z) && (y || !x || !z) && (z || !x || !y)' | |
assert ccode(Implies(x, y)) == 'y || !x' | |
assert ccode(Equivalent(x, z ^ y, Implies(z, x))) == '(x || (y || !z) && (z || !y)) && (z && !x || (y || z) && (!y || !z))' | |
def test_ccode_Relational(): | |
assert ccode(Eq(x, y)) == "x == y" | |
assert ccode(Ne(x, y)) == "x != y" | |
assert ccode(Le(x, y)) == "x <= y" | |
assert ccode(Lt(x, y)) == "x < y" | |
assert ccode(Gt(x, y)) == "x > y" | |
assert ccode(Ge(x, y)) == "x >= y" | |
def test_ccode_Piecewise(): | |
expr = Piecewise((x, x < 1), (x**2, True)) | |
assert ccode(expr) == ( | |
"((x < 1) ? (\n" | |
" x\n" | |
")\n" | |
": (\n" | |
" pow(x, 2)\n" | |
"))") | |
assert ccode(expr, assign_to="c") == ( | |
"if (x < 1) {\n" | |
" c = x;\n" | |
"}\n" | |
"else {\n" | |
" c = pow(x, 2);\n" | |
"}") | |
expr = Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True)) | |
assert ccode(expr) == ( | |
"((x < 1) ? (\n" | |
" x\n" | |
")\n" | |
": ((x < 2) ? (\n" | |
" x + 1\n" | |
")\n" | |
": (\n" | |
" pow(x, 2)\n" | |
")))") | |
assert ccode(expr, assign_to='c') == ( | |
"if (x < 1) {\n" | |
" c = x;\n" | |
"}\n" | |
"else if (x < 2) {\n" | |
" c = x + 1;\n" | |
"}\n" | |
"else {\n" | |
" c = pow(x, 2);\n" | |
"}") | |
# Check that Piecewise without a True (default) condition error | |
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) | |
raises(ValueError, lambda: ccode(expr)) | |
def test_ccode_sinc(): | |
from sympy.functions.elementary.trigonometric import sinc | |
expr = sinc(x) | |
assert ccode(expr) == ( | |
"(((x != 0) ? (\n" | |
" sin(x)/x\n" | |
")\n" | |
": (\n" | |
" 1\n" | |
")))") | |
def test_ccode_Piecewise_deep(): | |
p = ccode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True))) | |
assert p == ( | |
"2*((x < 1) ? (\n" | |
" x\n" | |
")\n" | |
": ((x < 2) ? (\n" | |
" x + 1\n" | |
")\n" | |
": (\n" | |
" pow(x, 2)\n" | |
")))") | |
expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1 | |
assert ccode(expr) == ( | |
"pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n" | |
" 0\n" | |
")\n" | |
": (\n" | |
" 1\n" | |
")) + cos(z) - 1") | |
assert ccode(expr, assign_to='c') == ( | |
"c = pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n" | |
" 0\n" | |
")\n" | |
": (\n" | |
" 1\n" | |
")) + cos(z) - 1;") | |
def test_ccode_ITE(): | |
expr = ITE(x < 1, y, z) | |
assert ccode(expr) == ( | |
"((x < 1) ? (\n" | |
" y\n" | |
")\n" | |
": (\n" | |
" z\n" | |
"))") | |
def test_ccode_settings(): | |
raises(TypeError, lambda: ccode(sin(x), method="garbage")) | |
def test_ccode_Indexed(): | |
s, n, m, o = symbols('s n m o', integer=True) | |
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o) | |
x = IndexedBase('x')[j] | |
A = IndexedBase('A')[i, j] | |
B = IndexedBase('B')[i, j, k] | |
p = C99CodePrinter() | |
assert p._print_Indexed(x) == 'x[j]' | |
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j) | |
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k) | |
A = IndexedBase('A', shape=(5,3))[i, j] | |
assert p._print_Indexed(A) == 'A[%s]' % (3*i + j) | |
A = IndexedBase('A', shape=(5,3), strides='F')[i, j] | |
assert ccode(A) == 'A[%s]' % (i + 5*j) | |
A = IndexedBase('A', shape=(29,29), strides=(1, s), offset=o)[i, j] | |
assert ccode(A) == 'A[o + s*j + i]' | |
Abase = IndexedBase('A', strides=(s, m, n), offset=o) | |
assert ccode(Abase[i, j, k]) == 'A[m*j + n*k + o + s*i]' | |
assert ccode(Abase[2, 3, k]) == 'A[3*m + n*k + o + 2*s]' | |
def test_Element(): | |
assert ccode(Element('x', 'ij')) == 'x[i][j]' | |
assert ccode(Element('x', 'ij', strides='kl', offset='o')) == 'x[i*k + j*l + o]' | |
assert ccode(Element('x', (3,))) == 'x[3]' | |
assert ccode(Element('x', (3,4,5))) == 'x[3][4][5]' | |
def test_ccode_Indexed_without_looking_for_contraction(): | |
len_y = 5 | |
y = IndexedBase('y', shape=(len_y,)) | |
x = IndexedBase('x', shape=(len_y,)) | |
Dy = IndexedBase('Dy', shape=(len_y-1,)) | |
i = Idx('i', len_y-1) | |
e = Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i])) | |
code0 = ccode(e.rhs, assign_to=e.lhs, contract=False) | |
assert code0 == 'Dy[i] = (y[%s] - y[i])/(x[%s] - x[i]);' % (i + 1, i + 1) | |
def test_ccode_loops_matrix_vector(): | |
n, m = symbols('n m', integer=True) | |
A = IndexedBase('A') | |
x = IndexedBase('x') | |
y = IndexedBase('y') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
s = ( | |
'for (int i=0; i<m; i++){\n' | |
' y[i] = 0;\n' | |
'}\n' | |
'for (int i=0; i<m; i++){\n' | |
' for (int j=0; j<n; j++){\n' | |
' y[i] = A[%s]*x[j] + y[i];\n' % (i*n + j) +\ | |
' }\n' | |
'}' | |
) | |
assert ccode(A[i, j]*x[j], assign_to=y[i]) == s | |
def test_dummy_loops(): | |
i, m = symbols('i m', integer=True, cls=Dummy) | |
x = IndexedBase('x') | |
y = IndexedBase('y') | |
i = Idx(i, m) | |
expected = ( | |
'for (int i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n' | |
' y[i_%(icount)i] = x[i_%(icount)i];\n' | |
'}' | |
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index} | |
assert ccode(x[i], assign_to=y[i]) == expected | |
def test_ccode_loops_add(): | |
n, m = symbols('n m', integer=True) | |
A = IndexedBase('A') | |
x = IndexedBase('x') | |
y = IndexedBase('y') | |
z = IndexedBase('z') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
s = ( | |
'for (int i=0; i<m; i++){\n' | |
' y[i] = x[i] + z[i];\n' | |
'}\n' | |
'for (int i=0; i<m; i++){\n' | |
' for (int j=0; j<n; j++){\n' | |
' y[i] = A[%s]*x[j] + y[i];\n' % (i*n + j) +\ | |
' }\n' | |
'}' | |
) | |
assert ccode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) == s | |
def test_ccode_loops_multiple_contractions(): | |
n, m, o, p = symbols('n m o p', integer=True) | |
a = IndexedBase('a') | |
b = IndexedBase('b') | |
y = IndexedBase('y') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
k = Idx('k', o) | |
l = Idx('l', p) | |
s = ( | |
'for (int i=0; i<m; i++){\n' | |
' y[i] = 0;\n' | |
'}\n' | |
'for (int i=0; i<m; i++){\n' | |
' for (int j=0; j<n; j++){\n' | |
' for (int k=0; k<o; k++){\n' | |
' for (int l=0; l<p; l++){\n' | |
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\ | |
' }\n' | |
' }\n' | |
' }\n' | |
'}' | |
) | |
assert ccode(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) == s | |
def test_ccode_loops_addfactor(): | |
n, m, o, p = symbols('n m o p', integer=True) | |
a = IndexedBase('a') | |
b = IndexedBase('b') | |
c = IndexedBase('c') | |
y = IndexedBase('y') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
k = Idx('k', o) | |
l = Idx('l', p) | |
s = ( | |
'for (int i=0; i<m; i++){\n' | |
' y[i] = 0;\n' | |
'}\n' | |
'for (int i=0; i<m; i++){\n' | |
' for (int j=0; j<n; j++){\n' | |
' for (int k=0; k<o; k++){\n' | |
' for (int l=0; l<p; l++){\n' | |
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\ | |
' }\n' | |
' }\n' | |
' }\n' | |
'}' | |
) | |
assert ccode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) == s | |
def test_ccode_loops_multiple_terms(): | |
n, m, o, p = symbols('n m o p', integer=True) | |
a = IndexedBase('a') | |
b = IndexedBase('b') | |
c = IndexedBase('c') | |
y = IndexedBase('y') | |
i = Idx('i', m) | |
j = Idx('j', n) | |
k = Idx('k', o) | |
s0 = ( | |
'for (int i=0; i<m; i++){\n' | |
' y[i] = 0;\n' | |
'}\n' | |
) | |
s1 = ( | |
'for (int i=0; i<m; i++){\n' | |
' for (int j=0; j<n; j++){\n' | |
' for (int k=0; k<o; k++){\n' | |
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\ | |
' }\n' | |
' }\n' | |
'}\n' | |
) | |
s2 = ( | |
'for (int i=0; i<m; i++){\n' | |
' for (int k=0; k<o; k++){\n' | |
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\ | |
' }\n' | |
'}\n' | |
) | |
s3 = ( | |
'for (int i=0; i<m; i++){\n' | |
' for (int j=0; j<n; j++){\n' | |
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\ | |
' }\n' | |
'}\n' | |
) | |
c = ccode(b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i]) | |
assert (c == s0 + s1 + s2 + s3[:-1] or | |
c == s0 + s1 + s3 + s2[:-1] or | |
c == s0 + s2 + s1 + s3[:-1] or | |
c == s0 + s2 + s3 + s1[:-1] or | |
c == s0 + s3 + s1 + s2[:-1] or | |
c == s0 + s3 + s2 + s1[:-1]) | |
def test_dereference_printing(): | |
expr = x + y + sin(z) + z | |
assert ccode(expr, dereference=[z]) == "x + y + (*z) + sin((*z))" | |
def test_Matrix_printing(): | |
# Test returning a Matrix | |
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)]) | |
A = MatrixSymbol('A', 3, 1) | |
assert ccode(mat, A) == ( | |
"A[0] = x*y;\n" | |
"if (y > 0) {\n" | |
" A[1] = x + 2;\n" | |
"}\n" | |
"else {\n" | |
" A[1] = y;\n" | |
"}\n" | |
"A[2] = sin(z);") | |
# Test using MatrixElements in expressions | |
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0] | |
assert ccode(expr) == ( | |
"((x > 0) ? (\n" | |
" 2*A[2]\n" | |
")\n" | |
": (\n" | |
" A[2]\n" | |
")) + sin(A[1]) + A[0]") | |
# Test using MatrixElements in a Matrix | |
q = MatrixSymbol('q', 5, 1) | |
M = MatrixSymbol('M', 3, 3) | |
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])], | |
[q[1,0] + q[2,0], q[3, 0], 5], | |
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]]) | |
assert ccode(m, M) == ( | |
"M[0] = sin(q[1]);\n" | |
"M[1] = 0;\n" | |
"M[2] = cos(q[2]);\n" | |
"M[3] = q[1] + q[2];\n" | |
"M[4] = q[3];\n" | |
"M[5] = 5;\n" | |
"M[6] = 2*q[4]/q[1];\n" | |
"M[7] = sqrt(q[0]) + 4;\n" | |
"M[8] = 0;") | |
def test_sparse_matrix(): | |
# gh-15791 | |
with raises(PrintMethodNotImplementedError): | |
ccode(SparseMatrix([[1, 2, 3]])) | |
assert 'Not supported in C' in C89CodePrinter({'strict': False}).doprint(SparseMatrix([[1, 2, 3]])) | |
def test_ccode_reserved_words(): | |
x, y = symbols('x, if') | |
with raises(ValueError): | |
ccode(y**2, error_on_reserved=True, standard='C99') | |
assert ccode(y**2) == 'pow(if_, 2)' | |
assert ccode(x * y**2, dereference=[y]) == 'pow((*if_), 2)*x' | |
assert ccode(y**2, reserved_word_suffix='_unreserved') == 'pow(if_unreserved, 2)' | |
def test_ccode_sign(): | |
expr1, ref1 = sign(x) * y, 'y*(((x) > 0) - ((x) < 0))' | |
expr2, ref2 = sign(cos(x)), '(((cos(x)) > 0) - ((cos(x)) < 0))' | |
expr3, ref3 = sign(2 * x + x**2) * x + x**2, 'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))' | |
assert ccode(expr1) == ref1 | |
assert ccode(expr1, 'z') == 'z = %s;' % ref1 | |
assert ccode(expr2) == ref2 | |
assert ccode(expr3) == ref3 | |
def test_ccode_Assignment(): | |
assert ccode(Assignment(x, y + z)) == 'x = y + z;' | |
assert ccode(aug_assign(x, '+', y + z)) == 'x += y + z;' | |
def test_ccode_For(): | |
f = For(x, Range(0, 10, 2), [aug_assign(y, '*', x)]) | |
assert ccode(f) == ("for (x = 0; x < 10; x += 2) {\n" | |
" y *= x;\n" | |
"}") | |
def test_ccode_Max_Min(): | |
assert ccode(Max(x, 0), standard='C89') == '((0 > x) ? 0 : x)' | |
assert ccode(Max(x, 0), standard='C99') == 'fmax(0, x)' | |
assert ccode(Min(x, 0, sqrt(x)), standard='c89') == ( | |
'((0 < ((x < sqrt(x)) ? x : sqrt(x))) ? 0 : ((x < sqrt(x)) ? x : sqrt(x)))' | |
) | |
def test_ccode_standard(): | |
assert ccode(expm1(x), standard='c99') == 'expm1(x)' | |
assert ccode(nan, standard='c99') == 'NAN' | |
assert ccode(float('nan'), standard='c99') == 'NAN' | |
def test_C89CodePrinter(): | |
c89printer = C89CodePrinter() | |
assert c89printer.language == 'C' | |
assert c89printer.standard == 'C89' | |
assert 'void' in c89printer.reserved_words | |
assert 'template' not in c89printer.reserved_words | |
def test_C99CodePrinter(): | |
assert C99CodePrinter().doprint(expm1(x)) == 'expm1(x)' | |
assert C99CodePrinter().doprint(log1p(x)) == 'log1p(x)' | |
assert C99CodePrinter().doprint(exp2(x)) == 'exp2(x)' | |
assert C99CodePrinter().doprint(log2(x)) == 'log2(x)' | |
assert C99CodePrinter().doprint(fma(x, y, -z)) == 'fma(x, y, -z)' | |
assert C99CodePrinter().doprint(log10(x)) == 'log10(x)' | |
assert C99CodePrinter().doprint(Cbrt(x)) == 'cbrt(x)' # note Cbrt due to cbrt already taken. | |
assert C99CodePrinter().doprint(hypot(x, y)) == 'hypot(x, y)' | |
assert C99CodePrinter().doprint(loggamma(x)) == 'lgamma(x)' | |
assert C99CodePrinter().doprint(Max(x, 3, x**2)) == 'fmax(3, fmax(x, pow(x, 2)))' | |
assert C99CodePrinter().doprint(Min(x, 3)) == 'fmin(3, x)' | |
c99printer = C99CodePrinter() | |
assert c99printer.language == 'C' | |
assert c99printer.standard == 'C99' | |
assert 'restrict' in c99printer.reserved_words | |
assert 'using' not in c99printer.reserved_words | |
def test_C99CodePrinter__precision_f80(): | |
f80_printer = C99CodePrinter({"type_aliases": {real: float80}}) | |
assert f80_printer.doprint(sin(x + Float('2.1'))) == 'sinl(x + 2.1L)' | |
def test_C99CodePrinter__precision(): | |
n = symbols('n', integer=True) | |
p = symbols('p', integer=True, positive=True) | |
f32_printer = C99CodePrinter({"type_aliases": {real: float32}}) | |
f64_printer = C99CodePrinter({"type_aliases": {real: float64}}) | |
f80_printer = C99CodePrinter({"type_aliases": {real: float80}}) | |
assert f32_printer.doprint(sin(x+2.1)) == 'sinf(x + 2.1F)' | |
assert f64_printer.doprint(sin(x+2.1)) == 'sin(x + 2.1000000000000001)' | |
assert f80_printer.doprint(sin(x+Float('2.0'))) == 'sinl(x + 2.0L)' | |
for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ['f', '', 'l']): | |
def check(expr, ref): | |
assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper()) | |
check(Abs(n), 'abs(n)') | |
check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})') | |
check(sin(x + 4.0)**cos(x - 2.0), 'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))') | |
check(exp(x*8.0), 'exp{s}(8.0{S}*x)') | |
check(exp2(x), 'exp2{s}(x)') | |
check(expm1(x*4.0), 'expm1{s}(4.0{S}*x)') | |
check(Mod(p, 2), 'p % 2') | |
check(Mod(2*p + 3, 3*p + 5, evaluate=False), '(2*p + 3) % (3*p + 5)') | |
check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})') | |
check(Mod(x, 2.0*x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})') | |
check(log(x/2), 'log{s}((1.0{S}/2.0{S})*x)') | |
check(log10(3*x/2), 'log10{s}((3.0{S}/2.0{S})*x)') | |
check(log2(x*8.0), 'log2{s}(8.0{S}*x)') | |
check(log1p(x), 'log1p{s}(x)') | |
check(2**x, 'pow{s}(2, x)') | |
check(2.0**x, 'pow{s}(2.0{S}, x)') | |
check(x**3, 'pow{s}(x, 3)') | |
check(x**4.0, 'pow{s}(x, 4.0{S})') | |
check(sqrt(3+x), 'sqrt{s}(x + 3)') | |
check(Cbrt(x-2.0), 'cbrt{s}(x - 2.0{S})') | |
check(hypot(x, y), 'hypot{s}(x, y)') | |
check(sin(3.*x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})') | |
check(cos(3.*x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})') | |
check(tan(4.*y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})') | |
check(asin(3.*x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})') | |
check(acos(3.*x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})') | |
check(atan(3.*x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})') | |
check(atan2(3.*x, 2.*y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)') | |
check(sinh(3.*x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})') | |
check(cosh(3.*x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})') | |
check(tanh(4.0*y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})') | |
check(asinh(3.*x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})') | |
check(acosh(3.*x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})') | |
check(atanh(3.*x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})') | |
check(erf(42.*x), 'erf{s}(42.0{S}*x)') | |
check(erfc(42.*x), 'erfc{s}(42.0{S}*x)') | |
check(gamma(x), 'tgamma{s}(x)') | |
check(loggamma(x), 'lgamma{s}(x)') | |
check(ceiling(x + 2.), "ceil{s}(x) + 2") | |
check(floor(x + 2.), "floor{s}(x) + 2") | |
check(fma(x, y, -z), 'fma{s}(x, y, -z)') | |
check(Max(x, 8.0, x**4.0), 'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))') | |
check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)') | |
def test_get_math_macros(): | |
macros = get_math_macros() | |
assert macros[exp(1)] == 'M_E' | |
assert macros[1/Sqrt(2)] == 'M_SQRT1_2' | |
def test_ccode_Declaration(): | |
i = symbols('i', integer=True) | |
var1 = Variable(i, type=Type.from_expr(i)) | |
dcl1 = Declaration(var1) | |
assert ccode(dcl1) == 'int i' | |
var2 = Variable(x, type=float32, attrs={value_const}) | |
dcl2a = Declaration(var2) | |
assert ccode(dcl2a) == 'const float x' | |
dcl2b = var2.as_Declaration(value=pi) | |
assert ccode(dcl2b) == 'const float x = M_PI' | |
var3 = Variable(y, type=Type('bool')) | |
dcl3 = Declaration(var3) | |
printer = C89CodePrinter() | |
assert 'stdbool.h' not in printer.headers | |
assert printer.doprint(dcl3) == 'bool y' | |
assert 'stdbool.h' in printer.headers | |
u = symbols('u', real=True) | |
ptr4 = Pointer.deduced(u, attrs={pointer_const, restrict}) | |
dcl4 = Declaration(ptr4) | |
assert ccode(dcl4) == 'double * const restrict u' | |
var5 = Variable(x, Type('__float128'), attrs={value_const}) | |
dcl5a = Declaration(var5) | |
assert ccode(dcl5a) == 'const __float128 x' | |
var5b = Variable(var5.symbol, var5.type, pi, attrs=var5.attrs) | |
dcl5b = Declaration(var5b) | |
assert ccode(dcl5b) == 'const __float128 x = M_PI' | |
def test_C99CodePrinter_custom_type(): | |
# We will look at __float128 (new in glibc 2.26) | |
f128 = FloatType('_Float128', float128.nbits, float128.nmant, float128.nexp) | |
p128 = C99CodePrinter({ | |
"type_aliases": {real: f128}, | |
"type_literal_suffixes": {f128: 'Q'}, | |
"type_func_suffixes": {f128: 'f128'}, | |
"type_math_macro_suffixes": { | |
real: 'f128', | |
f128: 'f128' | |
}, | |
"type_macros": { | |
f128: ('__STDC_WANT_IEC_60559_TYPES_EXT__',) | |
} | |
}) | |
assert p128.doprint(x) == 'x' | |
assert not p128.headers | |
assert not p128.libraries | |
assert not p128.macros | |
assert p128.doprint(2.0) == '2.0Q' | |
assert not p128.headers | |
assert not p128.libraries | |
assert p128.macros == {'__STDC_WANT_IEC_60559_TYPES_EXT__'} | |
assert p128.doprint(Rational(1, 2)) == '1.0Q/2.0Q' | |
assert p128.doprint(sin(x)) == 'sinf128(x)' | |
assert p128.doprint(cos(2., evaluate=False)) == 'cosf128(2.0Q)' | |
assert p128.doprint(x**-1.0) == '1.0Q/x' | |
var5 = Variable(x, f128, attrs={value_const}) | |
dcl5a = Declaration(var5) | |
assert ccode(dcl5a) == 'const _Float128 x' | |
var5b = Variable(x, f128, pi, attrs={value_const}) | |
dcl5b = Declaration(var5b) | |
assert p128.doprint(dcl5b) == 'const _Float128 x = M_PIf128' | |
var5b = Variable(x, f128, value=Catalan.evalf(38), attrs={value_const}) | |
dcl5c = Declaration(var5b) | |
assert p128.doprint(dcl5c) == 'const _Float128 x = %sQ' % Catalan.evalf(f128.decimal_dig) | |
def test_MatrixElement_printing(): | |
# test cases for issue #11821 | |
A = MatrixSymbol("A", 1, 3) | |
B = MatrixSymbol("B", 1, 3) | |
C = MatrixSymbol("C", 1, 3) | |
assert(ccode(A[0, 0]) == "A[0]") | |
assert(ccode(3 * A[0, 0]) == "3*A[0]") | |
F = C[0, 0].subs(C, A - B) | |
assert(ccode(F) == "(A - B)[0]") | |
def test_ccode_math_macros(): | |
assert ccode(z + exp(1)) == 'z + M_E' | |
assert ccode(z + log2(exp(1))) == 'z + M_LOG2E' | |
assert ccode(z + 1/log(2)) == 'z + M_LOG2E' | |
assert ccode(z + log(2)) == 'z + M_LN2' | |
assert ccode(z + log(10)) == 'z + M_LN10' | |
assert ccode(z + pi) == 'z + M_PI' | |
assert ccode(z + pi/2) == 'z + M_PI_2' | |
assert ccode(z + pi/4) == 'z + M_PI_4' | |
assert ccode(z + 1/pi) == 'z + M_1_PI' | |
assert ccode(z + 2/pi) == 'z + M_2_PI' | |
assert ccode(z + 2/sqrt(pi)) == 'z + M_2_SQRTPI' | |
assert ccode(z + 2/Sqrt(pi)) == 'z + M_2_SQRTPI' | |
assert ccode(z + sqrt(2)) == 'z + M_SQRT2' | |
assert ccode(z + Sqrt(2)) == 'z + M_SQRT2' | |
assert ccode(z + 1/sqrt(2)) == 'z + M_SQRT1_2' | |
assert ccode(z + 1/Sqrt(2)) == 'z + M_SQRT1_2' | |
def test_ccode_Type(): | |
assert ccode(Type('float')) == 'float' | |
assert ccode(intc) == 'int' | |
def test_ccode_codegen_ast(): | |
# Note that C only allows comments of the form /* ... */, double forward | |
# slash is not standard C, and some C compilers will grind to a halt upon | |
# encountering them. | |
assert ccode(Comment("this is a comment")) == "/* this is a comment */" # not // | |
assert ccode(While(abs(x) > 1, [aug_assign(x, '-', 1)])) == ( | |
'while (fabs(x) > 1) {\n' | |
' x -= 1;\n' | |
'}' | |
) | |
assert ccode(Scope([AddAugmentedAssignment(x, 1)])) == ( | |
'{\n' | |
' x += 1;\n' | |
'}' | |
) | |
inp_x = Declaration(Variable(x, type=real)) | |
assert ccode(FunctionPrototype(real, 'pwer', [inp_x])) == 'double pwer(double x)' | |
assert ccode(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) == ( | |
'double pwer(double x){\n' | |
' x = pow(x, 2);\n' | |
'}' | |
) | |
# Elements of CodeBlock are formatted as statements: | |
block = CodeBlock( | |
x, | |
Print([x, y], "%d %d"), | |
Print([QuotedString('hello'), y], "%s %d", file=stderr), | |
FunctionCall('pwer', [x]), | |
Return(x), | |
) | |
assert ccode(block) == '\n'.join([ | |
'x;', | |
'printf("%d %d", x, y);', | |
'fprintf(stderr, "%s %d", "hello", y);', | |
'pwer(x);', | |
'return x;', | |
]) | |
def test_ccode_UnevaluatedExpr(): | |
assert ccode(UnevaluatedExpr(y * x) + z) == "z + x*y" | |
assert ccode(UnevaluatedExpr(y + x) + z) == "z + (x + y)" # gh-21955 | |
w = symbols('w') | |
assert ccode(UnevaluatedExpr(y + x) + UnevaluatedExpr(z + w)) == "(w + z) + (x + y)" | |
p, q, r = symbols("p q r", real=True) | |
q_r = UnevaluatedExpr(q + r) | |
expr = abs(exp(p+q_r)) | |
assert ccode(expr) == "exp(p + (q + r))" | |
def test_ccode_array_like_containers(): | |
assert ccode([2,3,4]) == "{2, 3, 4}" | |
assert ccode((2,3,4)) == "{2, 3, 4}" | |