Spaces:
Sleeping
Sleeping
""" | |
Python code printers | |
This module contains Python code printers for plain Python as well as NumPy & SciPy enabled code. | |
""" | |
from collections import defaultdict | |
from itertools import chain | |
from sympy.core import S | |
from sympy.core.mod import Mod | |
from .precedence import precedence | |
from .codeprinter import CodePrinter | |
_kw = { | |
'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', | |
'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', | |
'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', | |
'with', 'yield', 'None', 'False', 'nonlocal', 'True' | |
} | |
_known_functions = { | |
'Abs': 'abs', | |
'Min': 'min', | |
'Max': 'max', | |
} | |
_known_functions_math = { | |
'acos': 'acos', | |
'acosh': 'acosh', | |
'asin': 'asin', | |
'asinh': 'asinh', | |
'atan': 'atan', | |
'atan2': 'atan2', | |
'atanh': 'atanh', | |
'ceiling': 'ceil', | |
'cos': 'cos', | |
'cosh': 'cosh', | |
'erf': 'erf', | |
'erfc': 'erfc', | |
'exp': 'exp', | |
'expm1': 'expm1', | |
'factorial': 'factorial', | |
'floor': 'floor', | |
'gamma': 'gamma', | |
'hypot': 'hypot', | |
'isnan': 'isnan', | |
'loggamma': 'lgamma', | |
'log': 'log', | |
'ln': 'log', | |
'log10': 'log10', | |
'log1p': 'log1p', | |
'log2': 'log2', | |
'sin': 'sin', | |
'sinh': 'sinh', | |
'Sqrt': 'sqrt', | |
'tan': 'tan', | |
'tanh': 'tanh' | |
} # Not used from ``math``: [copysign isclose isfinite isinf ldexp frexp pow modf | |
# radians trunc fmod fsum gcd degrees fabs] | |
_known_constants_math = { | |
'Exp1': 'e', | |
'Pi': 'pi', | |
'E': 'e', | |
'Infinity': 'inf', | |
'NaN': 'nan', | |
'ComplexInfinity': 'nan' | |
} | |
def _print_known_func(self, expr): | |
known = self.known_functions[expr.__class__.__name__] | |
return '{name}({args})'.format(name=self._module_format(known), | |
args=', '.join((self._print(arg) for arg in expr.args))) | |
def _print_known_const(self, expr): | |
known = self.known_constants[expr.__class__.__name__] | |
return self._module_format(known) | |
class AbstractPythonCodePrinter(CodePrinter): | |
printmethod = "_pythoncode" | |
language = "Python" | |
reserved_words = _kw | |
modules = None # initialized to a set in __init__ | |
tab = ' ' | |
_kf = dict(chain( | |
_known_functions.items(), | |
[(k, 'math.' + v) for k, v in _known_functions_math.items()] | |
)) | |
_kc = {k: 'math.'+v for k, v in _known_constants_math.items()} | |
_operators = {'and': 'and', 'or': 'or', 'not': 'not'} | |
_default_settings = dict( | |
CodePrinter._default_settings, | |
user_functions={}, | |
precision=17, | |
inline=True, | |
fully_qualified_modules=True, | |
contract=False, | |
standard='python3', | |
) | |
def __init__(self, settings=None): | |
super().__init__(settings) | |
# Python standard handler | |
std = self._settings['standard'] | |
if std is None: | |
import sys | |
std = 'python{}'.format(sys.version_info.major) | |
if std != 'python3': | |
raise ValueError('Only Python 3 is supported.') | |
self.standard = std | |
self.module_imports = defaultdict(set) | |
# Known functions and constants handler | |
self.known_functions = dict(self._kf, **(settings or {}).get( | |
'user_functions', {})) | |
self.known_constants = dict(self._kc, **(settings or {}).get( | |
'user_constants', {})) | |
def _declare_number_const(self, name, value): | |
return "%s = %s" % (name, value) | |
def _module_format(self, fqn, register=True): | |
parts = fqn.split('.') | |
if register and len(parts) > 1: | |
self.module_imports['.'.join(parts[:-1])].add(parts[-1]) | |
if self._settings['fully_qualified_modules']: | |
return fqn | |
else: | |
return fqn.split('(')[0].split('[')[0].split('.')[-1] | |
def _format_code(self, lines): | |
return lines | |
def _get_statement(self, codestring): | |
return "{}".format(codestring) | |
def _get_comment(self, text): | |
return " # {}".format(text) | |
def _expand_fold_binary_op(self, op, args): | |
""" | |
This method expands a fold on binary operations. | |
``functools.reduce`` is an example of a folded operation. | |
For example, the expression | |
`A + B + C + D` | |
is folded into | |
`((A + B) + C) + D` | |
""" | |
if len(args) == 1: | |
return self._print(args[0]) | |
else: | |
return "%s(%s, %s)" % ( | |
self._module_format(op), | |
self._expand_fold_binary_op(op, args[:-1]), | |
self._print(args[-1]), | |
) | |
def _expand_reduce_binary_op(self, op, args): | |
""" | |
This method expands a reductin on binary operations. | |
Notice: this is NOT the same as ``functools.reduce``. | |
For example, the expression | |
`A + B + C + D` | |
is reduced into: | |
`(A + B) + (C + D)` | |
""" | |
if len(args) == 1: | |
return self._print(args[0]) | |
else: | |
N = len(args) | |
Nhalf = N // 2 | |
return "%s(%s, %s)" % ( | |
self._module_format(op), | |
self._expand_reduce_binary_op(args[:Nhalf]), | |
self._expand_reduce_binary_op(args[Nhalf:]), | |
) | |
def _print_NaN(self, expr): | |
return "float('nan')" | |
def _print_Infinity(self, expr): | |
return "float('inf')" | |
def _print_NegativeInfinity(self, expr): | |
return "float('-inf')" | |
def _print_ComplexInfinity(self, expr): | |
return self._print_NaN(expr) | |
def _print_Mod(self, expr): | |
PREC = precedence(expr) | |
return ('{} % {}'.format(*(self.parenthesize(x, PREC) for x in expr.args))) | |
def _print_Piecewise(self, expr): | |
result = [] | |
i = 0 | |
for arg in expr.args: | |
e = arg.expr | |
c = arg.cond | |
if i == 0: | |
result.append('(') | |
result.append('(') | |
result.append(self._print(e)) | |
result.append(')') | |
result.append(' if ') | |
result.append(self._print(c)) | |
result.append(' else ') | |
i += 1 | |
result = result[:-1] | |
if result[-1] == 'True': | |
result = result[:-2] | |
result.append(')') | |
else: | |
result.append(' else None)') | |
return ''.join(result) | |
def _print_Relational(self, expr): | |
"Relational printer for Equality and Unequality" | |
op = { | |
'==' :'equal', | |
'!=' :'not_equal', | |
'<' :'less', | |
'<=' :'less_equal', | |
'>' :'greater', | |
'>=' :'greater_equal', | |
} | |
if expr.rel_op in op: | |
lhs = self._print(expr.lhs) | |
rhs = self._print(expr.rhs) | |
return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs) | |
return super()._print_Relational(expr) | |
def _print_ITE(self, expr): | |
from sympy.functions.elementary.piecewise import Piecewise | |
return self._print(expr.rewrite(Piecewise)) | |
def _print_Sum(self, expr): | |
loops = ( | |
'for {i} in range({a}, {b}+1)'.format( | |
i=self._print(i), | |
a=self._print(a), | |
b=self._print(b)) | |
for i, a, b in expr.limits) | |
return '(builtins.sum({function} {loops}))'.format( | |
function=self._print(expr.function), | |
loops=' '.join(loops)) | |
def _print_ImaginaryUnit(self, expr): | |
return '1j' | |
def _print_KroneckerDelta(self, expr): | |
a, b = expr.args | |
return '(1 if {a} == {b} else 0)'.format( | |
a = self._print(a), | |
b = self._print(b) | |
) | |
def _print_MatrixBase(self, expr): | |
name = expr.__class__.__name__ | |
func = self.known_functions.get(name, name) | |
return "%s(%s)" % (func, self._print(expr.tolist())) | |
_print_SparseRepMatrix = \ | |
_print_MutableSparseMatrix = \ | |
_print_ImmutableSparseMatrix = \ | |
_print_Matrix = \ | |
_print_DenseMatrix = \ | |
_print_MutableDenseMatrix = \ | |
_print_ImmutableMatrix = \ | |
_print_ImmutableDenseMatrix = \ | |
lambda self, expr: self._print_MatrixBase(expr) | |
def _indent_codestring(self, codestring): | |
return '\n'.join([self.tab + line for line in codestring.split('\n')]) | |
def _print_FunctionDefinition(self, fd): | |
body = '\n'.join((self._print(arg) for arg in fd.body)) | |
return "def {name}({parameters}):\n{body}".format( | |
name=self._print(fd.name), | |
parameters=', '.join([self._print(var.symbol) for var in fd.parameters]), | |
body=self._indent_codestring(body) | |
) | |
def _print_While(self, whl): | |
body = '\n'.join((self._print(arg) for arg in whl.body)) | |
return "while {cond}:\n{body}".format( | |
cond=self._print(whl.condition), | |
body=self._indent_codestring(body) | |
) | |
def _print_Declaration(self, decl): | |
return '%s = %s' % ( | |
self._print(decl.variable.symbol), | |
self._print(decl.variable.value) | |
) | |
def _print_BreakToken(self, bt): | |
return 'break' | |
def _print_Return(self, ret): | |
arg, = ret.args | |
return 'return %s' % self._print(arg) | |
def _print_Raise(self, rs): | |
arg, = rs.args | |
return 'raise %s' % self._print(arg) | |
def _print_RuntimeError_(self, re): | |
message, = re.args | |
return "RuntimeError(%s)" % self._print(message) | |
def _print_Print(self, prnt): | |
print_args = ', '.join((self._print(arg) for arg in prnt.print_args)) | |
from sympy.codegen.ast import none | |
if prnt.format_string != none: | |
print_args = '{} % ({}), end=""'.format( | |
self._print(prnt.format_string), | |
print_args | |
) | |
if prnt.file != None: # Must be '!= None', cannot be 'is not None' | |
print_args += ', file=%s' % self._print(prnt.file) | |
return 'print(%s)' % print_args | |
def _print_Stream(self, strm): | |
if str(strm.name) == 'stdout': | |
return self._module_format('sys.stdout') | |
elif str(strm.name) == 'stderr': | |
return self._module_format('sys.stderr') | |
else: | |
return self._print(strm.name) | |
def _print_NoneToken(self, arg): | |
return 'None' | |
def _hprint_Pow(self, expr, rational=False, sqrt='math.sqrt'): | |
"""Printing helper function for ``Pow`` | |
Notes | |
===== | |
This preprocesses the ``sqrt`` as math formatter and prints division | |
Examples | |
======== | |
>>> from sympy import sqrt | |
>>> from sympy.printing.pycode import PythonCodePrinter | |
>>> from sympy.abc import x | |
Python code printer automatically looks up ``math.sqrt``. | |
>>> printer = PythonCodePrinter() | |
>>> printer._hprint_Pow(sqrt(x), rational=True) | |
'x**(1/2)' | |
>>> printer._hprint_Pow(sqrt(x), rational=False) | |
'math.sqrt(x)' | |
>>> printer._hprint_Pow(1/sqrt(x), rational=True) | |
'x**(-1/2)' | |
>>> printer._hprint_Pow(1/sqrt(x), rational=False) | |
'1/math.sqrt(x)' | |
>>> printer._hprint_Pow(1/x, rational=False) | |
'1/x' | |
>>> printer._hprint_Pow(1/x, rational=True) | |
'x**(-1)' | |
Using sqrt from numpy or mpmath | |
>>> printer._hprint_Pow(sqrt(x), sqrt='numpy.sqrt') | |
'numpy.sqrt(x)' | |
>>> printer._hprint_Pow(sqrt(x), sqrt='mpmath.sqrt') | |
'mpmath.sqrt(x)' | |
See Also | |
======== | |
sympy.printing.str.StrPrinter._print_Pow | |
""" | |
PREC = precedence(expr) | |
if expr.exp == S.Half and not rational: | |
func = self._module_format(sqrt) | |
arg = self._print(expr.base) | |
return '{func}({arg})'.format(func=func, arg=arg) | |
if expr.is_commutative and not rational: | |
if -expr.exp is S.Half: | |
func = self._module_format(sqrt) | |
num = self._print(S.One) | |
arg = self._print(expr.base) | |
return f"{num}/{func}({arg})" | |
if expr.exp is S.NegativeOne: | |
num = self._print(S.One) | |
arg = self.parenthesize(expr.base, PREC, strict=False) | |
return f"{num}/{arg}" | |
base_str = self.parenthesize(expr.base, PREC, strict=False) | |
exp_str = self.parenthesize(expr.exp, PREC, strict=False) | |
return "{}**{}".format(base_str, exp_str) | |
class ArrayPrinter: | |
def _arrayify(self, indexed): | |
from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array | |
try: | |
return convert_indexed_to_array(indexed) | |
except Exception: | |
return indexed | |
def _get_einsum_string(self, subranks, contraction_indices): | |
letters = self._get_letter_generator_for_einsum() | |
contraction_string = "" | |
counter = 0 | |
d = {j: min(i) for i in contraction_indices for j in i} | |
indices = [] | |
for rank_arg in subranks: | |
lindices = [] | |
for i in range(rank_arg): | |
if counter in d: | |
lindices.append(d[counter]) | |
else: | |
lindices.append(counter) | |
counter += 1 | |
indices.append(lindices) | |
mapping = {} | |
letters_free = [] | |
letters_dum = [] | |
for i in indices: | |
for j in i: | |
if j not in mapping: | |
l = next(letters) | |
mapping[j] = l | |
else: | |
l = mapping[j] | |
contraction_string += l | |
if j in d: | |
if l not in letters_dum: | |
letters_dum.append(l) | |
else: | |
letters_free.append(l) | |
contraction_string += "," | |
contraction_string = contraction_string[:-1] | |
return contraction_string, letters_free, letters_dum | |
def _get_letter_generator_for_einsum(self): | |
for i in range(97, 123): | |
yield chr(i) | |
for i in range(65, 91): | |
yield chr(i) | |
raise ValueError("out of letters") | |
def _print_ArrayTensorProduct(self, expr): | |
letters = self._get_letter_generator_for_einsum() | |
contraction_string = ",".join(["".join([next(letters) for j in range(i)]) for i in expr.subranks]) | |
return '%s("%s", %s)' % ( | |
self._module_format(self._module + "." + self._einsum), | |
contraction_string, | |
", ".join([self._print(arg) for arg in expr.args]) | |
) | |
def _print_ArrayContraction(self, expr): | |
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct | |
base = expr.expr | |
contraction_indices = expr.contraction_indices | |
if isinstance(base, ArrayTensorProduct): | |
elems = ",".join(["%s" % (self._print(arg)) for arg in base.args]) | |
ranks = base.subranks | |
else: | |
elems = self._print(base) | |
ranks = [len(base.shape)] | |
contraction_string, letters_free, letters_dum = self._get_einsum_string(ranks, contraction_indices) | |
if not contraction_indices: | |
return self._print(base) | |
if isinstance(base, ArrayTensorProduct): | |
elems = ",".join(["%s" % (self._print(arg)) for arg in base.args]) | |
else: | |
elems = self._print(base) | |
return "%s(\"%s\", %s)" % ( | |
self._module_format(self._module + "." + self._einsum), | |
"{}->{}".format(contraction_string, "".join(sorted(letters_free))), | |
elems, | |
) | |
def _print_ArrayDiagonal(self, expr): | |
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct | |
diagonal_indices = list(expr.diagonal_indices) | |
if isinstance(expr.expr, ArrayTensorProduct): | |
subranks = expr.expr.subranks | |
elems = expr.expr.args | |
else: | |
subranks = expr.subranks | |
elems = [expr.expr] | |
diagonal_string, letters_free, letters_dum = self._get_einsum_string(subranks, diagonal_indices) | |
elems = [self._print(i) for i in elems] | |
return '%s("%s", %s)' % ( | |
self._module_format(self._module + "." + self._einsum), | |
"{}->{}".format(diagonal_string, "".join(letters_free+letters_dum)), | |
", ".join(elems) | |
) | |
def _print_PermuteDims(self, expr): | |
return "%s(%s, %s)" % ( | |
self._module_format(self._module + "." + self._transpose), | |
self._print(expr.expr), | |
self._print(expr.permutation.array_form), | |
) | |
def _print_ArrayAdd(self, expr): | |
return self._expand_fold_binary_op(self._module + "." + self._add, expr.args) | |
def _print_OneArray(self, expr): | |
return "%s((%s,))" % ( | |
self._module_format(self._module+ "." + self._ones), | |
','.join(map(self._print,expr.args)) | |
) | |
def _print_ZeroArray(self, expr): | |
return "%s((%s,))" % ( | |
self._module_format(self._module+ "." + self._zeros), | |
','.join(map(self._print,expr.args)) | |
) | |
def _print_Assignment(self, expr): | |
#XXX: maybe this needs to happen at a higher level e.g. at _print or | |
#doprint? | |
lhs = self._print(self._arrayify(expr.lhs)) | |
rhs = self._print(self._arrayify(expr.rhs)) | |
return "%s = %s" % ( lhs, rhs ) | |
def _print_IndexedBase(self, expr): | |
return self._print_ArraySymbol(expr) | |
class PythonCodePrinter(AbstractPythonCodePrinter): | |
def _print_sign(self, e): | |
return '(0.0 if {e} == 0 else {f}(1, {e}))'.format( | |
f=self._module_format('math.copysign'), e=self._print(e.args[0])) | |
def _print_Not(self, expr): | |
PREC = precedence(expr) | |
return self._operators['not'] + self.parenthesize(expr.args[0], PREC) | |
def _print_IndexedBase(self, expr): | |
return expr.name | |
def _print_Indexed(self, expr): | |
base = expr.args[0] | |
index = expr.args[1:] | |
return "{}[{}]".format(str(base), ", ".join([self._print(ind) for ind in index])) | |
def _print_Pow(self, expr, rational=False): | |
return self._hprint_Pow(expr, rational=rational) | |
def _print_Rational(self, expr): | |
return '{}/{}'.format(expr.p, expr.q) | |
def _print_Half(self, expr): | |
return self._print_Rational(expr) | |
def _print_frac(self, expr): | |
return self._print_Mod(Mod(expr.args[0], 1)) | |
def _print_Symbol(self, expr): | |
name = super()._print_Symbol(expr) | |
if name in self.reserved_words: | |
if self._settings['error_on_reserved']: | |
msg = ('This expression includes the symbol "{}" which is a ' | |
'reserved keyword in this language.') | |
raise ValueError(msg.format(name)) | |
return name + self._settings['reserved_word_suffix'] | |
elif '{' in name: # Remove curly braces from subscripted variables | |
return name.replace('{', '').replace('}', '') | |
else: | |
return name | |
_print_lowergamma = CodePrinter._print_not_supported | |
_print_uppergamma = CodePrinter._print_not_supported | |
_print_fresnelc = CodePrinter._print_not_supported | |
_print_fresnels = CodePrinter._print_not_supported | |
for k in PythonCodePrinter._kf: | |
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func) | |
for k in _known_constants_math: | |
setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const) | |
def pycode(expr, **settings): | |
""" Converts an expr to a string of Python code | |
Parameters | |
========== | |
expr : Expr | |
A SymPy expression. | |
fully_qualified_modules : bool | |
Whether or not to write out full module names of functions | |
(``math.sin`` vs. ``sin``). default: ``True``. | |
standard : str or None, optional | |
Only 'python3' (default) is supported. | |
This parameter may be removed in the future. | |
Examples | |
======== | |
>>> from sympy import pycode, tan, Symbol | |
>>> pycode(tan(Symbol('x')) + 1) | |
'math.tan(x) + 1' | |
""" | |
return PythonCodePrinter(settings).doprint(expr) | |
_not_in_mpmath = 'log1p log2'.split() | |
_in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath] | |
_known_functions_mpmath = dict(_in_mpmath, **{ | |
'beta': 'beta', | |
'frac': 'frac', | |
'fresnelc': 'fresnelc', | |
'fresnels': 'fresnels', | |
'sign': 'sign', | |
'loggamma': 'loggamma', | |
'hyper': 'hyper', | |
'meijerg': 'meijerg', | |
'besselj': 'besselj', | |
'bessely': 'bessely', | |
'besseli': 'besseli', | |
'besselk': 'besselk', | |
}) | |
_known_constants_mpmath = { | |
'Exp1': 'e', | |
'Pi': 'pi', | |
'GoldenRatio': 'phi', | |
'EulerGamma': 'euler', | |
'Catalan': 'catalan', | |
'NaN': 'nan', | |
'Infinity': 'inf', | |
'NegativeInfinity': 'ninf' | |
} | |
def _unpack_integral_limits(integral_expr): | |
""" helper function for _print_Integral that | |
- accepts an Integral expression | |
- returns a tuple of | |
- a list variables of integration | |
- a list of tuples of the upper and lower limits of integration | |
""" | |
integration_vars = [] | |
limits = [] | |
for integration_range in integral_expr.limits: | |
if len(integration_range) == 3: | |
integration_var, lower_limit, upper_limit = integration_range | |
else: | |
raise NotImplementedError("Only definite integrals are supported") | |
integration_vars.append(integration_var) | |
limits.append((lower_limit, upper_limit)) | |
return integration_vars, limits | |
class MpmathPrinter(PythonCodePrinter): | |
""" | |
Lambda printer for mpmath which maintains precision for floats | |
""" | |
printmethod = "_mpmathcode" | |
language = "Python with mpmath" | |
_kf = dict(chain( | |
_known_functions.items(), | |
[(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()] | |
)) | |
_kc = {k: 'mpmath.'+v for k, v in _known_constants_mpmath.items()} | |
def _print_Float(self, e): | |
# XXX: This does not handle setting mpmath.mp.dps. It is assumed that | |
# the caller of the lambdified function will have set it to sufficient | |
# precision to match the Floats in the expression. | |
# Remove 'mpz' if gmpy is installed. | |
args = str(tuple(map(int, e._mpf_))) | |
return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args) | |
def _print_Rational(self, e): | |
return "{func}({p})/{func}({q})".format( | |
func=self._module_format('mpmath.mpf'), | |
q=self._print(e.q), | |
p=self._print(e.p) | |
) | |
def _print_Half(self, e): | |
return self._print_Rational(e) | |
def _print_uppergamma(self, e): | |
return "{}({}, {}, {})".format( | |
self._module_format('mpmath.gammainc'), | |
self._print(e.args[0]), | |
self._print(e.args[1]), | |
self._module_format('mpmath.inf')) | |
def _print_lowergamma(self, e): | |
return "{}({}, 0, {})".format( | |
self._module_format('mpmath.gammainc'), | |
self._print(e.args[0]), | |
self._print(e.args[1])) | |
def _print_log2(self, e): | |
return '{0}({1})/{0}(2)'.format( | |
self._module_format('mpmath.log'), self._print(e.args[0])) | |
def _print_log1p(self, e): | |
return '{}({})'.format( | |
self._module_format('mpmath.log1p'), self._print(e.args[0])) | |
def _print_Pow(self, expr, rational=False): | |
return self._hprint_Pow(expr, rational=rational, sqrt='mpmath.sqrt') | |
def _print_Integral(self, e): | |
integration_vars, limits = _unpack_integral_limits(e) | |
return "{}(lambda {}: {}, {})".format( | |
self._module_format("mpmath.quad"), | |
", ".join(map(self._print, integration_vars)), | |
self._print(e.args[0]), | |
", ".join("(%s, %s)" % tuple(map(self._print, l)) for l in limits)) | |
for k in MpmathPrinter._kf: | |
setattr(MpmathPrinter, '_print_%s' % k, _print_known_func) | |
for k in _known_constants_mpmath: | |
setattr(MpmathPrinter, '_print_%s' % k, _print_known_const) | |
class SymPyPrinter(AbstractPythonCodePrinter): | |
language = "Python with SymPy" | |
_default_settings = dict( | |
AbstractPythonCodePrinter._default_settings, | |
strict=False # any class name will per definition be what we target in SymPyPrinter. | |
) | |
def _print_Function(self, expr): | |
mod = expr.func.__module__ or '' | |
return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__), | |
', '.join((self._print(arg) for arg in expr.args))) | |
def _print_Pow(self, expr, rational=False): | |
return self._hprint_Pow(expr, rational=rational, sqrt='sympy.sqrt') | |