Spaces:
Sleeping
Sleeping
""" | |
Javascript code printer | |
The JavascriptCodePrinter converts single SymPy expressions into single | |
Javascript expressions, using the functions defined in the Javascript | |
Math object where possible. | |
""" | |
from __future__ import annotations | |
from typing import Any | |
from sympy.core import S | |
from sympy.core.numbers import equal_valued | |
from sympy.printing.codeprinter import CodePrinter | |
from sympy.printing.precedence import precedence, PRECEDENCE | |
# dictionary mapping SymPy function to (argument_conditions, Javascript_function). | |
# Used in JavascriptCodePrinter._print_Function(self) | |
known_functions = { | |
'Abs': 'Math.abs', | |
'acos': 'Math.acos', | |
'acosh': 'Math.acosh', | |
'asin': 'Math.asin', | |
'asinh': 'Math.asinh', | |
'atan': 'Math.atan', | |
'atan2': 'Math.atan2', | |
'atanh': 'Math.atanh', | |
'ceiling': 'Math.ceil', | |
'cos': 'Math.cos', | |
'cosh': 'Math.cosh', | |
'exp': 'Math.exp', | |
'floor': 'Math.floor', | |
'log': 'Math.log', | |
'Max': 'Math.max', | |
'Min': 'Math.min', | |
'sign': 'Math.sign', | |
'sin': 'Math.sin', | |
'sinh': 'Math.sinh', | |
'tan': 'Math.tan', | |
'tanh': 'Math.tanh', | |
} | |
class JavascriptCodePrinter(CodePrinter): | |
""""A Printer to convert Python expressions to strings of JavaScript code | |
""" | |
printmethod = '_javascript' | |
language = 'JavaScript' | |
_default_settings: dict[str, Any] = dict(CodePrinter._default_settings, **{ | |
'precision': 17, | |
'user_functions': {}, | |
'contract': True, | |
}) | |
def __init__(self, settings={}): | |
CodePrinter.__init__(self, settings) | |
self.known_functions = dict(known_functions) | |
userfuncs = settings.get('user_functions', {}) | |
self.known_functions.update(userfuncs) | |
def _rate_index_position(self, p): | |
return p*5 | |
def _get_statement(self, codestring): | |
return "%s;" % codestring | |
def _get_comment(self, text): | |
return "// {}".format(text) | |
def _declare_number_const(self, name, value): | |
return "var {} = {};".format(name, value.evalf(self._settings['precision'])) | |
def _format_code(self, lines): | |
return self.indent_code(lines) | |
def _traverse_matrix_indices(self, mat): | |
rows, cols = mat.shape | |
return ((i, j) for i in range(rows) for j in range(cols)) | |
def _get_loop_opening_ending(self, indices): | |
open_lines = [] | |
close_lines = [] | |
loopstart = "for (var %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){" | |
for i in indices: | |
# Javascript arrays start at 0 and end at dimension-1 | |
open_lines.append(loopstart % { | |
'varble': self._print(i.label), | |
'start': self._print(i.lower), | |
'end': self._print(i.upper + 1)}) | |
close_lines.append("}") | |
return open_lines, close_lines | |
def _print_Pow(self, expr): | |
PREC = precedence(expr) | |
if equal_valued(expr.exp, -1): | |
return '1/%s' % (self.parenthesize(expr.base, PREC)) | |
elif equal_valued(expr.exp, 0.5): | |
return 'Math.sqrt(%s)' % self._print(expr.base) | |
elif expr.exp == S.One/3: | |
return 'Math.cbrt(%s)' % self._print(expr.base) | |
else: | |
return 'Math.pow(%s, %s)' % (self._print(expr.base), | |
self._print(expr.exp)) | |
def _print_Rational(self, expr): | |
p, q = int(expr.p), int(expr.q) | |
return '%d/%d' % (p, q) | |
def _print_Mod(self, expr): | |
num, den = expr.args | |
PREC = precedence(expr) | |
snum, sden = [self.parenthesize(arg, PREC) for arg in expr.args] | |
# % is remainder (same sign as numerator), not modulo (same sign as | |
# denominator), in js. Hence, % only works as modulo if both numbers | |
# have the same sign | |
if (num.is_nonnegative and den.is_nonnegative or | |
num.is_nonpositive and den.is_nonpositive): | |
return f"{snum} % {sden}" | |
return f"(({snum} % {sden}) + {sden}) % {sden}" | |
def _print_Relational(self, expr): | |
lhs_code = self._print(expr.lhs) | |
rhs_code = self._print(expr.rhs) | |
op = expr.rel_op | |
return "{} {} {}".format(lhs_code, op, rhs_code) | |
def _print_Indexed(self, expr): | |
# calculate index for 1d array | |
dims = expr.shape | |
elem = S.Zero | |
offset = S.One | |
for i in reversed(range(expr.rank)): | |
elem += expr.indices[i]*offset | |
offset *= dims[i] | |
return "%s[%s]" % (self._print(expr.base.label), self._print(elem)) | |
def _print_Idx(self, expr): | |
return self._print(expr.label) | |
def _print_Exp1(self, expr): | |
return "Math.E" | |
def _print_Pi(self, expr): | |
return 'Math.PI' | |
def _print_Infinity(self, expr): | |
return 'Number.POSITIVE_INFINITY' | |
def _print_NegativeInfinity(self, expr): | |
return 'Number.NEGATIVE_INFINITY' | |
def _print_Piecewise(self, expr): | |
from sympy.codegen.ast import Assignment | |
if expr.args[-1].cond != True: | |
# We need the last conditional to be a True, otherwise the resulting | |
# function may not return a result. | |
raise ValueError("All Piecewise expressions must contain an " | |
"(expr, True) statement to be used as a default " | |
"condition. Without one, the generated " | |
"expression may not evaluate to anything under " | |
"some condition.") | |
lines = [] | |
if expr.has(Assignment): | |
for i, (e, c) in enumerate(expr.args): | |
if i == 0: | |
lines.append("if (%s) {" % self._print(c)) | |
elif i == len(expr.args) - 1 and c == True: | |
lines.append("else {") | |
else: | |
lines.append("else if (%s) {" % self._print(c)) | |
code0 = self._print(e) | |
lines.append(code0) | |
lines.append("}") | |
return "\n".join(lines) | |
else: | |
# The piecewise was used in an expression, need to do inline | |
# operators. This has the downside that inline operators will | |
# not work for statements that span multiple lines (Matrix or | |
# Indexed expressions). | |
ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e)) | |
for e, c in expr.args[:-1]] | |
last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr) | |
return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)]) | |
def _print_MatrixElement(self, expr): | |
return "{}[{}]".format(self.parenthesize(expr.parent, | |
PRECEDENCE["Atom"], strict=True), | |
expr.j + expr.i*expr.parent.shape[1]) | |
def indent_code(self, code): | |
"""Accepts a string of code or a list of code lines""" | |
if isinstance(code, str): | |
code_lines = self.indent_code(code.splitlines(True)) | |
return ''.join(code_lines) | |
tab = " " | |
inc_token = ('{', '(', '{\n', '(\n') | |
dec_token = ('}', ')') | |
code = [ line.lstrip(' \t') for line in code ] | |
increase = [ int(any(map(line.endswith, inc_token))) for line in code ] | |
decrease = [ int(any(map(line.startswith, dec_token))) | |
for line in code ] | |
pretty = [] | |
level = 0 | |
for n, line in enumerate(code): | |
if line in ('', '\n'): | |
pretty.append(line) | |
continue | |
level -= decrease[n] | |
pretty.append("%s%s" % (tab*level, line)) | |
level += increase[n] | |
return pretty | |
def jscode(expr, assign_to=None, **settings): | |
"""Converts an expr to a string of javascript code | |
Parameters | |
========== | |
expr : Expr | |
A SymPy expression to be converted. | |
assign_to : optional | |
When given, the argument is used as the name of the variable to which | |
the expression is assigned. Can be a string, ``Symbol``, | |
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of | |
line-wrapping, or for expressions that generate multi-line statements. | |
precision : integer, optional | |
The precision for numbers such as pi [default=15]. | |
user_functions : dict, optional | |
A dictionary where keys are ``FunctionClass`` instances and values are | |
their string representations. Alternatively, the dictionary value can | |
be a list of tuples i.e. [(argument_test, js_function_string)]. See | |
below for examples. | |
human : bool, optional | |
If True, the result is a single string that may contain some constant | |
declarations for the number symbols. If False, the same information is | |
returned in a tuple of (symbols_to_declare, not_supported_functions, | |
code_text). [default=True]. | |
contract: bool, optional | |
If True, ``Indexed`` instances are assumed to obey tensor contraction | |
rules and the corresponding nested loops over indices are generated. | |
Setting contract=False will not generate loops, instead the user is | |
responsible to provide values for the indices in the code. | |
[default=True]. | |
Examples | |
======== | |
>>> from sympy import jscode, symbols, Rational, sin, ceiling, Abs | |
>>> x, tau = symbols("x, tau") | |
>>> jscode((2*tau)**Rational(7, 2)) | |
'8*Math.sqrt(2)*Math.pow(tau, 7/2)' | |
>>> jscode(sin(x), assign_to="s") | |
's = Math.sin(x);' | |
Custom printing can be defined for certain types by passing a dictionary of | |
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the | |
dictionary value can be a list of tuples i.e. [(argument_test, | |
js_function_string)]. | |
>>> custom_functions = { | |
... "ceiling": "CEIL", | |
... "Abs": [(lambda x: not x.is_integer, "fabs"), | |
... (lambda x: x.is_integer, "ABS")] | |
... } | |
>>> jscode(Abs(x) + ceiling(x), user_functions=custom_functions) | |
'fabs(x) + CEIL(x)' | |
``Piecewise`` expressions are converted into conditionals. If an | |
``assign_to`` variable is provided an if statement is created, otherwise | |
the ternary operator is used. Note that if the ``Piecewise`` lacks a | |
default term, represented by ``(expr, True)`` then an error will be thrown. | |
This is to prevent generating an expression that may not evaluate to | |
anything. | |
>>> from sympy import Piecewise | |
>>> expr = Piecewise((x + 1, x > 0), (x, True)) | |
>>> print(jscode(expr, tau)) | |
if (x > 0) { | |
tau = x + 1; | |
} | |
else { | |
tau = x; | |
} | |
Support for loops is provided through ``Indexed`` types. With | |
``contract=True`` these expressions will be turned into loops, whereas | |
``contract=False`` will just print the assignment expression that should be | |
looped over: | |
>>> from sympy import Eq, IndexedBase, Idx | |
>>> len_y = 5 | |
>>> y = IndexedBase('y', shape=(len_y,)) | |
>>> t = IndexedBase('t', shape=(len_y,)) | |
>>> Dy = IndexedBase('Dy', shape=(len_y-1,)) | |
>>> i = Idx('i', len_y-1) | |
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) | |
>>> jscode(e.rhs, assign_to=e.lhs, contract=False) | |
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' | |
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions | |
must be provided to ``assign_to``. Note that any expression that can be | |
generated normally can also exist inside a Matrix: | |
>>> from sympy import Matrix, MatrixSymbol | |
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) | |
>>> A = MatrixSymbol('A', 3, 1) | |
>>> print(jscode(mat, A)) | |
A[0] = Math.pow(x, 2); | |
if (x > 0) { | |
A[1] = x + 1; | |
} | |
else { | |
A[1] = x; | |
} | |
A[2] = Math.sin(x); | |
""" | |
return JavascriptCodePrinter(settings).doprint(expr, assign_to) | |
def print_jscode(expr, **settings): | |
"""Prints the Javascript representation of the given expression. | |
See jscode for the meaning of the optional arguments. | |
""" | |
print(jscode(expr, **settings)) | |