Spaces:
Sleeping
Sleeping
from sympy import ( | |
latex, exp, symbols, I, pi, sin, cos, tan, log, sqrt, | |
re, im, arg, frac, Sum, S, Abs, lambdify, | |
Function, dsolve, Eq, floor, Tuple | |
) | |
from sympy.external import import_module | |
from sympy.plotting.series import ( | |
LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries, | |
SurfaceOver2DRangeSeries, ContourSeries, ParametricSurfaceSeries, | |
ImplicitSeries, _set_discretization_points, List2DSeries | |
) | |
from sympy.testing.pytest import raises, warns, XFAIL, skip, ignore_warnings | |
np = import_module('numpy') | |
def test_adaptive(): | |
# verify that adaptive-related keywords produces the expected results | |
if not np: | |
skip("numpy not installed.") | |
x, y = symbols("x, y") | |
s1 = LineOver1DRangeSeries(sin(x), (x, -10, 10), "", adaptive=True, | |
depth=2) | |
x1, _ = s1.get_data() | |
s2 = LineOver1DRangeSeries(sin(x), (x, -10, 10), "", adaptive=True, | |
depth=5) | |
x2, _ = s2.get_data() | |
s3 = LineOver1DRangeSeries(sin(x), (x, -10, 10), "", adaptive=True) | |
x3, _ = s3.get_data() | |
assert len(x1) < len(x2) < len(x3) | |
s1 = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 2*pi), | |
adaptive=True, depth=2) | |
x1, _, _, = s1.get_data() | |
s2 = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 2*pi), | |
adaptive=True, depth=5) | |
x2, _, _ = s2.get_data() | |
s3 = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 2*pi), | |
adaptive=True) | |
x3, _, _ = s3.get_data() | |
assert len(x1) < len(x2) < len(x3) | |
def test_detect_poles(): | |
if not np: | |
skip("numpy not installed.") | |
x, u = symbols("x, u") | |
s1 = LineOver1DRangeSeries(tan(x), (x, -pi, pi), | |
adaptive=False, n=1000, detect_poles=False) | |
xx1, yy1 = s1.get_data() | |
s2 = LineOver1DRangeSeries(tan(x), (x, -pi, pi), | |
adaptive=False, n=1000, detect_poles=True, eps=0.01) | |
xx2, yy2 = s2.get_data() | |
# eps is too small: doesn't detect any poles | |
s3 = LineOver1DRangeSeries(tan(x), (x, -pi, pi), | |
adaptive=False, n=1000, detect_poles=True, eps=1e-06) | |
xx3, yy3 = s3.get_data() | |
s4 = LineOver1DRangeSeries(tan(x), (x, -pi, pi), | |
adaptive=False, n=1000, detect_poles="symbolic") | |
xx4, yy4 = s4.get_data() | |
assert np.allclose(xx1, xx2) and np.allclose(xx1, xx3) and np.allclose(xx1, xx4) | |
assert not np.any(np.isnan(yy1)) | |
assert not np.any(np.isnan(yy3)) | |
assert np.any(np.isnan(yy2)) | |
assert np.any(np.isnan(yy4)) | |
assert len(s2.poles_locations) == len(s3.poles_locations) == 0 | |
assert len(s4.poles_locations) == 2 | |
assert np.allclose(np.abs(s4.poles_locations), np.pi / 2) | |
with warns( | |
UserWarning, | |
match="NumPy is unable to evaluate with complex numbers some of", | |
test_stacklevel=False, | |
): | |
s1 = LineOver1DRangeSeries(frac(x), (x, -10, 10), | |
adaptive=False, n=1000, detect_poles=False) | |
s2 = LineOver1DRangeSeries(frac(x), (x, -10, 10), | |
adaptive=False, n=1000, detect_poles=True, eps=0.05) | |
s3 = LineOver1DRangeSeries(frac(x), (x, -10, 10), | |
adaptive=False, n=1000, detect_poles="symbolic") | |
xx1, yy1 = s1.get_data() | |
xx2, yy2 = s2.get_data() | |
xx3, yy3 = s3.get_data() | |
assert np.allclose(xx1, xx2) and np.allclose(xx1, xx3) | |
assert not np.any(np.isnan(yy1)) | |
assert np.any(np.isnan(yy2)) and np.any(np.isnan(yy2)) | |
assert not np.allclose(yy1, yy2, equal_nan=True) | |
# The poles below are actually step discontinuities. | |
assert len(s3.poles_locations) == 21 | |
s1 = LineOver1DRangeSeries(tan(u * x), (x, -pi, pi), params={u: 1}, | |
adaptive=False, n=1000, detect_poles=False) | |
xx1, yy1 = s1.get_data() | |
s2 = LineOver1DRangeSeries(tan(u * x), (x, -pi, pi), params={u: 1}, | |
adaptive=False, n=1000, detect_poles=True, eps=0.01) | |
xx2, yy2 = s2.get_data() | |
# eps is too small: doesn't detect any poles | |
s3 = LineOver1DRangeSeries(tan(u * x), (x, -pi, pi), params={u: 1}, | |
adaptive=False, n=1000, detect_poles=True, eps=1e-06) | |
xx3, yy3 = s3.get_data() | |
s4 = LineOver1DRangeSeries(tan(u * x), (x, -pi, pi), params={u: 1}, | |
adaptive=False, n=1000, detect_poles="symbolic") | |
xx4, yy4 = s4.get_data() | |
assert np.allclose(xx1, xx2) and np.allclose(xx1, xx3) and np.allclose(xx1, xx4) | |
assert not np.any(np.isnan(yy1)) | |
assert not np.any(np.isnan(yy3)) | |
assert np.any(np.isnan(yy2)) | |
assert np.any(np.isnan(yy4)) | |
assert len(s2.poles_locations) == len(s3.poles_locations) == 0 | |
assert len(s4.poles_locations) == 2 | |
assert np.allclose(np.abs(s4.poles_locations), np.pi / 2) | |
with warns( | |
UserWarning, | |
match="NumPy is unable to evaluate with complex numbers some of", | |
test_stacklevel=False, | |
): | |
u, v = symbols("u, v", real=True) | |
n = S(1) / 3 | |
f = (u + I * v)**n | |
r, i = re(f), im(f) | |
s1 = Parametric2DLineSeries(r.subs(u, -2), i.subs(u, -2), (v, -2, 2), | |
adaptive=False, n=1000, detect_poles=False) | |
s2 = Parametric2DLineSeries(r.subs(u, -2), i.subs(u, -2), (v, -2, 2), | |
adaptive=False, n=1000, detect_poles=True) | |
with ignore_warnings(RuntimeWarning): | |
xx1, yy1, pp1 = s1.get_data() | |
assert not np.isnan(yy1).any() | |
xx2, yy2, pp2 = s2.get_data() | |
assert np.isnan(yy2).any() | |
with warns( | |
UserWarning, | |
match="NumPy is unable to evaluate with complex numbers some of", | |
test_stacklevel=False, | |
): | |
f = (x * u + x * I * v)**n | |
r, i = re(f), im(f) | |
s1 = Parametric2DLineSeries(r.subs(u, -2), i.subs(u, -2), | |
(v, -2, 2), params={x: 1}, | |
adaptive=False, n1=1000, detect_poles=False) | |
s2 = Parametric2DLineSeries(r.subs(u, -2), i.subs(u, -2), | |
(v, -2, 2), params={x: 1}, | |
adaptive=False, n1=1000, detect_poles=True) | |
with ignore_warnings(RuntimeWarning): | |
xx1, yy1, pp1 = s1.get_data() | |
assert not np.isnan(yy1).any() | |
xx2, yy2, pp2 = s2.get_data() | |
assert np.isnan(yy2).any() | |
def test_number_discretization_points(): | |
# verify that the different ways to set the number of discretization | |
# points are consistent with each other. | |
if not np: | |
skip("numpy not installed.") | |
x, y, z = symbols("x:z") | |
for pt in [LineOver1DRangeSeries, Parametric2DLineSeries, | |
Parametric3DLineSeries]: | |
kw1 = _set_discretization_points({"n": 10}, pt) | |
kw2 = _set_discretization_points({"n": [10, 20, 30]}, pt) | |
kw3 = _set_discretization_points({"n1": 10}, pt) | |
assert all(("n1" in kw) and kw["n1"] == 10 for kw in [kw1, kw2, kw3]) | |
for pt in [SurfaceOver2DRangeSeries, ContourSeries, ParametricSurfaceSeries, | |
ImplicitSeries]: | |
kw1 = _set_discretization_points({"n": 10}, pt) | |
kw2 = _set_discretization_points({"n": [10, 20, 30]}, pt) | |
kw3 = _set_discretization_points({"n1": 10, "n2": 20}, pt) | |
assert kw1["n1"] == kw1["n2"] == 10 | |
assert all((kw["n1"] == 10) and (kw["n2"] == 20) for kw in [kw2, kw3]) | |
# verify that line-related series can deal with large float number of | |
# discretization points | |
LineOver1DRangeSeries(cos(x), (x, -5, 5), adaptive=False, n=1e04).get_data() | |
def test_list2dseries(): | |
if not np: | |
skip("numpy not installed.") | |
xx = np.linspace(-3, 3, 10) | |
yy1 = np.cos(xx) | |
yy2 = np.linspace(-3, 3, 20) | |
# same number of elements: everything is fine | |
s = List2DSeries(xx, yy1) | |
assert not s.is_parametric | |
# different number of elements: error | |
raises(ValueError, lambda: List2DSeries(xx, yy2)) | |
# no color func: returns only x, y components and s in not parametric | |
s = List2DSeries(xx, yy1) | |
xxs, yys = s.get_data() | |
assert np.allclose(xx, xxs) | |
assert np.allclose(yy1, yys) | |
assert not s.is_parametric | |
def test_interactive_vs_noninteractive(): | |
# verify that if a *Series class receives a `params` dictionary, it sets | |
# is_interactive=True | |
x, y, z, u, v = symbols("x, y, z, u, v") | |
s = LineOver1DRangeSeries(cos(x), (x, -5, 5)) | |
assert not s.is_interactive | |
s = LineOver1DRangeSeries(u * cos(x), (x, -5, 5), params={u: 1}) | |
assert s.is_interactive | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, -5, 5)) | |
assert not s.is_interactive | |
s = Parametric2DLineSeries(u * cos(x), u * sin(x), (x, -5, 5), | |
params={u: 1}) | |
assert s.is_interactive | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, -5, 5)) | |
assert not s.is_interactive | |
s = Parametric3DLineSeries(u * cos(x), u * sin(x), x, (x, -5, 5), | |
params={u: 1}) | |
assert s.is_interactive | |
s = SurfaceOver2DRangeSeries(cos(x * y), (x, -5, 5), (y, -5, 5)) | |
assert not s.is_interactive | |
s = SurfaceOver2DRangeSeries(u * cos(x * y), (x, -5, 5), (y, -5, 5), | |
params={u: 1}) | |
assert s.is_interactive | |
s = ContourSeries(cos(x * y), (x, -5, 5), (y, -5, 5)) | |
assert not s.is_interactive | |
s = ContourSeries(u * cos(x * y), (x, -5, 5), (y, -5, 5), | |
params={u: 1}) | |
assert s.is_interactive | |
s = ParametricSurfaceSeries(u * cos(v), v * sin(u), u + v, | |
(u, -5, 5), (v, -5, 5)) | |
assert not s.is_interactive | |
s = ParametricSurfaceSeries(u * cos(v * x), v * sin(u), u + v, | |
(u, -5, 5), (v, -5, 5), params={x: 1}) | |
assert s.is_interactive | |
def test_lin_log_scale(): | |
# Verify that data series create the correct spacing in the data. | |
if not np: | |
skip("numpy not installed.") | |
x, y, z = symbols("x, y, z") | |
s = LineOver1DRangeSeries(x, (x, 1, 10), adaptive=False, n=50, | |
xscale="linear") | |
xx, _ = s.get_data() | |
assert np.isclose(xx[1] - xx[0], xx[-1] - xx[-2]) | |
s = LineOver1DRangeSeries(x, (x, 1, 10), adaptive=False, n=50, | |
xscale="log") | |
xx, _ = s.get_data() | |
assert not np.isclose(xx[1] - xx[0], xx[-1] - xx[-2]) | |
s = Parametric2DLineSeries( | |
cos(x), sin(x), (x, pi / 2, 1.5 * pi), adaptive=False, n=50, | |
xscale="linear") | |
_, _, param = s.get_data() | |
assert np.isclose(param[1] - param[0], param[-1] - param[-2]) | |
s = Parametric2DLineSeries( | |
cos(x), sin(x), (x, pi / 2, 1.5 * pi), adaptive=False, n=50, | |
xscale="log") | |
_, _, param = s.get_data() | |
assert not np.isclose(param[1] - param[0], param[-1] - param[-2]) | |
s = Parametric3DLineSeries( | |
cos(x), sin(x), x, (x, pi / 2, 1.5 * pi), adaptive=False, n=50, | |
xscale="linear") | |
_, _, _, param = s.get_data() | |
assert np.isclose(param[1] - param[0], param[-1] - param[-2]) | |
s = Parametric3DLineSeries( | |
cos(x), sin(x), x, (x, pi / 2, 1.5 * pi), adaptive=False, n=50, | |
xscale="log") | |
_, _, _, param = s.get_data() | |
assert not np.isclose(param[1] - param[0], param[-1] - param[-2]) | |
s = SurfaceOver2DRangeSeries( | |
cos(x ** 2 + y ** 2), (x, 1, 5), (y, 1, 5), n=10, | |
xscale="linear", yscale="linear") | |
xx, yy, _ = s.get_data() | |
assert np.isclose(xx[0, 1] - xx[0, 0], xx[0, -1] - xx[0, -2]) | |
assert np.isclose(yy[1, 0] - yy[0, 0], yy[-1, 0] - yy[-2, 0]) | |
s = SurfaceOver2DRangeSeries( | |
cos(x ** 2 + y ** 2), (x, 1, 5), (y, 1, 5), n=10, | |
xscale="log", yscale="log") | |
xx, yy, _ = s.get_data() | |
assert not np.isclose(xx[0, 1] - xx[0, 0], xx[0, -1] - xx[0, -2]) | |
assert not np.isclose(yy[1, 0] - yy[0, 0], yy[-1, 0] - yy[-2, 0]) | |
s = ImplicitSeries( | |
cos(x ** 2 + y ** 2) > 0, (x, 1, 5), (y, 1, 5), | |
n1=10, n2=10, xscale="linear", yscale="linear", adaptive=False) | |
xx, yy, _, _ = s.get_data() | |
assert np.isclose(xx[0, 1] - xx[0, 0], xx[0, -1] - xx[0, -2]) | |
assert np.isclose(yy[1, 0] - yy[0, 0], yy[-1, 0] - yy[-2, 0]) | |
s = ImplicitSeries( | |
cos(x ** 2 + y ** 2) > 0, (x, 1, 5), (y, 1, 5), | |
n=10, xscale="log", yscale="log", adaptive=False) | |
xx, yy, _, _ = s.get_data() | |
assert not np.isclose(xx[0, 1] - xx[0, 0], xx[0, -1] - xx[0, -2]) | |
assert not np.isclose(yy[1, 0] - yy[0, 0], yy[-1, 0] - yy[-2, 0]) | |
def test_rendering_kw(): | |
# verify that each series exposes the `rendering_kw` attribute | |
if not np: | |
skip("numpy not installed.") | |
u, v, x, y, z = symbols("u, v, x:z") | |
s = List2DSeries([1, 2, 3], [4, 5, 6]) | |
assert isinstance(s.rendering_kw, dict) | |
s = LineOver1DRangeSeries(1, (x, -5, 5)) | |
assert isinstance(s.rendering_kw, dict) | |
s = Parametric2DLineSeries(sin(x), cos(x), (x, 0, pi)) | |
assert isinstance(s.rendering_kw, dict) | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, 0, 2 * pi)) | |
assert isinstance(s.rendering_kw, dict) | |
s = SurfaceOver2DRangeSeries(x + y, (x, -2, 2), (y, -3, 3)) | |
assert isinstance(s.rendering_kw, dict) | |
s = ContourSeries(x + y, (x, -2, 2), (y, -3, 3)) | |
assert isinstance(s.rendering_kw, dict) | |
s = ParametricSurfaceSeries(1, x, y, (x, 0, 1), (y, 0, 1)) | |
assert isinstance(s.rendering_kw, dict) | |
def test_data_shape(): | |
# Verify that the series produces the correct data shape when the input | |
# expression is a number. | |
if not np: | |
skip("numpy not installed.") | |
u, x, y, z = symbols("u, x:z") | |
# scalar expression: it should return a numpy ones array | |
s = LineOver1DRangeSeries(1, (x, -5, 5)) | |
xx, yy = s.get_data() | |
assert len(xx) == len(yy) | |
assert np.all(yy == 1) | |
s = LineOver1DRangeSeries(1, (x, -5, 5), adaptive=False, n=10) | |
xx, yy = s.get_data() | |
assert len(xx) == len(yy) == 10 | |
assert np.all(yy == 1) | |
s = Parametric2DLineSeries(sin(x), 1, (x, 0, pi)) | |
xx, yy, param = s.get_data() | |
assert (len(xx) == len(yy)) and (len(xx) == len(param)) | |
assert np.all(yy == 1) | |
s = Parametric2DLineSeries(1, sin(x), (x, 0, pi)) | |
xx, yy, param = s.get_data() | |
assert (len(xx) == len(yy)) and (len(xx) == len(param)) | |
assert np.all(xx == 1) | |
s = Parametric2DLineSeries(sin(x), 1, (x, 0, pi), adaptive=False) | |
xx, yy, param = s.get_data() | |
assert (len(xx) == len(yy)) and (len(xx) == len(param)) | |
assert np.all(yy == 1) | |
s = Parametric2DLineSeries(1, sin(x), (x, 0, pi), adaptive=False) | |
xx, yy, param = s.get_data() | |
assert (len(xx) == len(yy)) and (len(xx) == len(param)) | |
assert np.all(xx == 1) | |
s = Parametric3DLineSeries(cos(x), sin(x), 1, (x, 0, 2 * pi)) | |
xx, yy, zz, param = s.get_data() | |
assert (len(xx) == len(yy)) and (len(xx) == len(zz)) and (len(xx) == len(param)) | |
assert np.all(zz == 1) | |
s = Parametric3DLineSeries(cos(x), 1, x, (x, 0, 2 * pi)) | |
xx, yy, zz, param = s.get_data() | |
assert (len(xx) == len(yy)) and (len(xx) == len(zz)) and (len(xx) == len(param)) | |
assert np.all(yy == 1) | |
s = Parametric3DLineSeries(1, sin(x), x, (x, 0, 2 * pi)) | |
xx, yy, zz, param = s.get_data() | |
assert (len(xx) == len(yy)) and (len(xx) == len(zz)) and (len(xx) == len(param)) | |
assert np.all(xx == 1) | |
s = SurfaceOver2DRangeSeries(1, (x, -2, 2), (y, -3, 3)) | |
xx, yy, zz = s.get_data() | |
assert (xx.shape == yy.shape) and (xx.shape == zz.shape) | |
assert np.all(zz == 1) | |
s = ParametricSurfaceSeries(1, x, y, (x, 0, 1), (y, 0, 1)) | |
xx, yy, zz, uu, vv = s.get_data() | |
assert xx.shape == yy.shape == zz.shape == uu.shape == vv.shape | |
assert np.all(xx == 1) | |
s = ParametricSurfaceSeries(1, 1, y, (x, 0, 1), (y, 0, 1)) | |
xx, yy, zz, uu, vv = s.get_data() | |
assert xx.shape == yy.shape == zz.shape == uu.shape == vv.shape | |
assert np.all(yy == 1) | |
s = ParametricSurfaceSeries(x, 1, 1, (x, 0, 1), (y, 0, 1)) | |
xx, yy, zz, uu, vv = s.get_data() | |
assert xx.shape == yy.shape == zz.shape == uu.shape == vv.shape | |
assert np.all(zz == 1) | |
def test_only_integers(): | |
if not np: | |
skip("numpy not installed.") | |
x, y, u, v = symbols("x, y, u, v") | |
s = LineOver1DRangeSeries(sin(x), (x, -5.5, 4.5), "", | |
adaptive=False, only_integers=True) | |
xx, _ = s.get_data() | |
assert len(xx) == 10 | |
assert xx[0] == -5 and xx[-1] == 4 | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 2 * pi), "", | |
adaptive=False, only_integers=True) | |
_, _, p = s.get_data() | |
assert len(p) == 7 | |
assert p[0] == 0 and p[-1] == 6 | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, 0, 2 * pi), "", | |
adaptive=False, only_integers=True) | |
_, _, _, p = s.get_data() | |
assert len(p) == 7 | |
assert p[0] == 0 and p[-1] == 6 | |
s = SurfaceOver2DRangeSeries(cos(x**2 + y**2), (x, -5.5, 5.5), | |
(y, -3.5, 3.5), "", | |
adaptive=False, only_integers=True) | |
xx, yy, _ = s.get_data() | |
assert xx.shape == yy.shape == (7, 11) | |
assert np.allclose(xx[:, 0] - (-5) * np.ones(7), 0) | |
assert np.allclose(xx[0, :] - np.linspace(-5, 5, 11), 0) | |
assert np.allclose(yy[:, 0] - np.linspace(-3, 3, 7), 0) | |
assert np.allclose(yy[0, :] - (-3) * np.ones(11), 0) | |
r = 2 + sin(7 * u + 5 * v) | |
expr = ( | |
r * cos(u) * sin(v), | |
r * sin(u) * sin(v), | |
r * cos(v) | |
) | |
s = ParametricSurfaceSeries(*expr, (u, 0, 2 * pi), (v, 0, pi), "", | |
adaptive=False, only_integers=True) | |
xx, yy, zz, uu, vv = s.get_data() | |
assert xx.shape == yy.shape == zz.shape == uu.shape == vv.shape == (4, 7) | |
# only_integers also works with scalar expressions | |
s = LineOver1DRangeSeries(1, (x, -5.5, 4.5), "", | |
adaptive=False, only_integers=True) | |
xx, _ = s.get_data() | |
assert len(xx) == 10 | |
assert xx[0] == -5 and xx[-1] == 4 | |
s = Parametric2DLineSeries(cos(x), 1, (x, 0, 2 * pi), "", | |
adaptive=False, only_integers=True) | |
_, _, p = s.get_data() | |
assert len(p) == 7 | |
assert p[0] == 0 and p[-1] == 6 | |
s = SurfaceOver2DRangeSeries(1, (x, -5.5, 5.5), (y, -3.5, 3.5), "", | |
adaptive=False, only_integers=True) | |
xx, yy, _ = s.get_data() | |
assert xx.shape == yy.shape == (7, 11) | |
assert np.allclose(xx[:, 0] - (-5) * np.ones(7), 0) | |
assert np.allclose(xx[0, :] - np.linspace(-5, 5, 11), 0) | |
assert np.allclose(yy[:, 0] - np.linspace(-3, 3, 7), 0) | |
assert np.allclose(yy[0, :] - (-3) * np.ones(11), 0) | |
r = 2 + sin(7 * u + 5 * v) | |
expr = ( | |
r * cos(u) * sin(v), | |
1, | |
r * cos(v) | |
) | |
s = ParametricSurfaceSeries(*expr, (u, 0, 2 * pi), (v, 0, pi), "", | |
adaptive=False, only_integers=True) | |
xx, yy, zz, uu, vv = s.get_data() | |
assert xx.shape == yy.shape == zz.shape == uu.shape == vv.shape == (4, 7) | |
def test_is_point_is_filled(): | |
# verify that `is_point` and `is_filled` are attributes and that they | |
# they receive the correct values | |
if not np: | |
skip("numpy not installed.") | |
x, u = symbols("x, u") | |
s = LineOver1DRangeSeries(cos(x), (x, -5, 5), "", | |
is_point=False, is_filled=True) | |
assert (not s.is_point) and s.is_filled | |
s = LineOver1DRangeSeries(cos(x), (x, -5, 5), "", | |
is_point=True, is_filled=False) | |
assert s.is_point and (not s.is_filled) | |
s = List2DSeries([0, 1, 2], [3, 4, 5], | |
is_point=False, is_filled=True) | |
assert (not s.is_point) and s.is_filled | |
s = List2DSeries([0, 1, 2], [3, 4, 5], | |
is_point=True, is_filled=False) | |
assert s.is_point and (not s.is_filled) | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, -5, 5), | |
is_point=False, is_filled=True) | |
assert (not s.is_point) and s.is_filled | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, -5, 5), | |
is_point=True, is_filled=False) | |
assert s.is_point and (not s.is_filled) | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, -5, 5), | |
is_point=False, is_filled=True) | |
assert (not s.is_point) and s.is_filled | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, -5, 5), | |
is_point=True, is_filled=False) | |
assert s.is_point and (not s.is_filled) | |
def test_is_filled_2d(): | |
# verify that the is_filled attribute is exposed by the following series | |
x, y = symbols("x, y") | |
expr = cos(x**2 + y**2) | |
ranges = (x, -2, 2), (y, -2, 2) | |
s = ContourSeries(expr, *ranges) | |
assert s.is_filled | |
s = ContourSeries(expr, *ranges, is_filled=True) | |
assert s.is_filled | |
s = ContourSeries(expr, *ranges, is_filled=False) | |
assert not s.is_filled | |
def test_steps(): | |
if not np: | |
skip("numpy not installed.") | |
x, u = symbols("x, u") | |
def do_test(s1, s2): | |
if (not s1.is_parametric) and s1.is_2Dline: | |
xx1, _ = s1.get_data() | |
xx2, _ = s2.get_data() | |
elif s1.is_parametric and s1.is_2Dline: | |
xx1, _, _ = s1.get_data() | |
xx2, _, _ = s2.get_data() | |
elif (not s1.is_parametric) and s1.is_3Dline: | |
xx1, _, _ = s1.get_data() | |
xx2, _, _ = s2.get_data() | |
else: | |
xx1, _, _, _ = s1.get_data() | |
xx2, _, _, _ = s2.get_data() | |
assert len(xx1) != len(xx2) | |
s1 = LineOver1DRangeSeries(cos(x), (x, -5, 5), "", | |
adaptive=False, n=40, steps=False) | |
s2 = LineOver1DRangeSeries(cos(x), (x, -5, 5), "", | |
adaptive=False, n=40, steps=True) | |
do_test(s1, s2) | |
s1 = List2DSeries([0, 1, 2], [3, 4, 5], steps=False) | |
s2 = List2DSeries([0, 1, 2], [3, 4, 5], steps=True) | |
do_test(s1, s2) | |
s1 = Parametric2DLineSeries(cos(x), sin(x), (x, -5, 5), | |
adaptive=False, n=40, steps=False) | |
s2 = Parametric2DLineSeries(cos(x), sin(x), (x, -5, 5), | |
adaptive=False, n=40, steps=True) | |
do_test(s1, s2) | |
s1 = Parametric3DLineSeries(cos(x), sin(x), x, (x, -5, 5), | |
adaptive=False, n=40, steps=False) | |
s2 = Parametric3DLineSeries(cos(x), sin(x), x, (x, -5, 5), | |
adaptive=False, n=40, steps=True) | |
do_test(s1, s2) | |
def test_interactive_data(): | |
# verify that InteractiveSeries produces the same numerical data as their | |
# corresponding non-interactive series. | |
if not np: | |
skip("numpy not installed.") | |
u, x, y, z = symbols("u, x:z") | |
def do_test(data1, data2): | |
assert len(data1) == len(data2) | |
for d1, d2 in zip(data1, data2): | |
assert np.allclose(d1, d2) | |
s1 = LineOver1DRangeSeries(u * cos(x), (x, -5, 5), params={u: 1}, n=50) | |
s2 = LineOver1DRangeSeries(cos(x), (x, -5, 5), adaptive=False, n=50) | |
do_test(s1.get_data(), s2.get_data()) | |
s1 = Parametric2DLineSeries( | |
u * cos(x), u * sin(x), (x, -5, 5), params={u: 1}, n=50) | |
s2 = Parametric2DLineSeries(cos(x), sin(x), (x, -5, 5), | |
adaptive=False, n=50) | |
do_test(s1.get_data(), s2.get_data()) | |
s1 = Parametric3DLineSeries( | |
u * cos(x), u * sin(x), u * x, (x, -5, 5), | |
params={u: 1}, n=50) | |
s2 = Parametric3DLineSeries(cos(x), sin(x), x, (x, -5, 5), | |
adaptive=False, n=50) | |
do_test(s1.get_data(), s2.get_data()) | |
s1 = SurfaceOver2DRangeSeries( | |
u * cos(x ** 2 + y ** 2), (x, -3, 3), (y, -3, 3), | |
params={u: 1}, n1=50, n2=50,) | |
s2 = SurfaceOver2DRangeSeries( | |
cos(x ** 2 + y ** 2), (x, -3, 3), (y, -3, 3), | |
adaptive=False, n1=50, n2=50) | |
do_test(s1.get_data(), s2.get_data()) | |
s1 = ParametricSurfaceSeries( | |
u * cos(x + y), sin(x + y), x - y, (x, -3, 3), (y, -3, 3), | |
params={u: 1}, n1=50, n2=50,) | |
s2 = ParametricSurfaceSeries( | |
cos(x + y), sin(x + y), x - y, (x, -3, 3), (y, -3, 3), | |
adaptive=False, n1=50, n2=50,) | |
do_test(s1.get_data(), s2.get_data()) | |
# real part of a complex function evaluated over a real line with numpy | |
expr = re((z ** 2 + 1) / (z ** 2 - 1)) | |
s1 = LineOver1DRangeSeries(u * expr, (z, -3, 3), adaptive=False, n=50, | |
modules=None, params={u: 1}) | |
s2 = LineOver1DRangeSeries(expr, (z, -3, 3), adaptive=False, n=50, | |
modules=None) | |
do_test(s1.get_data(), s2.get_data()) | |
# real part of a complex function evaluated over a real line with mpmath | |
expr = re((z ** 2 + 1) / (z ** 2 - 1)) | |
s1 = LineOver1DRangeSeries(u * expr, (z, -3, 3), n=50, modules="mpmath", | |
params={u: 1}) | |
s2 = LineOver1DRangeSeries(expr, (z, -3, 3), | |
adaptive=False, n=50, modules="mpmath") | |
do_test(s1.get_data(), s2.get_data()) | |
def test_list2dseries_interactive(): | |
if not np: | |
skip("numpy not installed.") | |
x, y, u = symbols("x, y, u") | |
s = List2DSeries([1, 2, 3], [1, 2, 3]) | |
assert not s.is_interactive | |
# symbolic expressions as coordinates, but no ``params`` | |
raises(ValueError, lambda: List2DSeries([cos(x)], [sin(x)])) | |
# too few parameters | |
raises(ValueError, | |
lambda: List2DSeries([cos(x), y], [sin(x), 2], params={u: 1})) | |
s = List2DSeries([cos(x)], [sin(x)], params={x: 1}) | |
assert s.is_interactive | |
s = List2DSeries([x, 2, 3, 4], [4, 3, 2, x], params={x: 3}) | |
xx, yy = s.get_data() | |
assert np.allclose(xx, [3, 2, 3, 4]) | |
assert np.allclose(yy, [4, 3, 2, 3]) | |
assert not s.is_parametric | |
# numeric lists + params is present -> interactive series and | |
# lists are converted to Tuple. | |
s = List2DSeries([1, 2, 3], [1, 2, 3], params={x: 1}) | |
assert s.is_interactive | |
assert isinstance(s.list_x, Tuple) | |
assert isinstance(s.list_y, Tuple) | |
def test_mpmath(): | |
# test that the argument of complex functions evaluated with mpmath | |
# might be different than the one computed with Numpy (different | |
# behaviour at branch cuts) | |
if not np: | |
skip("numpy not installed.") | |
z, u = symbols("z, u") | |
s1 = LineOver1DRangeSeries(im(sqrt(-z)), (z, 1e-03, 5), | |
adaptive=True, modules=None, force_real_eval=True) | |
s2 = LineOver1DRangeSeries(im(sqrt(-z)), (z, 1e-03, 5), | |
adaptive=True, modules="mpmath", force_real_eval=True) | |
xx1, yy1 = s1.get_data() | |
xx2, yy2 = s2.get_data() | |
assert np.all(yy1 < 0) | |
assert np.all(yy2 > 0) | |
s1 = LineOver1DRangeSeries(im(sqrt(-z)), (z, -5, 5), | |
adaptive=False, n=20, modules=None, force_real_eval=True) | |
s2 = LineOver1DRangeSeries(im(sqrt(-z)), (z, -5, 5), | |
adaptive=False, n=20, modules="mpmath", force_real_eval=True) | |
xx1, yy1 = s1.get_data() | |
xx2, yy2 = s2.get_data() | |
assert np.allclose(xx1, xx2) | |
assert not np.allclose(yy1, yy2) | |
def test_str(): | |
u, x, y, z = symbols("u, x:z") | |
s = LineOver1DRangeSeries(cos(x), (x, -4, 3)) | |
assert str(s) == "cartesian line: cos(x) for x over (-4.0, 3.0)" | |
d = {"return": "real"} | |
s = LineOver1DRangeSeries(cos(x), (x, -4, 3), **d) | |
assert str(s) == "cartesian line: re(cos(x)) for x over (-4.0, 3.0)" | |
d = {"return": "imag"} | |
s = LineOver1DRangeSeries(cos(x), (x, -4, 3), **d) | |
assert str(s) == "cartesian line: im(cos(x)) for x over (-4.0, 3.0)" | |
d = {"return": "abs"} | |
s = LineOver1DRangeSeries(cos(x), (x, -4, 3), **d) | |
assert str(s) == "cartesian line: abs(cos(x)) for x over (-4.0, 3.0)" | |
d = {"return": "arg"} | |
s = LineOver1DRangeSeries(cos(x), (x, -4, 3), **d) | |
assert str(s) == "cartesian line: arg(cos(x)) for x over (-4.0, 3.0)" | |
s = LineOver1DRangeSeries(cos(u * x), (x, -4, 3), params={u: 1}) | |
assert str(s) == "interactive cartesian line: cos(u*x) for x over (-4.0, 3.0) and parameters (u,)" | |
s = LineOver1DRangeSeries(cos(u * x), (x, -u, 3*y), params={u: 1, y: 1}) | |
assert str(s) == "interactive cartesian line: cos(u*x) for x over (-u, 3*y) and parameters (u, y)" | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, -4, 3)) | |
assert str(s) == "parametric cartesian line: (cos(x), sin(x)) for x over (-4.0, 3.0)" | |
s = Parametric2DLineSeries(cos(u * x), sin(x), (x, -4, 3), params={u: 1}) | |
assert str(s) == "interactive parametric cartesian line: (cos(u*x), sin(x)) for x over (-4.0, 3.0) and parameters (u,)" | |
s = Parametric2DLineSeries(cos(u * x), sin(x), (x, -u, 3*y), params={u: 1, y:1}) | |
assert str(s) == "interactive parametric cartesian line: (cos(u*x), sin(x)) for x over (-u, 3*y) and parameters (u, y)" | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, -4, 3)) | |
assert str(s) == "3D parametric cartesian line: (cos(x), sin(x), x) for x over (-4.0, 3.0)" | |
s = Parametric3DLineSeries(cos(u*x), sin(x), x, (x, -4, 3), params={u: 1}) | |
assert str(s) == "interactive 3D parametric cartesian line: (cos(u*x), sin(x), x) for x over (-4.0, 3.0) and parameters (u,)" | |
s = Parametric3DLineSeries(cos(u*x), sin(x), x, (x, -u, 3*y), params={u: 1, y: 1}) | |
assert str(s) == "interactive 3D parametric cartesian line: (cos(u*x), sin(x), x) for x over (-u, 3*y) and parameters (u, y)" | |
s = SurfaceOver2DRangeSeries(cos(x * y), (x, -4, 3), (y, -2, 5)) | |
assert str(s) == "cartesian surface: cos(x*y) for x over (-4.0, 3.0) and y over (-2.0, 5.0)" | |
s = SurfaceOver2DRangeSeries(cos(u * x * y), (x, -4, 3), (y, -2, 5), params={u: 1}) | |
assert str(s) == "interactive cartesian surface: cos(u*x*y) for x over (-4.0, 3.0) and y over (-2.0, 5.0) and parameters (u,)" | |
s = SurfaceOver2DRangeSeries(cos(u * x * y), (x, -4*u, 3), (y, -2, 5*u), params={u: 1}) | |
assert str(s) == "interactive cartesian surface: cos(u*x*y) for x over (-4*u, 3.0) and y over (-2.0, 5*u) and parameters (u,)" | |
s = ContourSeries(cos(x * y), (x, -4, 3), (y, -2, 5)) | |
assert str(s) == "contour: cos(x*y) for x over (-4.0, 3.0) and y over (-2.0, 5.0)" | |
s = ContourSeries(cos(u * x * y), (x, -4, 3), (y, -2, 5), params={u: 1}) | |
assert str(s) == "interactive contour: cos(u*x*y) for x over (-4.0, 3.0) and y over (-2.0, 5.0) and parameters (u,)" | |
s = ParametricSurfaceSeries(cos(x * y), sin(x * y), x * y, | |
(x, -4, 3), (y, -2, 5)) | |
assert str(s) == "parametric cartesian surface: (cos(x*y), sin(x*y), x*y) for x over (-4.0, 3.0) and y over (-2.0, 5.0)" | |
s = ParametricSurfaceSeries(cos(u * x * y), sin(x * y), x * y, | |
(x, -4, 3), (y, -2, 5), params={u: 1}) | |
assert str(s) == "interactive parametric cartesian surface: (cos(u*x*y), sin(x*y), x*y) for x over (-4.0, 3.0) and y over (-2.0, 5.0) and parameters (u,)" | |
s = ImplicitSeries(x < y, (x, -5, 4), (y, -3, 2)) | |
assert str(s) == "Implicit expression: x < y for x over (-5.0, 4.0) and y over (-3.0, 2.0)" | |
def test_use_cm(): | |
# verify that the `use_cm` attribute is implemented. | |
if not np: | |
skip("numpy not installed.") | |
u, x, y, z = symbols("u, x:z") | |
s = List2DSeries([1, 2, 3, 4], [5, 6, 7, 8], use_cm=True) | |
assert s.use_cm | |
s = List2DSeries([1, 2, 3, 4], [5, 6, 7, 8], use_cm=False) | |
assert not s.use_cm | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, -4, 3), use_cm=True) | |
assert s.use_cm | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, -4, 3), use_cm=False) | |
assert not s.use_cm | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, -4, 3), | |
use_cm=True) | |
assert s.use_cm | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, -4, 3), | |
use_cm=False) | |
assert not s.use_cm | |
s = SurfaceOver2DRangeSeries(cos(x * y), (x, -4, 3), (y, -2, 5), | |
use_cm=True) | |
assert s.use_cm | |
s = SurfaceOver2DRangeSeries(cos(x * y), (x, -4, 3), (y, -2, 5), | |
use_cm=False) | |
assert not s.use_cm | |
s = ParametricSurfaceSeries(cos(x * y), sin(x * y), x * y, | |
(x, -4, 3), (y, -2, 5), use_cm=True) | |
assert s.use_cm | |
s = ParametricSurfaceSeries(cos(x * y), sin(x * y), x * y, | |
(x, -4, 3), (y, -2, 5), use_cm=False) | |
assert not s.use_cm | |
def test_surface_use_cm(): | |
# verify that SurfaceOver2DRangeSeries and ParametricSurfaceSeries get | |
# the same value for use_cm | |
x, y, u, v = symbols("x, y, u, v") | |
# they read the same value from default settings | |
s1 = SurfaceOver2DRangeSeries(cos(x**2 + y**2), (x, -2, 2), (y, -2, 2)) | |
s2 = ParametricSurfaceSeries(u * cos(v), u * sin(v), u, | |
(u, 0, 1), (v, 0 , 2*pi)) | |
assert s1.use_cm == s2.use_cm | |
# they get the same value | |
s1 = SurfaceOver2DRangeSeries(cos(x**2 + y**2), (x, -2, 2), (y, -2, 2), | |
use_cm=False) | |
s2 = ParametricSurfaceSeries(u * cos(v), u * sin(v), u, | |
(u, 0, 1), (v, 0 , 2*pi), use_cm=False) | |
assert s1.use_cm == s2.use_cm | |
# they get the same value | |
s1 = SurfaceOver2DRangeSeries(cos(x**2 + y**2), (x, -2, 2), (y, -2, 2), | |
use_cm=True) | |
s2 = ParametricSurfaceSeries(u * cos(v), u * sin(v), u, | |
(u, 0, 1), (v, 0 , 2*pi), use_cm=True) | |
assert s1.use_cm == s2.use_cm | |
def test_sums(): | |
# test that data series are able to deal with sums | |
if not np: | |
skip("numpy not installed.") | |
x, y, u = symbols("x, y, u") | |
def do_test(data1, data2): | |
assert len(data1) == len(data2) | |
for d1, d2 in zip(data1, data2): | |
assert np.allclose(d1, d2) | |
s = LineOver1DRangeSeries(Sum(1 / x ** y, (x, 1, 1000)), (y, 2, 10), | |
adaptive=False, only_integers=True) | |
xx, yy = s.get_data() | |
s1 = LineOver1DRangeSeries(Sum(1 / x, (x, 1, y)), (y, 2, 10), | |
adaptive=False, only_integers=True) | |
xx1, yy1 = s1.get_data() | |
s2 = LineOver1DRangeSeries(Sum(u / x, (x, 1, y)), (y, 2, 10), | |
params={u: 1}, only_integers=True) | |
xx2, yy2 = s2.get_data() | |
xx1 = xx1.astype(float) | |
xx2 = xx2.astype(float) | |
do_test([xx1, yy1], [xx2, yy2]) | |
s = LineOver1DRangeSeries(Sum(1 / x, (x, 1, y)), (y, 2, 10), | |
adaptive=True) | |
with warns( | |
UserWarning, | |
match="The evaluation with NumPy/SciPy failed", | |
test_stacklevel=False, | |
): | |
raises(TypeError, lambda: s.get_data()) | |
def test_apply_transforms(): | |
# verify that transformation functions get applied to the output | |
# of data series | |
if not np: | |
skip("numpy not installed.") | |
x, y, z, u, v = symbols("x:z, u, v") | |
s1 = LineOver1DRangeSeries(cos(x), (x, -2*pi, 2*pi), adaptive=False, n=10) | |
s2 = LineOver1DRangeSeries(cos(x), (x, -2*pi, 2*pi), adaptive=False, n=10, | |
tx=np.rad2deg) | |
s3 = LineOver1DRangeSeries(cos(x), (x, -2*pi, 2*pi), adaptive=False, n=10, | |
ty=np.rad2deg) | |
s4 = LineOver1DRangeSeries(cos(x), (x, -2*pi, 2*pi), adaptive=False, n=10, | |
tx=np.rad2deg, ty=np.rad2deg) | |
x1, y1 = s1.get_data() | |
x2, y2 = s2.get_data() | |
x3, y3 = s3.get_data() | |
x4, y4 = s4.get_data() | |
assert np.isclose(x1[0], -2*np.pi) and np.isclose(x1[-1], 2*np.pi) | |
assert (y1.min() < -0.9) and (y1.max() > 0.9) | |
assert np.isclose(x2[0], -360) and np.isclose(x2[-1], 360) | |
assert (y2.min() < -0.9) and (y2.max() > 0.9) | |
assert np.isclose(x3[0], -2*np.pi) and np.isclose(x3[-1], 2*np.pi) | |
assert (y3.min() < -52) and (y3.max() > 52) | |
assert np.isclose(x4[0], -360) and np.isclose(x4[-1], 360) | |
assert (y4.min() < -52) and (y4.max() > 52) | |
xx = np.linspace(-2*np.pi, 2*np.pi, 10) | |
yy = np.cos(xx) | |
s1 = List2DSeries(xx, yy) | |
s2 = List2DSeries(xx, yy, tx=np.rad2deg, ty=np.rad2deg) | |
x1, y1 = s1.get_data() | |
x2, y2 = s2.get_data() | |
assert np.isclose(x1[0], -2*np.pi) and np.isclose(x1[-1], 2*np.pi) | |
assert (y1.min() < -0.9) and (y1.max() > 0.9) | |
assert np.isclose(x2[0], -360) and np.isclose(x2[-1], 360) | |
assert (y2.min() < -52) and (y2.max() > 52) | |
s1 = Parametric2DLineSeries( | |
sin(x), cos(x), (x, -pi, pi), adaptive=False, n=10) | |
s2 = Parametric2DLineSeries( | |
sin(x), cos(x), (x, -pi, pi), adaptive=False, n=10, | |
tx=np.rad2deg, ty=np.rad2deg, tp=np.rad2deg) | |
x1, y1, a1 = s1.get_data() | |
x2, y2, a2 = s2.get_data() | |
assert np.allclose(x1, np.deg2rad(x2)) | |
assert np.allclose(y1, np.deg2rad(y2)) | |
assert np.allclose(a1, np.deg2rad(a2)) | |
s1 = Parametric3DLineSeries( | |
sin(x), cos(x), x, (x, -pi, pi), adaptive=False, n=10) | |
s2 = Parametric3DLineSeries( | |
sin(x), cos(x), x, (x, -pi, pi), adaptive=False, n=10, tp=np.rad2deg) | |
x1, y1, z1, a1 = s1.get_data() | |
x2, y2, z2, a2 = s2.get_data() | |
assert np.allclose(x1, x2) | |
assert np.allclose(y1, y2) | |
assert np.allclose(z1, z2) | |
assert np.allclose(a1, np.deg2rad(a2)) | |
s1 = SurfaceOver2DRangeSeries( | |
cos(x**2 + y**2), (x, -2*pi, 2*pi), (y, -2*pi, 2*pi), | |
adaptive=False, n1=10, n2=10) | |
s2 = SurfaceOver2DRangeSeries( | |
cos(x**2 + y**2), (x, -2*pi, 2*pi), (y, -2*pi, 2*pi), | |
adaptive=False, n1=10, n2=10, | |
tx=np.rad2deg, ty=lambda x: 2*x, tz=lambda x: 3*x) | |
x1, y1, z1 = s1.get_data() | |
x2, y2, z2 = s2.get_data() | |
assert np.allclose(x1, np.deg2rad(x2)) | |
assert np.allclose(y1, y2 / 2) | |
assert np.allclose(z1, z2 / 3) | |
s1 = ParametricSurfaceSeries( | |
u + v, u - v, u * v, (u, 0, 2*pi), (v, 0, pi), | |
adaptive=False, n1=10, n2=10) | |
s2 = ParametricSurfaceSeries( | |
u + v, u - v, u * v, (u, 0, 2*pi), (v, 0, pi), | |
adaptive=False, n1=10, n2=10, | |
tx=np.rad2deg, ty=lambda x: 2*x, tz=lambda x: 3*x) | |
x1, y1, z1, u1, v1 = s1.get_data() | |
x2, y2, z2, u2, v2 = s2.get_data() | |
assert np.allclose(x1, np.deg2rad(x2)) | |
assert np.allclose(y1, y2 / 2) | |
assert np.allclose(z1, z2 / 3) | |
assert np.allclose(u1, u2) | |
assert np.allclose(v1, v2) | |
def test_series_labels(): | |
# verify that series return the correct label, depending on the plot | |
# type and input arguments. If the user set custom label on a data series, | |
# it should returned un-modified. | |
if not np: | |
skip("numpy not installed.") | |
x, y, z, u, v = symbols("x, y, z, u, v") | |
wrapper = "$%s$" | |
expr = cos(x) | |
s1 = LineOver1DRangeSeries(expr, (x, -2, 2), None) | |
s2 = LineOver1DRangeSeries(expr, (x, -2, 2), "test") | |
assert s1.get_label(False) == str(expr) | |
assert s1.get_label(True) == wrapper % latex(expr) | |
assert s2.get_label(False) == "test" | |
assert s2.get_label(True) == "test" | |
s1 = List2DSeries([0, 1, 2, 3], [0, 1, 2, 3], "test") | |
assert s1.get_label(False) == "test" | |
assert s1.get_label(True) == "test" | |
expr = (cos(x), sin(x)) | |
s1 = Parametric2DLineSeries(*expr, (x, -2, 2), None, use_cm=True) | |
s2 = Parametric2DLineSeries(*expr, (x, -2, 2), "test", use_cm=True) | |
s3 = Parametric2DLineSeries(*expr, (x, -2, 2), None, use_cm=False) | |
s4 = Parametric2DLineSeries(*expr, (x, -2, 2), "test", use_cm=False) | |
assert s1.get_label(False) == "x" | |
assert s1.get_label(True) == wrapper % "x" | |
assert s2.get_label(False) == "test" | |
assert s2.get_label(True) == "test" | |
assert s3.get_label(False) == str(expr) | |
assert s3.get_label(True) == wrapper % latex(expr) | |
assert s4.get_label(False) == "test" | |
assert s4.get_label(True) == "test" | |
expr = (cos(x), sin(x), x) | |
s1 = Parametric3DLineSeries(*expr, (x, -2, 2), None, use_cm=True) | |
s2 = Parametric3DLineSeries(*expr, (x, -2, 2), "test", use_cm=True) | |
s3 = Parametric3DLineSeries(*expr, (x, -2, 2), None, use_cm=False) | |
s4 = Parametric3DLineSeries(*expr, (x, -2, 2), "test", use_cm=False) | |
assert s1.get_label(False) == "x" | |
assert s1.get_label(True) == wrapper % "x" | |
assert s2.get_label(False) == "test" | |
assert s2.get_label(True) == "test" | |
assert s3.get_label(False) == str(expr) | |
assert s3.get_label(True) == wrapper % latex(expr) | |
assert s4.get_label(False) == "test" | |
assert s4.get_label(True) == "test" | |
expr = cos(x**2 + y**2) | |
s1 = SurfaceOver2DRangeSeries(expr, (x, -2, 2), (y, -2, 2), None) | |
s2 = SurfaceOver2DRangeSeries(expr, (x, -2, 2), (y, -2, 2), "test") | |
assert s1.get_label(False) == str(expr) | |
assert s1.get_label(True) == wrapper % latex(expr) | |
assert s2.get_label(False) == "test" | |
assert s2.get_label(True) == "test" | |
expr = (cos(x - y), sin(x + y), x - y) | |
s1 = ParametricSurfaceSeries(*expr, (x, -2, 2), (y, -2, 2), None) | |
s2 = ParametricSurfaceSeries(*expr, (x, -2, 2), (y, -2, 2), "test") | |
assert s1.get_label(False) == str(expr) | |
assert s1.get_label(True) == wrapper % latex(expr) | |
assert s2.get_label(False) == "test" | |
assert s2.get_label(True) == "test" | |
expr = Eq(cos(x - y), 0) | |
s1 = ImplicitSeries(expr, (x, -10, 10), (y, -10, 10), None) | |
s2 = ImplicitSeries(expr, (x, -10, 10), (y, -10, 10), "test") | |
assert s1.get_label(False) == str(expr) | |
assert s1.get_label(True) == wrapper % latex(expr) | |
assert s2.get_label(False) == "test" | |
assert s2.get_label(True) == "test" | |
def test_is_polar_2d_parametric(): | |
# verify that Parametric2DLineSeries isable to apply polar discretization, | |
# which is used when polar_plot is executed with polar_axis=True | |
if not np: | |
skip("numpy not installed.") | |
t, u = symbols("t u") | |
# NOTE: a sufficiently big n must be provided, or else tests | |
# are going to fail | |
# No colormap | |
f = sin(4 * t) | |
s1 = Parametric2DLineSeries(f * cos(t), f * sin(t), (t, 0, 2*pi), | |
adaptive=False, n=10, is_polar=False, use_cm=False) | |
x1, y1, p1 = s1.get_data() | |
s2 = Parametric2DLineSeries(f * cos(t), f * sin(t), (t, 0, 2*pi), | |
adaptive=False, n=10, is_polar=True, use_cm=False) | |
th, r, p2 = s2.get_data() | |
assert (not np.allclose(x1, th)) and (not np.allclose(y1, r)) | |
assert np.allclose(p1, p2) | |
# With colormap | |
s3 = Parametric2DLineSeries(f * cos(t), f * sin(t), (t, 0, 2*pi), | |
adaptive=False, n=10, is_polar=False, color_func=lambda t: 2*t) | |
x3, y3, p3 = s3.get_data() | |
s4 = Parametric2DLineSeries(f * cos(t), f * sin(t), (t, 0, 2*pi), | |
adaptive=False, n=10, is_polar=True, color_func=lambda t: 2*t) | |
th4, r4, p4 = s4.get_data() | |
assert np.allclose(p3, p4) and (not np.allclose(p1, p3)) | |
assert np.allclose(x3, x1) and np.allclose(y3, y1) | |
assert np.allclose(th4, th) and np.allclose(r4, r) | |
def test_is_polar_3d(): | |
# verify that SurfaceOver2DRangeSeries is able to apply | |
# polar discretization | |
if not np: | |
skip("numpy not installed.") | |
x, y, t = symbols("x, y, t") | |
expr = (x**2 - 1)**2 | |
s1 = SurfaceOver2DRangeSeries(expr, (x, 0, 1.5), (y, 0, 2 * pi), | |
n=10, adaptive=False, is_polar=False) | |
s2 = SurfaceOver2DRangeSeries(expr, (x, 0, 1.5), (y, 0, 2 * pi), | |
n=10, adaptive=False, is_polar=True) | |
x1, y1, z1 = s1.get_data() | |
x2, y2, z2 = s2.get_data() | |
x22, y22 = x1 * np.cos(y1), x1 * np.sin(y1) | |
assert np.allclose(x2, x22) | |
assert np.allclose(y2, y22) | |
def test_color_func(): | |
# verify that eval_color_func produces the expected results in order to | |
# maintain back compatibility with the old sympy.plotting module | |
if not np: | |
skip("numpy not installed.") | |
x, y, z, u, v = symbols("x, y, z, u, v") | |
# color func: returns x, y, color and s is parametric | |
xx = np.linspace(-3, 3, 10) | |
yy1 = np.cos(xx) | |
s = List2DSeries(xx, yy1, color_func=lambda x, y: 2 * x, use_cm=True) | |
xxs, yys, col = s.get_data() | |
assert np.allclose(xx, xxs) | |
assert np.allclose(yy1, yys) | |
assert np.allclose(2 * xx, col) | |
assert s.is_parametric | |
s = List2DSeries(xx, yy1, color_func=lambda x, y: 2 * x, use_cm=False) | |
assert len(s.get_data()) == 2 | |
assert not s.is_parametric | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 2*pi), | |
adaptive=False, n=10, color_func=lambda t: t) | |
xx, yy, col = s.get_data() | |
assert (not np.allclose(xx, col)) and (not np.allclose(yy, col)) | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 2*pi), | |
adaptive=False, n=10, color_func=lambda x, y: x * y) | |
xx, yy, col = s.get_data() | |
assert np.allclose(col, xx * yy) | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 2*pi), | |
adaptive=False, n=10, color_func=lambda x, y, t: x * y * t) | |
xx, yy, col = s.get_data() | |
assert np.allclose(col, xx * yy * np.linspace(0, 2*np.pi, 10)) | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, 0, 2*pi), | |
adaptive=False, n=10, color_func=lambda t: t) | |
xx, yy, zz, col = s.get_data() | |
assert (not np.allclose(xx, col)) and (not np.allclose(yy, col)) | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, 0, 2*pi), | |
adaptive=False, n=10, color_func=lambda x, y, z: x * y * z) | |
xx, yy, zz, col = s.get_data() | |
assert np.allclose(col, xx * yy * zz) | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, 0, 2*pi), | |
adaptive=False, n=10, color_func=lambda x, y, z, t: x * y * z * t) | |
xx, yy, zz, col = s.get_data() | |
assert np.allclose(col, xx * yy * zz * np.linspace(0, 2*np.pi, 10)) | |
s = SurfaceOver2DRangeSeries(cos(x**2 + y**2), (x, -2, 2), (y, -2, 2), | |
adaptive=False, n1=10, n2=10, color_func=lambda x: x) | |
xx, yy, zz = s.get_data() | |
col = s.eval_color_func(xx, yy, zz) | |
assert np.allclose(xx, col) | |
s = SurfaceOver2DRangeSeries(cos(x**2 + y**2), (x, -2, 2), (y, -2, 2), | |
adaptive=False, n1=10, n2=10, color_func=lambda x, y: x * y) | |
xx, yy, zz = s.get_data() | |
col = s.eval_color_func(xx, yy, zz) | |
assert np.allclose(xx * yy, col) | |
s = SurfaceOver2DRangeSeries(cos(x**2 + y**2), (x, -2, 2), (y, -2, 2), | |
adaptive=False, n1=10, n2=10, color_func=lambda x, y, z: x * y * z) | |
xx, yy, zz = s.get_data() | |
col = s.eval_color_func(xx, yy, zz) | |
assert np.allclose(xx * yy * zz, col) | |
s = ParametricSurfaceSeries(1, x, y, (x, 0, 1), (y, 0, 1), adaptive=False, | |
n1=10, n2=10, color_func=lambda u:u) | |
xx, yy, zz, uu, vv = s.get_data() | |
col = s.eval_color_func(xx, yy, zz, uu, vv) | |
assert np.allclose(uu, col) | |
s = ParametricSurfaceSeries(1, x, y, (x, 0, 1), (y, 0, 1), adaptive=False, | |
n1=10, n2=10, color_func=lambda u, v: u * v) | |
xx, yy, zz, uu, vv = s.get_data() | |
col = s.eval_color_func(xx, yy, zz, uu, vv) | |
assert np.allclose(uu * vv, col) | |
s = ParametricSurfaceSeries(1, x, y, (x, 0, 1), (y, 0, 1), adaptive=False, | |
n1=10, n2=10, color_func=lambda x, y, z: x * y * z) | |
xx, yy, zz, uu, vv = s.get_data() | |
col = s.eval_color_func(xx, yy, zz, uu, vv) | |
assert np.allclose(xx * yy * zz, col) | |
s = ParametricSurfaceSeries(1, x, y, (x, 0, 1), (y, 0, 1), adaptive=False, | |
n1=10, n2=10, color_func=lambda x, y, z, u, v: x * y * z * u * v) | |
xx, yy, zz, uu, vv = s.get_data() | |
col = s.eval_color_func(xx, yy, zz, uu, vv) | |
assert np.allclose(xx * yy * zz * uu * vv, col) | |
# Interactive Series | |
s = List2DSeries([0, 1, 2, x], [x, 2, 3, 4], | |
color_func=lambda x, y: 2 * x, params={x: 1}, use_cm=True) | |
xx, yy, col = s.get_data() | |
assert np.allclose(xx, [0, 1, 2, 1]) | |
assert np.allclose(yy, [1, 2, 3, 4]) | |
assert np.allclose(2 * xx, col) | |
assert s.is_parametric and s.use_cm | |
s = List2DSeries([0, 1, 2, x], [x, 2, 3, 4], | |
color_func=lambda x, y: 2 * x, params={x: 1}, use_cm=False) | |
assert len(s.get_data()) == 2 | |
assert not s.is_parametric | |
def test_color_func_scalar_val(): | |
# verify that eval_color_func returns a numpy array even when color_func | |
# evaluates to a scalar value | |
if not np: | |
skip("numpy not installed.") | |
x, y = symbols("x, y") | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 2*pi), | |
adaptive=False, n=10, color_func=lambda t: 1) | |
xx, yy, col = s.get_data() | |
assert np.allclose(col, np.ones(xx.shape)) | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, 0, 2*pi), | |
adaptive=False, n=10, color_func=lambda t: 1) | |
xx, yy, zz, col = s.get_data() | |
assert np.allclose(col, np.ones(xx.shape)) | |
s = SurfaceOver2DRangeSeries(cos(x**2 + y**2), (x, -2, 2), (y, -2, 2), | |
adaptive=False, n1=10, n2=10, color_func=lambda x: 1) | |
xx, yy, zz = s.get_data() | |
assert np.allclose(s.eval_color_func(xx), np.ones(xx.shape)) | |
s = ParametricSurfaceSeries(1, x, y, (x, 0, 1), (y, 0, 1), adaptive=False, | |
n1=10, n2=10, color_func=lambda u: 1) | |
xx, yy, zz, uu, vv = s.get_data() | |
col = s.eval_color_func(xx, yy, zz, uu, vv) | |
assert np.allclose(col, np.ones(xx.shape)) | |
def test_color_func_expression(): | |
# verify that color_func is able to deal with instances of Expr: they will | |
# be lambdified with the same signature used for the main expression. | |
if not np: | |
skip("numpy not installed.") | |
x, y = symbols("x, y") | |
s1 = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 2*pi), | |
color_func=sin(x), adaptive=False, n=10, use_cm=True) | |
s2 = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 2*pi), | |
color_func=lambda x: np.cos(x), adaptive=False, n=10, use_cm=True) | |
# the following statement should not raise errors | |
d1 = s1.get_data() | |
assert callable(s1.color_func) | |
d2 = s2.get_data() | |
assert not np.allclose(d1[-1], d2[-1]) | |
s = SurfaceOver2DRangeSeries(cos(x**2 + y**2), (x, -pi, pi), (y, -pi, pi), | |
color_func=sin(x**2 + y**2), adaptive=False, n1=5, n2=5) | |
# the following statement should not raise errors | |
s.get_data() | |
assert callable(s.color_func) | |
xx = [1, 2, 3, 4, 5] | |
yy = [1, 2, 3, 4, 5] | |
raises(TypeError, | |
lambda : List2DSeries(xx, yy, use_cm=True, color_func=sin(x))) | |
def test_line_surface_color(): | |
# verify the back-compatibility with the old sympy.plotting module. | |
# By setting line_color or surface_color to be a callable, it will set | |
# the color_func attribute. | |
x, y, z = symbols("x, y, z") | |
s = LineOver1DRangeSeries(sin(x), (x, -5, 5), adaptive=False, n=10, | |
line_color=lambda x: x) | |
assert (s.line_color is None) and callable(s.color_func) | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 2*pi), | |
adaptive=False, n=10, line_color=lambda t: t) | |
assert (s.line_color is None) and callable(s.color_func) | |
s = SurfaceOver2DRangeSeries(cos(x**2 + y**2), (x, -2, 2), (y, -2, 2), | |
n1=10, n2=10, surface_color=lambda x: x) | |
assert (s.surface_color is None) and callable(s.color_func) | |
def test_complex_adaptive_false(): | |
# verify that series with adaptive=False is evaluated with discretized | |
# ranges of type complex. | |
if not np: | |
skip("numpy not installed.") | |
x, y, u = symbols("x y u") | |
def do_test(data1, data2): | |
assert len(data1) == len(data2) | |
for d1, d2 in zip(data1, data2): | |
assert np.allclose(d1, d2) | |
expr1 = sqrt(x) * exp(-x**2) | |
expr2 = sqrt(u * x) * exp(-x**2) | |
s1 = LineOver1DRangeSeries(im(expr1), (x, -5, 5), adaptive=False, n=10) | |
s2 = LineOver1DRangeSeries(im(expr2), (x, -5, 5), | |
adaptive=False, n=10, params={u: 1}) | |
data1 = s1.get_data() | |
data2 = s2.get_data() | |
do_test(data1, data2) | |
assert (not np.allclose(data1[1], 0)) and (not np.allclose(data2[1], 0)) | |
s1 = Parametric2DLineSeries(re(expr1), im(expr1), (x, -pi, pi), | |
adaptive=False, n=10) | |
s2 = Parametric2DLineSeries(re(expr2), im(expr2), (x, -pi, pi), | |
adaptive=False, n=10, params={u: 1}) | |
data1 = s1.get_data() | |
data2 = s2.get_data() | |
do_test(data1, data2) | |
assert (not np.allclose(data1[1], 0)) and (not np.allclose(data2[1], 0)) | |
s1 = SurfaceOver2DRangeSeries(im(expr1), (x, -5, 5), (y, -10, 10), | |
adaptive=False, n1=30, n2=3) | |
s2 = SurfaceOver2DRangeSeries(im(expr2), (x, -5, 5), (y, -10, 10), | |
adaptive=False, n1=30, n2=3, params={u: 1}) | |
data1 = s1.get_data() | |
data2 = s2.get_data() | |
do_test(data1, data2) | |
assert (not np.allclose(data1[1], 0)) and (not np.allclose(data2[1], 0)) | |
def test_expr_is_lambda_function(): | |
# verify that when a numpy function is provided, the series will be able | |
# to evaluate it. Also, label should be empty in order to prevent some | |
# backend from crashing. | |
if not np: | |
skip("numpy not installed.") | |
f = lambda x: np.cos(x) | |
s1 = LineOver1DRangeSeries(f, ("x", -5, 5), adaptive=True, depth=3) | |
s1.get_data() | |
s2 = LineOver1DRangeSeries(f, ("x", -5, 5), adaptive=False, n=10) | |
s2.get_data() | |
assert s1.label == s2.label == "" | |
fx = lambda x: np.cos(x) | |
fy = lambda x: np.sin(x) | |
s1 = Parametric2DLineSeries(fx, fy, ("x", 0, 2*pi), | |
adaptive=True, adaptive_goal=0.1) | |
s1.get_data() | |
s2 = Parametric2DLineSeries(fx, fy, ("x", 0, 2*pi), | |
adaptive=False, n=10) | |
s2.get_data() | |
assert s1.label == s2.label == "" | |
fz = lambda x: x | |
s1 = Parametric3DLineSeries(fx, fy, fz, ("x", 0, 2*pi), | |
adaptive=True, adaptive_goal=0.1) | |
s1.get_data() | |
s2 = Parametric3DLineSeries(fx, fy, fz, ("x", 0, 2*pi), | |
adaptive=False, n=10) | |
s2.get_data() | |
assert s1.label == s2.label == "" | |
f = lambda x, y: np.cos(x**2 + y**2) | |
s1 = SurfaceOver2DRangeSeries(f, ("a", -2, 2), ("b", -3, 3), | |
adaptive=False, n1=10, n2=10) | |
s1.get_data() | |
s2 = ContourSeries(f, ("a", -2, 2), ("b", -3, 3), | |
adaptive=False, n1=10, n2=10) | |
s2.get_data() | |
assert s1.label == s2.label == "" | |
fx = lambda u, v: np.cos(u + v) | |
fy = lambda u, v: np.sin(u - v) | |
fz = lambda u, v: u * v | |
s1 = ParametricSurfaceSeries(fx, fy, fz, ("u", 0, pi), ("v", 0, 2*pi), | |
adaptive=False, n1=10, n2=10) | |
s1.get_data() | |
assert s1.label == "" | |
raises(TypeError, lambda: List2DSeries(lambda t: t, lambda t: t)) | |
raises(TypeError, lambda : ImplicitSeries(lambda t: np.sin(t), | |
("x", -5, 5), ("y", -6, 6))) | |
def test_show_in_legend_lines(): | |
# verify that lines series correctly set the show_in_legend attribute | |
x, u = symbols("x, u") | |
s = LineOver1DRangeSeries(cos(x), (x, -2, 2), "test", show_in_legend=True) | |
assert s.show_in_legend | |
s = LineOver1DRangeSeries(cos(x), (x, -2, 2), "test", show_in_legend=False) | |
assert not s.show_in_legend | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 1), "test", | |
show_in_legend=True) | |
assert s.show_in_legend | |
s = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 1), "test", | |
show_in_legend=False) | |
assert not s.show_in_legend | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, 0, 1), "test", | |
show_in_legend=True) | |
assert s.show_in_legend | |
s = Parametric3DLineSeries(cos(x), sin(x), x, (x, 0, 1), "test", | |
show_in_legend=False) | |
assert not s.show_in_legend | |
def test_particular_case_1_with_adaptive_true(): | |
# Verify that symbolic expressions and numerical lambda functions are | |
# evaluated with the same algorithm. | |
if not np: | |
skip("numpy not installed.") | |
# NOTE: xfail because sympy's adaptive algorithm is not deterministic | |
def do_test(a, b): | |
with warns( | |
RuntimeWarning, | |
match="invalid value encountered in scalar power", | |
test_stacklevel=False, | |
): | |
d1 = a.get_data() | |
d2 = b.get_data() | |
for t, v in zip(d1, d2): | |
assert np.allclose(t, v) | |
n = symbols("n") | |
a = S(2) / 3 | |
epsilon = 0.01 | |
xn = (n**3 + n**2)**(S(1)/3) - (n**3 - n**2)**(S(1)/3) | |
expr = Abs(xn - a) - epsilon | |
math_func = lambdify([n], expr) | |
s1 = LineOver1DRangeSeries(expr, (n, -10, 10), "", | |
adaptive=True, depth=3) | |
s2 = LineOver1DRangeSeries(math_func, ("n", -10, 10), "", | |
adaptive=True, depth=3) | |
do_test(s1, s2) | |
def test_particular_case_1_with_adaptive_false(): | |
# Verify that symbolic expressions and numerical lambda functions are | |
# evaluated with the same algorithm. In particular, uniform evaluation | |
# is going to use np.vectorize, which correctly evaluates the following | |
# mathematical function. | |
if not np: | |
skip("numpy not installed.") | |
def do_test(a, b): | |
d1 = a.get_data() | |
d2 = b.get_data() | |
for t, v in zip(d1, d2): | |
assert np.allclose(t, v) | |
n = symbols("n") | |
a = S(2) / 3 | |
epsilon = 0.01 | |
xn = (n**3 + n**2)**(S(1)/3) - (n**3 - n**2)**(S(1)/3) | |
expr = Abs(xn - a) - epsilon | |
math_func = lambdify([n], expr) | |
s3 = LineOver1DRangeSeries(expr, (n, -10, 10), "", | |
adaptive=False, n=10) | |
s4 = LineOver1DRangeSeries(math_func, ("n", -10, 10), "", | |
adaptive=False, n=10) | |
do_test(s3, s4) | |
def test_complex_params_number_eval(): | |
# The main expression contains terms like sqrt(xi - 1), with | |
# parameter (0 <= xi <= 1). | |
# There shouldn't be any NaN values on the output. | |
if not np: | |
skip("numpy not installed.") | |
xi, wn, x0, v0, t = symbols("xi, omega_n, x0, v0, t") | |
x = Function("x")(t) | |
eq = x.diff(t, 2) + 2 * xi * wn * x.diff(t) + wn**2 * x | |
sol = dsolve(eq, x, ics={x.subs(t, 0): x0, x.diff(t).subs(t, 0): v0}) | |
params = { | |
wn: 0.5, | |
xi: 0.25, | |
x0: 0.45, | |
v0: 0.0 | |
} | |
s = LineOver1DRangeSeries(sol.rhs, (t, 0, 100), adaptive=False, n=5, | |
params=params) | |
x, y = s.get_data() | |
assert not np.isnan(x).any() | |
assert not np.isnan(y).any() | |
# Fourier Series of a sawtooth wave | |
# The main expression contains a Sum with a symbolic upper range. | |
# The lambdified code looks like: | |
# sum(blablabla for for n in range(1, m+1)) | |
# But range requires integer numbers, whereas per above example, the series | |
# casts parameters to complex. Verify that the series is able to detect | |
# upper bounds in summations and cast it to int in order to get successfull | |
# evaluation | |
x, T, n, m = symbols("x, T, n, m") | |
fs = S(1) / 2 - (1 / pi) * Sum(sin(2 * n * pi * x / T) / n, (n, 1, m)) | |
params = { | |
T: 4.5, | |
m: 5 | |
} | |
s = LineOver1DRangeSeries(fs, (x, 0, 10), adaptive=False, n=5, | |
params=params) | |
x, y = s.get_data() | |
assert not np.isnan(x).any() | |
assert not np.isnan(y).any() | |
def test_complex_range_line_plot_1(): | |
# verify that univariate functions are evaluated with a complex | |
# data range (with zero imaginary part). There shouln't be any | |
# NaN value in the output. | |
if not np: | |
skip("numpy not installed.") | |
x, u = symbols("x, u") | |
expr1 = im(sqrt(x) * exp(-x**2)) | |
expr2 = im(sqrt(u * x) * exp(-x**2)) | |
s1 = LineOver1DRangeSeries(expr1, (x, -10, 10), adaptive=True, | |
adaptive_goal=0.1) | |
s2 = LineOver1DRangeSeries(expr1, (x, -10, 10), adaptive=False, n=30) | |
s3 = LineOver1DRangeSeries(expr2, (x, -10, 10), adaptive=False, n=30, | |
params={u: 1}) | |
with ignore_warnings(RuntimeWarning): | |
data1 = s1.get_data() | |
data2 = s2.get_data() | |
data3 = s3.get_data() | |
assert not np.isnan(data1[1]).any() | |
assert not np.isnan(data2[1]).any() | |
assert not np.isnan(data3[1]).any() | |
assert np.allclose(data2[0], data3[0]) and np.allclose(data2[1], data3[1]) | |
def test_complex_range_line_plot_2(): | |
# verify that univariate functions are evaluated with a complex | |
# data range (with non-zero imaginary part). There shouln't be any | |
# NaN value in the output. | |
if not np: | |
skip("numpy not installed.") | |
# NOTE: xfail because sympy's adaptive algorithm is unable to deal with | |
# complex number. | |
x, u = symbols("x, u") | |
# adaptive and uniform meshing should produce the same data. | |
# because of the adaptive nature, just compare the first and last points | |
# of both series. | |
s1 = LineOver1DRangeSeries(abs(sqrt(x)), (x, -5-2j, 5-2j), adaptive=True) | |
s2 = LineOver1DRangeSeries(abs(sqrt(x)), (x, -5-2j, 5-2j), adaptive=False, | |
n=10) | |
with warns( | |
RuntimeWarning, | |
match="invalid value encountered in sqrt", | |
test_stacklevel=False, | |
): | |
d1 = s1.get_data() | |
d2 = s2.get_data() | |
xx1 = [d1[0][0], d1[0][-1]] | |
xx2 = [d2[0][0], d2[0][-1]] | |
yy1 = [d1[1][0], d1[1][-1]] | |
yy2 = [d2[1][0], d2[1][-1]] | |
assert np.allclose(xx1, xx2) | |
assert np.allclose(yy1, yy2) | |
def test_force_real_eval(): | |
# verify that force_real_eval=True produces inconsistent results when | |
# compared with evaluation of complex domain. | |
if not np: | |
skip("numpy not installed.") | |
x = symbols("x") | |
expr = im(sqrt(x) * exp(-x**2)) | |
s1 = LineOver1DRangeSeries(expr, (x, -10, 10), adaptive=False, n=10, | |
force_real_eval=False) | |
s2 = LineOver1DRangeSeries(expr, (x, -10, 10), adaptive=False, n=10, | |
force_real_eval=True) | |
d1 = s1.get_data() | |
with ignore_warnings(RuntimeWarning): | |
d2 = s2.get_data() | |
assert not np.allclose(d1[1], 0) | |
assert np.allclose(d2[1], 0) | |
def test_contour_series_show_clabels(): | |
# verify that a contour series has the abiliy to set the visibility of | |
# labels to contour lines | |
x, y = symbols("x, y") | |
s = ContourSeries(cos(x*y), (x, -2, 2), (y, -2, 2)) | |
assert s.show_clabels | |
s = ContourSeries(cos(x*y), (x, -2, 2), (y, -2, 2), clabels=True) | |
assert s.show_clabels | |
s = ContourSeries(cos(x*y), (x, -2, 2), (y, -2, 2), clabels=False) | |
assert not s.show_clabels | |
def test_LineOver1DRangeSeries_complex_range(): | |
# verify that LineOver1DRangeSeries can accept a complex range | |
# if the imaginary part of the start and end values are the same | |
x = symbols("x") | |
LineOver1DRangeSeries(sqrt(x), (x, -10, 10)) | |
LineOver1DRangeSeries(sqrt(x), (x, -10-2j, 10-2j)) | |
raises(ValueError, | |
lambda : LineOver1DRangeSeries(sqrt(x), (x, -10-2j, 10+2j))) | |
def test_symbolic_plotting_ranges(): | |
# verify that data series can use symbolic plotting ranges | |
if not np: | |
skip("numpy not installed.") | |
x, y, z, a, b = symbols("x, y, z, a, b") | |
def do_test(s1, s2, new_params): | |
d1 = s1.get_data() | |
d2 = s2.get_data() | |
for u, v in zip(d1, d2): | |
assert np.allclose(u, v) | |
s2.params = new_params | |
d2 = s2.get_data() | |
for u, v in zip(d1, d2): | |
assert not np.allclose(u, v) | |
s1 = LineOver1DRangeSeries(sin(x), (x, 0, 1), adaptive=False, n=10) | |
s2 = LineOver1DRangeSeries(sin(x), (x, a, b), params={a: 0, b: 1}, | |
adaptive=False, n=10) | |
do_test(s1, s2, {a: 0.5, b: 1.5}) | |
# missing a parameter | |
raises(ValueError, | |
lambda : LineOver1DRangeSeries(sin(x), (x, a, b), params={a: 1}, n=10)) | |
s1 = Parametric2DLineSeries(cos(x), sin(x), (x, 0, 1), adaptive=False, n=10) | |
s2 = Parametric2DLineSeries(cos(x), sin(x), (x, a, b), params={a: 0, b: 1}, | |
adaptive=False, n=10) | |
do_test(s1, s2, {a: 0.5, b: 1.5}) | |
# missing a parameter | |
raises(ValueError, | |
lambda : Parametric2DLineSeries(cos(x), sin(x), (x, a, b), | |
params={a: 0}, adaptive=False, n=10)) | |
s1 = Parametric3DLineSeries(cos(x), sin(x), x, (x, 0, 1), | |
adaptive=False, n=10) | |
s2 = Parametric3DLineSeries(cos(x), sin(x), x, (x, a, b), | |
params={a: 0, b: 1}, adaptive=False, n=10) | |
do_test(s1, s2, {a: 0.5, b: 1.5}) | |
# missing a parameter | |
raises(ValueError, | |
lambda : Parametric3DLineSeries(cos(x), sin(x), x, (x, a, b), | |
params={a: 0}, adaptive=False, n=10)) | |
s1 = SurfaceOver2DRangeSeries(cos(x**2 + y**2), (x, -pi, pi), (y, -pi, pi), | |
adaptive=False, n1=5, n2=5) | |
s2 = SurfaceOver2DRangeSeries(cos(x**2 + y**2), (x, -pi * a, pi * a), | |
(y, -pi * b, pi * b), params={a: 1, b: 1}, | |
adaptive=False, n1=5, n2=5) | |
do_test(s1, s2, {a: 0.5, b: 1.5}) | |
# missing a parameter | |
raises(ValueError, | |
lambda : SurfaceOver2DRangeSeries(cos(x**2 + y**2), | |
(x, -pi * a, pi * a), (y, -pi * b, pi * b), params={a: 1}, | |
adaptive=False, n1=5, n2=5)) | |
# one range symbol is included into another range's minimum or maximum val | |
raises(ValueError, | |
lambda : SurfaceOver2DRangeSeries(cos(x**2 + y**2), | |
(x, -pi * a + y, pi * a), (y, -pi * b, pi * b), params={a: 1}, | |
adaptive=False, n1=5, n2=5)) | |
s1 = ParametricSurfaceSeries( | |
cos(x - y), sin(x + y), x - y, (x, -2, 2), (y, -2, 2), n1=5, n2=5) | |
s2 = ParametricSurfaceSeries( | |
cos(x - y), sin(x + y), x - y, (x, -2 * a, 2), (y, -2, 2 * b), | |
params={a: 1, b: 1}, n1=5, n2=5) | |
do_test(s1, s2, {a: 0.5, b: 1.5}) | |
# missing a parameter | |
raises(ValueError, | |
lambda : ParametricSurfaceSeries( | |
cos(x - y), sin(x + y), x - y, (x, -2 * a, 2), (y, -2, 2 * b), | |
params={a: 1}, n1=5, n2=5)) | |
def test_exclude_points(): | |
# verify that exclude works as expected | |
if not np: | |
skip("numpy not installed.") | |
x = symbols("x") | |
expr = (floor(x) + S.Half) / (1 - (x - S.Half)**2) | |
with warns( | |
UserWarning, | |
match="NumPy is unable to evaluate with complex numbers some", | |
test_stacklevel=False, | |
): | |
s = LineOver1DRangeSeries(expr, (x, -3.5, 3.5), adaptive=False, n=100, | |
exclude=list(range(-3, 4))) | |
xx, yy = s.get_data() | |
assert not np.isnan(xx).any() | |
assert np.count_nonzero(np.isnan(yy)) == 7 | |
assert len(xx) > 100 | |
e1 = log(floor(x)) * cos(x) | |
e2 = log(floor(x)) * sin(x) | |
with warns( | |
UserWarning, | |
match="NumPy is unable to evaluate with complex numbers some", | |
test_stacklevel=False, | |
): | |
s = Parametric2DLineSeries(e1, e2, (x, 1, 12), adaptive=False, n=100, | |
exclude=list(range(1, 13))) | |
xx, yy, pp = s.get_data() | |
assert not np.isnan(pp).any() | |
assert np.count_nonzero(np.isnan(xx)) == 11 | |
assert np.count_nonzero(np.isnan(yy)) == 11 | |
assert len(xx) > 100 | |
def test_unwrap(): | |
# verify that unwrap works as expected | |
if not np: | |
skip("numpy not installed.") | |
x, y = symbols("x, y") | |
expr = 1 / (x**3 + 2*x**2 + x) | |
expr = arg(expr.subs(x, I*y*2*pi)) | |
s1 = LineOver1DRangeSeries(expr, (y, 1e-05, 1e05), xscale="log", | |
adaptive=False, n=10, unwrap=False) | |
s2 = LineOver1DRangeSeries(expr, (y, 1e-05, 1e05), xscale="log", | |
adaptive=False, n=10, unwrap=True) | |
s3 = LineOver1DRangeSeries(expr, (y, 1e-05, 1e05), xscale="log", | |
adaptive=False, n=10, unwrap={"period": 4}) | |
x1, y1 = s1.get_data() | |
x2, y2 = s2.get_data() | |
x3, y3 = s3.get_data() | |
assert np.allclose(x1, x2) | |
# there must not be nan values in the results of these evaluations | |
assert all(not np.isnan(t).any() for t in [y1, y2, y3]) | |
assert not np.allclose(y1, y2) | |
assert not np.allclose(y1, y3) | |
assert not np.allclose(y2, y3) | |