Spaces:
Sleeping
Sleeping
import os | |
from tempfile import TemporaryDirectory | |
import pytest | |
from sympy.concrete.summations import Sum | |
from sympy.core.numbers import (I, oo, pi) | |
from sympy.core.relational import Ne | |
from sympy.core.symbol import Symbol, symbols | |
from sympy.functions.elementary.exponential import (LambertW, exp, exp_polar, log) | |
from sympy.functions.elementary.miscellaneous import (real_root, sqrt) | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.elementary.trigonometric import (cos, sin) | |
from sympy.functions.elementary.miscellaneous import Min | |
from sympy.functions.special.hyper import meijerg | |
from sympy.integrals.integrals import Integral | |
from sympy.logic.boolalg import And | |
from sympy.core.singleton import S | |
from sympy.core.sympify import sympify | |
from sympy.external import import_module | |
from sympy.plotting.plot import ( | |
Plot, plot, plot_parametric, plot3d_parametric_line, plot3d, | |
plot3d_parametric_surface) | |
from sympy.plotting.plot import ( | |
unset_show, plot_contour, PlotGrid, MatplotlibBackend, TextBackend) | |
from sympy.plotting.series import ( | |
LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries, | |
ParametricSurfaceSeries, SurfaceOver2DRangeSeries) | |
from sympy.testing.pytest import skip, warns, raises, warns_deprecated_sympy | |
from sympy.utilities import lambdify as lambdify_ | |
from sympy.utilities.exceptions import ignore_warnings | |
unset_show() | |
matplotlib = import_module( | |
'matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) | |
class DummyBackendNotOk(Plot): | |
""" Used to verify if users can create their own backends. | |
This backend is meant to raise NotImplementedError for methods `show`, | |
`save`, `close`. | |
""" | |
def __new__(cls, *args, **kwargs): | |
return object.__new__(cls) | |
class DummyBackendOk(Plot): | |
""" Used to verify if users can create their own backends. | |
This backend is meant to pass all tests. | |
""" | |
def __new__(cls, *args, **kwargs): | |
return object.__new__(cls) | |
def show(self): | |
pass | |
def save(self): | |
pass | |
def close(self): | |
pass | |
def test_basic_plotting_backend(): | |
x = Symbol('x') | |
plot(x, (x, 0, 3), backend='text') | |
plot(x**2 + 1, (x, 0, 3), backend='text') | |
def test_plot_and_save_1(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
y = Symbol('y') | |
with TemporaryDirectory(prefix='sympy_') as tmpdir: | |
### | |
# Examples from the 'introduction' notebook | |
### | |
p = plot(x, legend=True, label='f1', adaptive=adaptive, n=10) | |
p = plot(x*sin(x), x*cos(x), label='f2', adaptive=adaptive, n=10) | |
p.extend(p) | |
p[0].line_color = lambda a: a | |
p[1].line_color = 'b' | |
p.title = 'Big title' | |
p.xlabel = 'the x axis' | |
p[1].label = 'straight line' | |
p.legend = True | |
p.aspect_ratio = (1, 1) | |
p.xlim = (-15, 20) | |
filename = 'test_basic_options_and_colors.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p.extend(plot(x + 1, adaptive=adaptive, n=10)) | |
p.append(plot(x + 3, x**2, adaptive=adaptive, n=10)[1]) | |
filename = 'test_plot_extend_append.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p[2] = plot(x**2, (x, -2, 3), adaptive=adaptive, n=10) | |
filename = 'test_plot_setitem.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p = plot(sin(x), (x, -2*pi, 4*pi), adaptive=adaptive, n=10) | |
filename = 'test_line_explicit.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p = plot(sin(x), adaptive=adaptive, n=10) | |
filename = 'test_line_default_range.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p = plot((x**2, (x, -5, 5)), (x**3, (x, -3, 3)), adaptive=adaptive, n=10) | |
filename = 'test_line_multiple_range.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
raises(ValueError, lambda: plot(x, y)) | |
#Piecewise plots | |
p = plot(Piecewise((1, x > 0), (0, True)), (x, -1, 1), adaptive=adaptive, n=10) | |
filename = 'test_plot_piecewise.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p = plot(Piecewise((x, x < 1), (x**2, True)), (x, -3, 3), adaptive=adaptive, n=10) | |
filename = 'test_plot_piecewise_2.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
# test issue 7471 | |
p1 = plot(x, adaptive=adaptive, n=10) | |
p2 = plot(3, adaptive=adaptive, n=10) | |
p1.extend(p2) | |
filename = 'test_horizontal_line.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
# test issue 10925 | |
f = Piecewise((-1, x < -1), (x, And(-1 <= x, x < 0)), \ | |
(x**2, And(0 <= x, x < 1)), (x**3, x >= 1)) | |
p = plot(f, (x, -3, 3), adaptive=adaptive, n=10) | |
filename = 'test_plot_piecewise_3.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
def test_plot_and_save_2(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
y = Symbol('y') | |
z = Symbol('z') | |
with TemporaryDirectory(prefix='sympy_') as tmpdir: | |
#parametric 2d plots. | |
#Single plot with default range. | |
p = plot_parametric(sin(x), cos(x), adaptive=adaptive, n=10) | |
filename = 'test_parametric.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
#Single plot with range. | |
p = plot_parametric( | |
sin(x), cos(x), (x, -5, 5), legend=True, label='parametric_plot', | |
adaptive=adaptive, n=10) | |
filename = 'test_parametric_range.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
#Multiple plots with same range. | |
p = plot_parametric((sin(x), cos(x)), (x, sin(x)), | |
adaptive=adaptive, n=10) | |
filename = 'test_parametric_multiple.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
#Multiple plots with different ranges. | |
p = plot_parametric( | |
(sin(x), cos(x), (x, -3, 3)), (x, sin(x), (x, -5, 5)), | |
adaptive=adaptive, n=10) | |
filename = 'test_parametric_multiple_ranges.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
#depth of recursion specified. | |
p = plot_parametric(x, sin(x), depth=13, | |
adaptive=adaptive, n=10) | |
filename = 'test_recursion_depth.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
#No adaptive sampling. | |
p = plot_parametric(cos(x), sin(x), adaptive=False, n=500) | |
filename = 'test_adaptive.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
#3d parametric plots | |
p = plot3d_parametric_line( | |
sin(x), cos(x), x, legend=True, label='3d_parametric_plot', | |
adaptive=adaptive, n=10) | |
filename = 'test_3d_line.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p = plot3d_parametric_line( | |
(sin(x), cos(x), x, (x, -5, 5)), (cos(x), sin(x), x, (x, -3, 3)), | |
adaptive=adaptive, n=10) | |
filename = 'test_3d_line_multiple.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p = plot3d_parametric_line(sin(x), cos(x), x, n=30, | |
adaptive=adaptive) | |
filename = 'test_3d_line_points.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
# 3d surface single plot. | |
p = plot3d(x * y, adaptive=adaptive, n=10) | |
filename = 'test_surface.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
# Multiple 3D plots with same range. | |
p = plot3d(-x * y, x * y, (x, -5, 5), adaptive=adaptive, n=10) | |
filename = 'test_surface_multiple.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
# Multiple 3D plots with different ranges. | |
p = plot3d( | |
(x * y, (x, -3, 3), (y, -3, 3)), (-x * y, (x, -3, 3), (y, -3, 3)), | |
adaptive=adaptive, n=10) | |
filename = 'test_surface_multiple_ranges.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
# Single Parametric 3D plot | |
p = plot3d_parametric_surface(sin(x + y), cos(x - y), x - y, | |
adaptive=adaptive, n=10) | |
filename = 'test_parametric_surface.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
# Multiple Parametric 3D plots. | |
p = plot3d_parametric_surface( | |
(x*sin(z), x*cos(z), z, (x, -5, 5), (z, -5, 5)), | |
(sin(x + y), cos(x - y), x - y, (x, -5, 5), (y, -5, 5)), | |
adaptive=adaptive, n=10) | |
filename = 'test_parametric_surface.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
# Single Contour plot. | |
p = plot_contour(sin(x)*sin(y), (x, -5, 5), (y, -5, 5), | |
adaptive=adaptive, n=10) | |
filename = 'test_contour_plot.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
# Multiple Contour plots with same range. | |
p = plot_contour(x**2 + y**2, x**3 + y**3, (x, -5, 5), (y, -5, 5), | |
adaptive=adaptive, n=10) | |
filename = 'test_contour_plot.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
# Multiple Contour plots with different range. | |
p = plot_contour( | |
(x**2 + y**2, (x, -5, 5), (y, -5, 5)), | |
(x**3 + y**3, (x, -3, 3), (y, -3, 3)), | |
adaptive=adaptive, n=10) | |
filename = 'test_contour_plot.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
def test_plot_and_save_3(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
y = Symbol('y') | |
z = Symbol('z') | |
with TemporaryDirectory(prefix='sympy_') as tmpdir: | |
### | |
# Examples from the 'colors' notebook | |
### | |
p = plot(sin(x), adaptive=adaptive, n=10) | |
p[0].line_color = lambda a: a | |
filename = 'test_colors_line_arity1.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p[0].line_color = lambda a, b: b | |
filename = 'test_colors_line_arity2.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p = plot(x*sin(x), x*cos(x), (x, 0, 10), adaptive=adaptive, n=10) | |
p[0].line_color = lambda a: a | |
filename = 'test_colors_param_line_arity1.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p[0].line_color = lambda a, b: a | |
filename = 'test_colors_param_line_arity1.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p[0].line_color = lambda a, b: b | |
filename = 'test_colors_param_line_arity2b.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p = plot3d_parametric_line( | |
sin(x) + 0.1*sin(x)*cos(7*x), | |
cos(x) + 0.1*cos(x)*cos(7*x), | |
0.1*sin(7*x), | |
(x, 0, 2*pi), adaptive=adaptive, n=10) | |
p[0].line_color = lambdify_(x, sin(4*x)) | |
filename = 'test_colors_3d_line_arity1.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p[0].line_color = lambda a, b: b | |
filename = 'test_colors_3d_line_arity2.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p[0].line_color = lambda a, b, c: c | |
filename = 'test_colors_3d_line_arity3.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p = plot3d(sin(x)*y, (x, 0, 6*pi), (y, -5, 5), adaptive=adaptive, n=10) | |
p[0].surface_color = lambda a: a | |
filename = 'test_colors_surface_arity1.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p[0].surface_color = lambda a, b: b | |
filename = 'test_colors_surface_arity2.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p[0].surface_color = lambda a, b, c: c | |
filename = 'test_colors_surface_arity3a.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p[0].surface_color = lambdify_((x, y, z), sqrt((x - 3*pi)**2 + y**2)) | |
filename = 'test_colors_surface_arity3b.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p = plot3d_parametric_surface(x * cos(4 * y), x * sin(4 * y), y, | |
(x, -1, 1), (y, -1, 1), adaptive=adaptive, n=10) | |
p[0].surface_color = lambda a: a | |
filename = 'test_colors_param_surf_arity1.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p[0].surface_color = lambda a, b: a*b | |
filename = 'test_colors_param_surf_arity2.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p[0].surface_color = lambdify_((x, y, z), sqrt(x**2 + y**2 + z**2)) | |
filename = 'test_colors_param_surf_arity3.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
def test_plot_and_save_4(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
y = Symbol('y') | |
### | |
# Examples from the 'advanced' notebook | |
### | |
with TemporaryDirectory(prefix='sympy_') as tmpdir: | |
i = Integral(log((sin(x)**2 + 1)*sqrt(x**2 + 1)), (x, 0, y)) | |
p = plot(i, (y, 1, 5), adaptive=adaptive, n=10, force_real_eval=True) | |
filename = 'test_advanced_integral.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
def test_plot_and_save_5(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
y = Symbol('y') | |
with TemporaryDirectory(prefix='sympy_') as tmpdir: | |
s = Sum(1/x**y, (x, 1, oo)) | |
p = plot(s, (y, 2, 10), adaptive=adaptive, n=10) | |
filename = 'test_advanced_inf_sum.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p = plot(Sum(1/x, (x, 1, y)), (y, 2, 10), show=False, | |
adaptive=adaptive, n=10) | |
p[0].only_integers = True | |
p[0].steps = True | |
filename = 'test_advanced_fin_sum.png' | |
# XXX: This should be fixed in experimental_lambdify or by using | |
# ordinary lambdify so that it doesn't warn. The error results from | |
# passing an array of values as the integration limit. | |
# | |
# UserWarning: The evaluation of the expression is problematic. We are | |
# trying a failback method that may still work. Please report this as a | |
# bug. | |
with ignore_warnings(UserWarning): | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
def test_plot_and_save_6(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
with TemporaryDirectory(prefix='sympy_') as tmpdir: | |
filename = 'test.png' | |
### | |
# Test expressions that can not be translated to np and generate complex | |
# results. | |
### | |
p = plot(sin(x) + I*cos(x)) | |
p.save(os.path.join(tmpdir, filename)) | |
with ignore_warnings(RuntimeWarning): | |
p = plot(sqrt(sqrt(-x))) | |
p.save(os.path.join(tmpdir, filename)) | |
p = plot(LambertW(x)) | |
p.save(os.path.join(tmpdir, filename)) | |
p = plot(sqrt(LambertW(x))) | |
p.save(os.path.join(tmpdir, filename)) | |
#Characteristic function of a StudentT distribution with nu=10 | |
x1 = 5 * x**2 * exp_polar(-I*pi)/2 | |
m1 = meijerg(((1 / 2,), ()), ((5, 0, 1 / 2), ()), x1) | |
x2 = 5*x**2 * exp_polar(I*pi)/2 | |
m2 = meijerg(((1/2,), ()), ((5, 0, 1/2), ()), x2) | |
expr = (m1 + m2) / (48 * pi) | |
with warns( | |
UserWarning, | |
match="The evaluation with NumPy/SciPy failed", | |
test_stacklevel=False, | |
): | |
p = plot(expr, (x, 1e-6, 1e-2), adaptive=adaptive, n=10) | |
p.save(os.path.join(tmpdir, filename)) | |
def test_plotgrid_and_save(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
y = Symbol('y') | |
with TemporaryDirectory(prefix='sympy_') as tmpdir: | |
p1 = plot(x, adaptive=adaptive, n=10) | |
p2 = plot_parametric((sin(x), cos(x)), (x, sin(x)), show=False, | |
adaptive=adaptive, n=10) | |
p3 = plot_parametric( | |
cos(x), sin(x), adaptive=adaptive, n=10, show=False) | |
p4 = plot3d_parametric_line(sin(x), cos(x), x, show=False, | |
adaptive=adaptive, n=10) | |
# symmetric grid | |
p = PlotGrid(2, 2, p1, p2, p3, p4) | |
filename = 'test_grid1.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
# grid size greater than the number of subplots | |
p = PlotGrid(3, 4, p1, p2, p3, p4) | |
filename = 'test_grid2.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
p5 = plot(cos(x),(x, -pi, pi), show=False, adaptive=adaptive, n=10) | |
p5[0].line_color = lambda a: a | |
p6 = plot(Piecewise((1, x > 0), (0, True)), (x, -1, 1), show=False, | |
adaptive=adaptive, n=10) | |
p7 = plot_contour( | |
(x**2 + y**2, (x, -5, 5), (y, -5, 5)), | |
(x**3 + y**3, (x, -3, 3), (y, -3, 3)), show=False, | |
adaptive=adaptive, n=10) | |
# unsymmetric grid (subplots in one line) | |
p = PlotGrid(1, 3, p5, p6, p7) | |
filename = 'test_grid3.png' | |
p.save(os.path.join(tmpdir, filename)) | |
p._backend.close() | |
def test_append_issue_7140(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
p1 = plot(x, adaptive=adaptive, n=10) | |
p2 = plot(x**2, adaptive=adaptive, n=10) | |
plot(x + 2, adaptive=adaptive, n=10) | |
# append a series | |
p2.append(p1[0]) | |
assert len(p2._series) == 2 | |
with raises(TypeError): | |
p1.append(p2) | |
with raises(TypeError): | |
p1.append(p2._series) | |
def test_issue_15265(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
eqn = sin(x) | |
p = plot(eqn, xlim=(-S.Pi, S.Pi), ylim=(-1, 1), adaptive=adaptive, n=10) | |
p._backend.close() | |
p = plot(eqn, xlim=(-1, 1), ylim=(-S.Pi, S.Pi), adaptive=adaptive, n=10) | |
p._backend.close() | |
p = plot(eqn, xlim=(-1, 1), adaptive=adaptive, n=10, | |
ylim=(sympify('-3.14'), sympify('3.14'))) | |
p._backend.close() | |
p = plot(eqn, adaptive=adaptive, n=10, | |
xlim=(sympify('-3.14'), sympify('3.14')), ylim=(-1, 1)) | |
p._backend.close() | |
raises(ValueError, | |
lambda: plot(eqn, adaptive=adaptive, n=10, | |
xlim=(-S.ImaginaryUnit, 1), ylim=(-1, 1))) | |
raises(ValueError, | |
lambda: plot(eqn, adaptive=adaptive, n=10, | |
xlim=(-1, 1), ylim=(-1, S.ImaginaryUnit))) | |
raises(ValueError, | |
lambda: plot(eqn, adaptive=adaptive, n=10, | |
xlim=(S.NegativeInfinity, 1), ylim=(-1, 1))) | |
raises(ValueError, | |
lambda: plot(eqn, adaptive=adaptive, n=10, | |
xlim=(-1, 1), ylim=(-1, S.Infinity))) | |
def test_empty_Plot(): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
# No exception showing an empty plot | |
plot() | |
# Plot is only a base class: doesn't implement any logic for showing | |
# images | |
p = Plot() | |
raises(NotImplementedError, lambda: p.show()) | |
def test_issue_17405(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
f = x**0.3 - 10*x**3 + x**2 | |
p = plot(f, (x, -10, 10), adaptive=adaptive, n=30, show=False) | |
# Random number of segments, probably more than 100, but we want to see | |
# that there are segments generated, as opposed to when the bug was present | |
# RuntimeWarning: invalid value encountered in double_scalars | |
with ignore_warnings(RuntimeWarning): | |
assert len(p[0].get_data()[0]) >= 30 | |
def test_logplot_PR_16796(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
p = plot(x, (x, .001, 100), adaptive=adaptive, n=30, | |
xscale='log', show=False) | |
# Random number of segments, probably more than 100, but we want to see | |
# that there are segments generated, as opposed to when the bug was present | |
assert len(p[0].get_data()[0]) >= 30 | |
assert p[0].end == 100.0 | |
assert p[0].start == .001 | |
def test_issue_16572(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
p = plot(LambertW(x), show=False, adaptive=adaptive, n=30) | |
# Random number of segments, probably more than 50, but we want to see | |
# that there are segments generated, as opposed to when the bug was present | |
assert len(p[0].get_data()[0]) >= 30 | |
def test_issue_11865(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
k = Symbol('k', integer=True) | |
f = Piecewise((-I*exp(I*pi*k)/k + I*exp(-I*pi*k)/k, Ne(k, 0)), (2*pi, True)) | |
p = plot(f, show=False, adaptive=adaptive, n=30) | |
# Random number of segments, probably more than 100, but we want to see | |
# that there are segments generated, as opposed to when the bug was present | |
# and that there are no exceptions. | |
assert len(p[0].get_data()[0]) >= 30 | |
def test_issue_11461(): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
p = plot(real_root((log(x/(x-2))), 3), show=False, adaptive=True) | |
with warns( | |
RuntimeWarning, | |
match="invalid value encountered in", | |
test_stacklevel=False, | |
): | |
# Random number of segments, probably more than 100, but we want to see | |
# that there are segments generated, as opposed to when the bug was present | |
# and that there are no exceptions. | |
assert len(p[0].get_data()[0]) >= 30 | |
def test_issue_11764(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
p = plot_parametric(cos(x), sin(x), (x, 0, 2 * pi), | |
aspect_ratio=(1,1), show=False, adaptive=adaptive, n=30) | |
assert p.aspect_ratio == (1, 1) | |
# Random number of segments, probably more than 100, but we want to see | |
# that there are segments generated, as opposed to when the bug was present | |
assert len(p[0].get_data()[0]) >= 30 | |
def test_issue_13516(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
pm = plot(sin(x), backend="matplotlib", show=False, adaptive=adaptive, n=30) | |
assert pm.backend == MatplotlibBackend | |
assert len(pm[0].get_data()[0]) >= 30 | |
pt = plot(sin(x), backend="text", show=False, adaptive=adaptive, n=30) | |
assert pt.backend == TextBackend | |
assert len(pt[0].get_data()[0]) >= 30 | |
pd = plot(sin(x), backend="default", show=False, adaptive=adaptive, n=30) | |
assert pd.backend == MatplotlibBackend | |
assert len(pd[0].get_data()[0]) >= 30 | |
p = plot(sin(x), show=False, adaptive=adaptive, n=30) | |
assert p.backend == MatplotlibBackend | |
assert len(p[0].get_data()[0]) >= 30 | |
def test_plot_limits(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
p = plot(x, x**2, (x, -10, 10), adaptive=adaptive, n=10) | |
backend = p._backend | |
xmin, xmax = backend.ax.get_xlim() | |
assert abs(xmin + 10) < 2 | |
assert abs(xmax - 10) < 2 | |
ymin, ymax = backend.ax.get_ylim() | |
assert abs(ymin + 10) < 10 | |
assert abs(ymax - 100) < 10 | |
def test_plot3d_parametric_line_limits(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
v1 = (2*cos(x), 2*sin(x), 2*x, (x, -5, 5)) | |
v2 = (sin(x), cos(x), x, (x, -5, 5)) | |
p = plot3d_parametric_line(v1, v2, adaptive=adaptive, n=60) | |
backend = p._backend | |
xmin, xmax = backend.ax.get_xlim() | |
assert abs(xmin + 2) < 1e-2 | |
assert abs(xmax - 2) < 1e-2 | |
ymin, ymax = backend.ax.get_ylim() | |
assert abs(ymin + 2) < 1e-2 | |
assert abs(ymax - 2) < 1e-2 | |
zmin, zmax = backend.ax.get_zlim() | |
assert abs(zmin + 10) < 1e-2 | |
assert abs(zmax - 10) < 1e-2 | |
p = plot3d_parametric_line(v2, v1, adaptive=adaptive, n=60) | |
backend = p._backend | |
xmin, xmax = backend.ax.get_xlim() | |
assert abs(xmin + 2) < 1e-2 | |
assert abs(xmax - 2) < 1e-2 | |
ymin, ymax = backend.ax.get_ylim() | |
assert abs(ymin + 2) < 1e-2 | |
assert abs(ymax - 2) < 1e-2 | |
zmin, zmax = backend.ax.get_zlim() | |
assert abs(zmin + 10) < 1e-2 | |
assert abs(zmax - 10) < 1e-2 | |
def test_plot_size(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
p1 = plot(sin(x), backend="matplotlib", size=(8, 4), | |
adaptive=adaptive, n=10) | |
s1 = p1._backend.fig.get_size_inches() | |
assert (s1[0] == 8) and (s1[1] == 4) | |
p2 = plot(sin(x), backend="matplotlib", size=(5, 10), | |
adaptive=adaptive, n=10) | |
s2 = p2._backend.fig.get_size_inches() | |
assert (s2[0] == 5) and (s2[1] == 10) | |
p3 = PlotGrid(2, 1, p1, p2, size=(6, 2), | |
adaptive=adaptive, n=10) | |
s3 = p3._backend.fig.get_size_inches() | |
assert (s3[0] == 6) and (s3[1] == 2) | |
with raises(ValueError): | |
plot(sin(x), backend="matplotlib", size=(-1, 3)) | |
def test_issue_20113(): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
# verify the capability to use custom backends | |
plot(sin(x), backend=Plot, show=False) | |
p2 = plot(sin(x), backend=MatplotlibBackend, show=False) | |
assert p2.backend == MatplotlibBackend | |
assert len(p2[0].get_data()[0]) >= 30 | |
p3 = plot(sin(x), backend=DummyBackendOk, show=False) | |
assert p3.backend == DummyBackendOk | |
assert len(p3[0].get_data()[0]) >= 30 | |
# test for an improper coded backend | |
p4 = plot(sin(x), backend=DummyBackendNotOk, show=False) | |
assert p4.backend == DummyBackendNotOk | |
assert len(p4[0].get_data()[0]) >= 30 | |
with raises(NotImplementedError): | |
p4.show() | |
with raises(NotImplementedError): | |
p4.save("test/path") | |
with raises(NotImplementedError): | |
p4._backend.close() | |
def test_custom_coloring(): | |
x = Symbol('x') | |
y = Symbol('y') | |
plot(cos(x), line_color=lambda a: a) | |
plot(cos(x), line_color=1) | |
plot(cos(x), line_color="r") | |
plot_parametric(cos(x), sin(x), line_color=lambda a: a) | |
plot_parametric(cos(x), sin(x), line_color=1) | |
plot_parametric(cos(x), sin(x), line_color="r") | |
plot3d_parametric_line(cos(x), sin(x), x, line_color=lambda a: a) | |
plot3d_parametric_line(cos(x), sin(x), x, line_color=1) | |
plot3d_parametric_line(cos(x), sin(x), x, line_color="r") | |
plot3d_parametric_surface(cos(x + y), sin(x - y), x - y, | |
(x, -5, 5), (y, -5, 5), | |
surface_color=lambda a, b: a**2 + b**2) | |
plot3d_parametric_surface(cos(x + y), sin(x - y), x - y, | |
(x, -5, 5), (y, -5, 5), | |
surface_color=1) | |
plot3d_parametric_surface(cos(x + y), sin(x - y), x - y, | |
(x, -5, 5), (y, -5, 5), | |
surface_color="r") | |
plot3d(x*y, (x, -5, 5), (y, -5, 5), | |
surface_color=lambda a, b: a**2 + b**2) | |
plot3d(x*y, (x, -5, 5), (y, -5, 5), surface_color=1) | |
plot3d(x*y, (x, -5, 5), (y, -5, 5), surface_color="r") | |
def test_deprecated_get_segments(adaptive): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
f = sin(x) | |
p = plot(f, (x, -10, 10), show=False, adaptive=adaptive, n=10) | |
with warns_deprecated_sympy(): | |
p[0].get_segments() | |
def test_generic_data_series(adaptive): | |
# verify that no errors are raised when generic data series are used | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol("x") | |
p = plot(x, | |
markers=[{"args":[[0, 1], [0, 1]], "marker": "*", "linestyle": "none"}], | |
annotations=[{"text": "test", "xy": (0, 0)}], | |
fill={"x": [0, 1, 2, 3], "y1": [0, 1, 2, 3]}, | |
rectangles=[{"xy": (0, 0), "width": 5, "height": 1}], | |
adaptive=adaptive, n=10) | |
assert len(p._backend.ax.collections) == 1 | |
assert len(p._backend.ax.patches) == 1 | |
assert len(p._backend.ax.lines) == 2 | |
assert len(p._backend.ax.texts) == 1 | |
def test_deprecated_markers_annotations_rectangles_fill(): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
p = plot(sin(x), (x, -10, 10), show=False) | |
with warns_deprecated_sympy(): | |
p.markers = [{"args":[[0, 1], [0, 1]], "marker": "*", "linestyle": "none"}] | |
assert len(p._series) == 2 | |
with warns_deprecated_sympy(): | |
p.annotations = [{"text": "test", "xy": (0, 0)}] | |
assert len(p._series) == 3 | |
with warns_deprecated_sympy(): | |
p.fill = {"x": [0, 1, 2, 3], "y1": [0, 1, 2, 3]} | |
assert len(p._series) == 4 | |
with warns_deprecated_sympy(): | |
p.rectangles = [{"xy": (0, 0), "width": 5, "height": 1}] | |
assert len(p._series) == 5 | |
def test_back_compatibility(): | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x = Symbol('x') | |
y = Symbol('y') | |
p = plot(sin(x), adaptive=False, n=5) | |
assert len(p[0].get_points()) == 2 | |
assert len(p[0].get_data()) == 2 | |
p = plot_parametric(cos(x), sin(x), (x, 0, 2), adaptive=False, n=5) | |
assert len(p[0].get_points()) == 2 | |
assert len(p[0].get_data()) == 3 | |
p = plot3d_parametric_line(cos(x), sin(x), x, (x, 0, 2), | |
adaptive=False, n=5) | |
assert len(p[0].get_points()) == 3 | |
assert len(p[0].get_data()) == 4 | |
p = plot3d(cos(x**2 + y**2), (x, -pi, pi), (y, -pi, pi), n=5) | |
assert len(p[0].get_meshes()) == 3 | |
assert len(p[0].get_data()) == 3 | |
p = plot_contour(cos(x**2 + y**2), (x, -pi, pi), (y, -pi, pi), n=5) | |
assert len(p[0].get_meshes()) == 3 | |
assert len(p[0].get_data()) == 3 | |
p = plot3d_parametric_surface(x * cos(y), x * sin(y), x * cos(4 * y) / 2, | |
(x, 0, pi), (y, 0, 2*pi), n=5) | |
assert len(p[0].get_meshes()) == 3 | |
assert len(p[0].get_data()) == 5 | |
def test_plot_arguments(): | |
### Test arguments for plot() | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x, y = symbols("x, y") | |
# single expressions | |
p = plot(x + 1) | |
assert isinstance(p[0], LineOver1DRangeSeries) | |
assert p[0].expr == x + 1 | |
assert p[0].ranges == [(x, -10, 10)] | |
assert p[0].get_label(False) == "x + 1" | |
assert p[0].rendering_kw == {} | |
# single expressions custom label | |
p = plot(x + 1, "label") | |
assert isinstance(p[0], LineOver1DRangeSeries) | |
assert p[0].expr == x + 1 | |
assert p[0].ranges == [(x, -10, 10)] | |
assert p[0].get_label(False) == "label" | |
assert p[0].rendering_kw == {} | |
# single expressions with range | |
p = plot(x + 1, (x, -2, 2)) | |
assert p[0].ranges == [(x, -2, 2)] | |
# single expressions with range, label and rendering-kw dictionary | |
p = plot(x + 1, (x, -2, 2), "test", {"color": "r"}) | |
assert p[0].get_label(False) == "test" | |
assert p[0].rendering_kw == {"color": "r"} | |
# multiple expressions | |
p = plot(x + 1, x**2) | |
assert isinstance(p[0], LineOver1DRangeSeries) | |
assert p[0].expr == x + 1 | |
assert p[0].ranges == [(x, -10, 10)] | |
assert p[0].get_label(False) == "x + 1" | |
assert p[0].rendering_kw == {} | |
assert isinstance(p[1], LineOver1DRangeSeries) | |
assert p[1].expr == x**2 | |
assert p[1].ranges == [(x, -10, 10)] | |
assert p[1].get_label(False) == "x**2" | |
assert p[1].rendering_kw == {} | |
# multiple expressions over the same range | |
p = plot(x + 1, x**2, (x, 0, 5)) | |
assert p[0].ranges == [(x, 0, 5)] | |
assert p[1].ranges == [(x, 0, 5)] | |
# multiple expressions over the same range with the same rendering kws | |
p = plot(x + 1, x**2, (x, 0, 5), {"color": "r"}) | |
assert p[0].ranges == [(x, 0, 5)] | |
assert p[1].ranges == [(x, 0, 5)] | |
assert p[0].rendering_kw == {"color": "r"} | |
assert p[1].rendering_kw == {"color": "r"} | |
# multiple expressions with different ranges, labels and rendering kws | |
p = plot( | |
(x + 1, (x, 0, 5)), | |
(x**2, (x, -2, 2), "test", {"color": "r"})) | |
assert isinstance(p[0], LineOver1DRangeSeries) | |
assert p[0].expr == x + 1 | |
assert p[0].ranges == [(x, 0, 5)] | |
assert p[0].get_label(False) == "x + 1" | |
assert p[0].rendering_kw == {} | |
assert isinstance(p[1], LineOver1DRangeSeries) | |
assert p[1].expr == x**2 | |
assert p[1].ranges == [(x, -2, 2)] | |
assert p[1].get_label(False) == "test" | |
assert p[1].rendering_kw == {"color": "r"} | |
# single argument: lambda function | |
f = lambda t: t | |
p = plot(lambda t: t) | |
assert isinstance(p[0], LineOver1DRangeSeries) | |
assert callable(p[0].expr) | |
assert p[0].ranges[0][1:] == (-10, 10) | |
assert p[0].get_label(False) == "" | |
assert p[0].rendering_kw == {} | |
# single argument: lambda function + custom range and label | |
p = plot(f, ("t", -5, 6), "test") | |
assert p[0].ranges[0][1:] == (-5, 6) | |
assert p[0].get_label(False) == "test" | |
def test_plot_parametric_arguments(): | |
### Test arguments for plot_parametric() | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x, y = symbols("x, y") | |
# single parametric expression | |
p = plot_parametric(x + 1, x) | |
assert isinstance(p[0], Parametric2DLineSeries) | |
assert p[0].expr == (x + 1, x) | |
assert p[0].ranges == [(x, -10, 10)] | |
assert p[0].get_label(False) == "x" | |
assert p[0].rendering_kw == {} | |
# single parametric expression with custom range, label and rendering kws | |
p = plot_parametric(x + 1, x, (x, -2, 2), "test", | |
{"cmap": "Reds"}) | |
assert p[0].expr == (x + 1, x) | |
assert p[0].ranges == [(x, -2, 2)] | |
assert p[0].get_label(False) == "test" | |
assert p[0].rendering_kw == {"cmap": "Reds"} | |
p = plot_parametric((x + 1, x), (x, -2, 2), "test") | |
assert p[0].expr == (x + 1, x) | |
assert p[0].ranges == [(x, -2, 2)] | |
assert p[0].get_label(False) == "test" | |
assert p[0].rendering_kw == {} | |
# multiple parametric expressions same symbol | |
p = plot_parametric((x + 1, x), (x ** 2, x + 1)) | |
assert p[0].expr == (x + 1, x) | |
assert p[0].ranges == [(x, -10, 10)] | |
assert p[0].get_label(False) == "x" | |
assert p[0].rendering_kw == {} | |
assert p[1].expr == (x ** 2, x + 1) | |
assert p[1].ranges == [(x, -10, 10)] | |
assert p[1].get_label(False) == "x" | |
assert p[1].rendering_kw == {} | |
# multiple parametric expressions different symbols | |
p = plot_parametric((x + 1, x), (y ** 2, y + 1, "test")) | |
assert p[0].expr == (x + 1, x) | |
assert p[0].ranges == [(x, -10, 10)] | |
assert p[0].get_label(False) == "x" | |
assert p[0].rendering_kw == {} | |
assert p[1].expr == (y ** 2, y + 1) | |
assert p[1].ranges == [(y, -10, 10)] | |
assert p[1].get_label(False) == "test" | |
assert p[1].rendering_kw == {} | |
# multiple parametric expressions same range | |
p = plot_parametric((x + 1, x), (x ** 2, x + 1), (x, -2, 2)) | |
assert p[0].expr == (x + 1, x) | |
assert p[0].ranges == [(x, -2, 2)] | |
assert p[0].get_label(False) == "x" | |
assert p[0].rendering_kw == {} | |
assert p[1].expr == (x ** 2, x + 1) | |
assert p[1].ranges == [(x, -2, 2)] | |
assert p[1].get_label(False) == "x" | |
assert p[1].rendering_kw == {} | |
# multiple parametric expressions, custom ranges and labels | |
p = plot_parametric( | |
(x + 1, x, (x, -2, 2), "test1"), | |
(x ** 2, x + 1, (x, -3, 3), "test2", {"cmap": "Reds"})) | |
assert p[0].expr == (x + 1, x) | |
assert p[0].ranges == [(x, -2, 2)] | |
assert p[0].get_label(False) == "test1" | |
assert p[0].rendering_kw == {} | |
assert p[1].expr == (x ** 2, x + 1) | |
assert p[1].ranges == [(x, -3, 3)] | |
assert p[1].get_label(False) == "test2" | |
assert p[1].rendering_kw == {"cmap": "Reds"} | |
# single argument: lambda function | |
fx = lambda t: t | |
fy = lambda t: 2 * t | |
p = plot_parametric(fx, fy) | |
assert all(callable(t) for t in p[0].expr) | |
assert p[0].ranges[0][1:] == (-10, 10) | |
assert "Dummy" in p[0].get_label(False) | |
assert p[0].rendering_kw == {} | |
# single argument: lambda function + custom range + label | |
p = plot_parametric(fx, fy, ("t", 0, 2), "test") | |
assert all(callable(t) for t in p[0].expr) | |
assert p[0].ranges[0][1:] == (0, 2) | |
assert p[0].get_label(False) == "test" | |
assert p[0].rendering_kw == {} | |
def test_plot3d_parametric_line_arguments(): | |
### Test arguments for plot3d_parametric_line() | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x, y = symbols("x, y") | |
# single parametric expression | |
p = plot3d_parametric_line(x + 1, x, sin(x)) | |
assert isinstance(p[0], Parametric3DLineSeries) | |
assert p[0].expr == (x + 1, x, sin(x)) | |
assert p[0].ranges == [(x, -10, 10)] | |
assert p[0].get_label(False) == "x" | |
assert p[0].rendering_kw == {} | |
# single parametric expression with custom range, label and rendering kws | |
p = plot3d_parametric_line(x + 1, x, sin(x), (x, -2, 2), | |
"test", {"cmap": "Reds"}) | |
assert isinstance(p[0], Parametric3DLineSeries) | |
assert p[0].expr == (x + 1, x, sin(x)) | |
assert p[0].ranges == [(x, -2, 2)] | |
assert p[0].get_label(False) == "test" | |
assert p[0].rendering_kw == {"cmap": "Reds"} | |
p = plot3d_parametric_line((x + 1, x, sin(x)), (x, -2, 2), "test") | |
assert p[0].expr == (x + 1, x, sin(x)) | |
assert p[0].ranges == [(x, -2, 2)] | |
assert p[0].get_label(False) == "test" | |
assert p[0].rendering_kw == {} | |
# multiple parametric expression same symbol | |
p = plot3d_parametric_line( | |
(x + 1, x, sin(x)), (x ** 2, 1, cos(x), {"cmap": "Reds"})) | |
assert p[0].expr == (x + 1, x, sin(x)) | |
assert p[0].ranges == [(x, -10, 10)] | |
assert p[0].get_label(False) == "x" | |
assert p[0].rendering_kw == {} | |
assert p[1].expr == (x ** 2, 1, cos(x)) | |
assert p[1].ranges == [(x, -10, 10)] | |
assert p[1].get_label(False) == "x" | |
assert p[1].rendering_kw == {"cmap": "Reds"} | |
# multiple parametric expression different symbols | |
p = plot3d_parametric_line((x + 1, x, sin(x)), (y ** 2, 1, cos(y))) | |
assert p[0].expr == (x + 1, x, sin(x)) | |
assert p[0].ranges == [(x, -10, 10)] | |
assert p[0].get_label(False) == "x" | |
assert p[0].rendering_kw == {} | |
assert p[1].expr == (y ** 2, 1, cos(y)) | |
assert p[1].ranges == [(y, -10, 10)] | |
assert p[1].get_label(False) == "y" | |
assert p[1].rendering_kw == {} | |
# multiple parametric expression, custom ranges and labels | |
p = plot3d_parametric_line( | |
(x + 1, x, sin(x)), | |
(x ** 2, 1, cos(x), (x, -2, 2), "test", {"cmap": "Reds"})) | |
assert p[0].expr == (x + 1, x, sin(x)) | |
assert p[0].ranges == [(x, -10, 10)] | |
assert p[0].get_label(False) == "x" | |
assert p[0].rendering_kw == {} | |
assert p[1].expr == (x ** 2, 1, cos(x)) | |
assert p[1].ranges == [(x, -2, 2)] | |
assert p[1].get_label(False) == "test" | |
assert p[1].rendering_kw == {"cmap": "Reds"} | |
# single argument: lambda function | |
fx = lambda t: t | |
fy = lambda t: 2 * t | |
fz = lambda t: 3 * t | |
p = plot3d_parametric_line(fx, fy, fz) | |
assert all(callable(t) for t in p[0].expr) | |
assert p[0].ranges[0][1:] == (-10, 10) | |
assert "Dummy" in p[0].get_label(False) | |
assert p[0].rendering_kw == {} | |
# single argument: lambda function + custom range + label | |
p = plot3d_parametric_line(fx, fy, fz, ("t", 0, 2), "test") | |
assert all(callable(t) for t in p[0].expr) | |
assert p[0].ranges[0][1:] == (0, 2) | |
assert p[0].get_label(False) == "test" | |
assert p[0].rendering_kw == {} | |
def test_plot3d_plot_contour_arguments(): | |
### Test arguments for plot3d() and plot_contour() | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x, y = symbols("x, y") | |
# single expression | |
p = plot3d(x + y) | |
assert isinstance(p[0], SurfaceOver2DRangeSeries) | |
assert p[0].expr == x + y | |
assert p[0].ranges[0] == (x, -10, 10) or (y, -10, 10) | |
assert p[0].ranges[1] == (x, -10, 10) or (y, -10, 10) | |
assert p[0].get_label(False) == "x + y" | |
assert p[0].rendering_kw == {} | |
# single expression, custom range, label and rendering kws | |
p = plot3d(x + y, (x, -2, 2), "test", {"cmap": "Reds"}) | |
assert isinstance(p[0], SurfaceOver2DRangeSeries) | |
assert p[0].expr == x + y | |
assert p[0].ranges[0] == (x, -2, 2) | |
assert p[0].ranges[1] == (y, -10, 10) | |
assert p[0].get_label(False) == "test" | |
assert p[0].rendering_kw == {"cmap": "Reds"} | |
p = plot3d(x + y, (x, -2, 2), (y, -4, 4), "test") | |
assert p[0].ranges[0] == (x, -2, 2) | |
assert p[0].ranges[1] == (y, -4, 4) | |
# multiple expressions | |
p = plot3d(x + y, x * y) | |
assert p[0].expr == x + y | |
assert p[0].ranges[0] == (x, -10, 10) or (y, -10, 10) | |
assert p[0].ranges[1] == (x, -10, 10) or (y, -10, 10) | |
assert p[0].get_label(False) == "x + y" | |
assert p[0].rendering_kw == {} | |
assert p[1].expr == x * y | |
assert p[1].ranges[0] == (x, -10, 10) or (y, -10, 10) | |
assert p[1].ranges[1] == (x, -10, 10) or (y, -10, 10) | |
assert p[1].get_label(False) == "x*y" | |
assert p[1].rendering_kw == {} | |
# multiple expressions, same custom ranges | |
p = plot3d(x + y, x * y, (x, -2, 2), (y, -4, 4)) | |
assert p[0].expr == x + y | |
assert p[0].ranges[0] == (x, -2, 2) | |
assert p[0].ranges[1] == (y, -4, 4) | |
assert p[0].get_label(False) == "x + y" | |
assert p[0].rendering_kw == {} | |
assert p[1].expr == x * y | |
assert p[1].ranges[0] == (x, -2, 2) | |
assert p[1].ranges[1] == (y, -4, 4) | |
assert p[1].get_label(False) == "x*y" | |
assert p[1].rendering_kw == {} | |
# multiple expressions, custom ranges, labels and rendering kws | |
p = plot3d( | |
(x + y, (x, -2, 2), (y, -4, 4)), | |
(x * y, (x, -3, 3), (y, -6, 6), "test", {"cmap": "Reds"})) | |
assert p[0].expr == x + y | |
assert p[0].ranges[0] == (x, -2, 2) | |
assert p[0].ranges[1] == (y, -4, 4) | |
assert p[0].get_label(False) == "x + y" | |
assert p[0].rendering_kw == {} | |
assert p[1].expr == x * y | |
assert p[1].ranges[0] == (x, -3, 3) | |
assert p[1].ranges[1] == (y, -6, 6) | |
assert p[1].get_label(False) == "test" | |
assert p[1].rendering_kw == {"cmap": "Reds"} | |
# single expression: lambda function | |
f = lambda x, y: x + y | |
p = plot3d(f) | |
assert callable(p[0].expr) | |
assert p[0].ranges[0][1:] == (-10, 10) | |
assert p[0].ranges[1][1:] == (-10, 10) | |
assert p[0].get_label(False) == "" | |
assert p[0].rendering_kw == {} | |
# single expression: lambda function + custom ranges + label | |
p = plot3d(f, ("a", -5, 3), ("b", -2, 1), "test") | |
assert callable(p[0].expr) | |
assert p[0].ranges[0][1:] == (-5, 3) | |
assert p[0].ranges[1][1:] == (-2, 1) | |
assert p[0].get_label(False) == "test" | |
assert p[0].rendering_kw == {} | |
# test issue 25818 | |
# single expression, custom range, min/max functions | |
p = plot3d(Min(x, y), (x, 0, 10), (y, 0, 10)) | |
assert isinstance(p[0], SurfaceOver2DRangeSeries) | |
assert p[0].expr == Min(x, y) | |
assert p[0].ranges[0] == (x, 0, 10) | |
assert p[0].ranges[1] == (y, 0, 10) | |
assert p[0].get_label(False) == "Min(x, y)" | |
assert p[0].rendering_kw == {} | |
def test_plot3d_parametric_surface_arguments(): | |
### Test arguments for plot3d_parametric_surface() | |
if not matplotlib: | |
skip("Matplotlib not the default backend") | |
x, y = symbols("x, y") | |
# single parametric expression | |
p = plot3d_parametric_surface(x + y, cos(x + y), sin(x + y)) | |
assert isinstance(p[0], ParametricSurfaceSeries) | |
assert p[0].expr == (x + y, cos(x + y), sin(x + y)) | |
assert p[0].ranges[0] == (x, -10, 10) or (y, -10, 10) | |
assert p[0].ranges[1] == (x, -10, 10) or (y, -10, 10) | |
assert p[0].get_label(False) == "(x + y, cos(x + y), sin(x + y))" | |
assert p[0].rendering_kw == {} | |
# single parametric expression, custom ranges, labels and rendering kws | |
p = plot3d_parametric_surface(x + y, cos(x + y), sin(x + y), | |
(x, -2, 2), (y, -4, 4), "test", {"cmap": "Reds"}) | |
assert isinstance(p[0], ParametricSurfaceSeries) | |
assert p[0].expr == (x + y, cos(x + y), sin(x + y)) | |
assert p[0].ranges[0] == (x, -2, 2) | |
assert p[0].ranges[1] == (y, -4, 4) | |
assert p[0].get_label(False) == "test" | |
assert p[0].rendering_kw == {"cmap": "Reds"} | |
# multiple parametric expressions | |
p = plot3d_parametric_surface( | |
(x + y, cos(x + y), sin(x + y)), | |
(x - y, cos(x - y), sin(x - y), "test")) | |
assert p[0].expr == (x + y, cos(x + y), sin(x + y)) | |
assert p[0].ranges[0] == (x, -10, 10) or (y, -10, 10) | |
assert p[0].ranges[1] == (x, -10, 10) or (y, -10, 10) | |
assert p[0].get_label(False) == "(x + y, cos(x + y), sin(x + y))" | |
assert p[0].rendering_kw == {} | |
assert p[1].expr == (x - y, cos(x - y), sin(x - y)) | |
assert p[1].ranges[0] == (x, -10, 10) or (y, -10, 10) | |
assert p[1].ranges[1] == (x, -10, 10) or (y, -10, 10) | |
assert p[1].get_label(False) == "test" | |
assert p[1].rendering_kw == {} | |
# multiple parametric expressions, custom ranges and labels | |
p = plot3d_parametric_surface( | |
(x + y, cos(x + y), sin(x + y), (x, -2, 2), "test"), | |
(x - y, cos(x - y), sin(x - y), (x, -3, 3), (y, -4, 4), | |
"test2", {"cmap": "Reds"})) | |
assert p[0].expr == (x + y, cos(x + y), sin(x + y)) | |
assert p[0].ranges[0] == (x, -2, 2) | |
assert p[0].ranges[1] == (y, -10, 10) | |
assert p[0].get_label(False) == "test" | |
assert p[0].rendering_kw == {} | |
assert p[1].expr == (x - y, cos(x - y), sin(x - y)) | |
assert p[1].ranges[0] == (x, -3, 3) | |
assert p[1].ranges[1] == (y, -4, 4) | |
assert p[1].get_label(False) == "test2" | |
assert p[1].rendering_kw == {"cmap": "Reds"} | |
# lambda functions instead of symbolic expressions for a single 3D | |
# parametric surface | |
p = plot3d_parametric_surface( | |
lambda u, v: u, lambda u, v: v, lambda u, v: u + v, | |
("u", 0, 2), ("v", -3, 4)) | |
assert all(callable(t) for t in p[0].expr) | |
assert p[0].ranges[0][1:] == (-0, 2) | |
assert p[0].ranges[1][1:] == (-3, 4) | |
assert p[0].get_label(False) == "" | |
assert p[0].rendering_kw == {} | |
# lambda functions instead of symbolic expressions for multiple 3D | |
# parametric surfaces | |
p = plot3d_parametric_surface( | |
(lambda u, v: u, lambda u, v: v, lambda u, v: u + v, | |
("u", 0, 2), ("v", -3, 4)), | |
(lambda u, v: v, lambda u, v: u, lambda u, v: u - v, | |
("u", -2, 3), ("v", -4, 5), "test")) | |
assert all(callable(t) for t in p[0].expr) | |
assert p[0].ranges[0][1:] == (0, 2) | |
assert p[0].ranges[1][1:] == (-3, 4) | |
assert p[0].get_label(False) == "" | |
assert p[0].rendering_kw == {} | |
assert all(callable(t) for t in p[1].expr) | |
assert p[1].ranges[0][1:] == (-2, 3) | |
assert p[1].ranges[1][1:] == (-4, 5) | |
assert p[1].get_label(False) == "test" | |
assert p[1].rendering_kw == {} | |