Spaces:
Sleeping
Sleeping
from sympy.core.numbers import (I, Rational, oo, pi) | |
from sympy.core.singleton import S | |
from sympy.core.symbol import symbols | |
from sympy.functions.elementary.exponential import exp | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import (cos, sin) | |
from sympy.integrals.integrals import integrate | |
from sympy.simplify.simplify import simplify | |
from sympy.physics.hydrogen import R_nl, E_nl, E_nl_dirac, Psi_nlm | |
from sympy.testing.pytest import raises | |
n, r, Z = symbols('n r Z') | |
def feq(a, b, max_relative_error=1e-12, max_absolute_error=1e-12): | |
a = float(a) | |
b = float(b) | |
# if the numbers are close enough (absolutely), then they are equal | |
if abs(a - b) < max_absolute_error: | |
return True | |
# if not, they can still be equal if their relative error is small | |
if abs(b) > abs(a): | |
relative_error = abs((a - b)/b) | |
else: | |
relative_error = abs((a - b)/a) | |
return relative_error <= max_relative_error | |
def test_wavefunction(): | |
a = 1/Z | |
R = { | |
(1, 0): 2*sqrt(1/a**3) * exp(-r/a), | |
(2, 0): sqrt(1/(2*a**3)) * exp(-r/(2*a)) * (1 - r/(2*a)), | |
(2, 1): S.Half * sqrt(1/(6*a**3)) * exp(-r/(2*a)) * r/a, | |
(3, 0): Rational(2, 3) * sqrt(1/(3*a**3)) * exp(-r/(3*a)) * | |
(1 - 2*r/(3*a) + Rational(2, 27) * (r/a)**2), | |
(3, 1): Rational(4, 27) * sqrt(2/(3*a**3)) * exp(-r/(3*a)) * | |
(1 - r/(6*a)) * r/a, | |
(3, 2): Rational(2, 81) * sqrt(2/(15*a**3)) * exp(-r/(3*a)) * (r/a)**2, | |
(4, 0): Rational(1, 4) * sqrt(1/a**3) * exp(-r/(4*a)) * | |
(1 - 3*r/(4*a) + Rational(1, 8) * (r/a)**2 - Rational(1, 192) * (r/a)**3), | |
(4, 1): Rational(1, 16) * sqrt(5/(3*a**3)) * exp(-r/(4*a)) * | |
(1 - r/(4*a) + Rational(1, 80) * (r/a)**2) * (r/a), | |
(4, 2): Rational(1, 64) * sqrt(1/(5*a**3)) * exp(-r/(4*a)) * | |
(1 - r/(12*a)) * (r/a)**2, | |
(4, 3): Rational(1, 768) * sqrt(1/(35*a**3)) * exp(-r/(4*a)) * (r/a)**3, | |
} | |
for n, l in R: | |
assert simplify(R_nl(n, l, r, Z) - R[(n, l)]) == 0 | |
def test_norm(): | |
# Maximum "n" which is tested: | |
n_max = 2 # it works, but is slow, for n_max > 2 | |
for n in range(n_max + 1): | |
for l in range(n): | |
assert integrate(R_nl(n, l, r)**2 * r**2, (r, 0, oo)) == 1 | |
def test_psi_nlm(): | |
r=S('r') | |
phi=S('phi') | |
theta=S('theta') | |
assert (Psi_nlm(1, 0, 0, r, phi, theta) == exp(-r) / sqrt(pi)) | |
assert (Psi_nlm(2, 1, -1, r, phi, theta)) == S.Half * exp(-r / (2)) * r \ | |
* (sin(theta) * exp(-I * phi) / (4 * sqrt(pi))) | |
assert (Psi_nlm(3, 2, 1, r, phi, theta, 2) == -sqrt(2) * sin(theta) \ | |
* exp(I * phi) * cos(theta) / (4 * sqrt(pi)) * S(2) / 81 \ | |
* sqrt(2 * 2 ** 3) * exp(-2 * r / (3)) * (r * 2) ** 2) | |
def test_hydrogen_energies(): | |
assert E_nl(n, Z) == -Z**2/(2*n**2) | |
assert E_nl(n) == -1/(2*n**2) | |
assert E_nl(1, 47) == -S(47)**2/(2*1**2) | |
assert E_nl(2, 47) == -S(47)**2/(2*2**2) | |
assert E_nl(1) == -S.One/(2*1**2) | |
assert E_nl(2) == -S.One/(2*2**2) | |
assert E_nl(3) == -S.One/(2*3**2) | |
assert E_nl(4) == -S.One/(2*4**2) | |
assert E_nl(100) == -S.One/(2*100**2) | |
raises(ValueError, lambda: E_nl(0)) | |
def test_hydrogen_energies_relat(): | |
# First test exact formulas for small "c" so that we get nice expressions: | |
assert E_nl_dirac(2, 0, Z=1, c=1) == 1/sqrt(2) - 1 | |
assert simplify(E_nl_dirac(2, 0, Z=1, c=2) - ( (8*sqrt(3) + 16) | |
/ sqrt(16*sqrt(3) + 32) - 4)) == 0 | |
assert simplify(E_nl_dirac(2, 0, Z=1, c=3) - ( (54*sqrt(2) + 81) | |
/ sqrt(108*sqrt(2) + 162) - 9)) == 0 | |
# Now test for almost the correct speed of light, without floating point | |
# numbers: | |
assert simplify(E_nl_dirac(2, 0, Z=1, c=137) - ( (352275361 + 10285412 * | |
sqrt(1173)) / sqrt(704550722 + 20570824 * sqrt(1173)) - 18769)) == 0 | |
assert simplify(E_nl_dirac(2, 0, Z=82, c=137) - ( (352275361 + 2571353 * | |
sqrt(12045)) / sqrt(704550722 + 5142706*sqrt(12045)) - 18769)) == 0 | |
# Test using exact speed of light, and compare against the nonrelativistic | |
# energies: | |
for n in range(1, 5): | |
for l in range(n): | |
assert feq(E_nl_dirac(n, l), E_nl(n), 1e-5, 1e-5) | |
if l > 0: | |
assert feq(E_nl_dirac(n, l, False), E_nl(n), 1e-5, 1e-5) | |
Z = 2 | |
for n in range(1, 5): | |
for l in range(n): | |
assert feq(E_nl_dirac(n, l, Z=Z), E_nl(n, Z), 1e-4, 1e-4) | |
if l > 0: | |
assert feq(E_nl_dirac(n, l, False, Z), E_nl(n, Z), 1e-4, 1e-4) | |
Z = 3 | |
for n in range(1, 5): | |
for l in range(n): | |
assert feq(E_nl_dirac(n, l, Z=Z), E_nl(n, Z), 1e-3, 1e-3) | |
if l > 0: | |
assert feq(E_nl_dirac(n, l, False, Z), E_nl(n, Z), 1e-3, 1e-3) | |
# Test the exceptions: | |
raises(ValueError, lambda: E_nl_dirac(0, 0)) | |
raises(ValueError, lambda: E_nl_dirac(1, -1)) | |
raises(ValueError, lambda: E_nl_dirac(1, 0, False)) | |