Spaces:
Sleeping
Sleeping
from itertools import product | |
from sympy.core.add import Add | |
from sympy.core.containers import Tuple | |
from sympy.core.function import expand | |
from sympy.core.mul import Mul | |
from sympy.core.singleton import S | |
from sympy.functions.elementary.exponential import log | |
from sympy.matrices.dense import MutableDenseMatrix as Matrix | |
from sympy.printing.pretty.stringpict import prettyForm | |
from sympy.physics.quantum.dagger import Dagger | |
from sympy.physics.quantum.operator import HermitianOperator | |
from sympy.physics.quantum.represent import represent | |
from sympy.physics.quantum.matrixutils import numpy_ndarray, scipy_sparse_matrix, to_numpy | |
from sympy.physics.quantum.tensorproduct import TensorProduct, tensor_product_simp | |
from sympy.physics.quantum.trace import Tr | |
class Density(HermitianOperator): | |
"""Density operator for representing mixed states. | |
TODO: Density operator support for Qubits | |
Parameters | |
========== | |
values : tuples/lists | |
Each tuple/list should be of form (state, prob) or [state,prob] | |
Examples | |
======== | |
Create a density operator with 2 states represented by Kets. | |
>>> from sympy.physics.quantum.state import Ket | |
>>> from sympy.physics.quantum.density import Density | |
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) | |
>>> d | |
Density((|0>, 0.5),(|1>, 0.5)) | |
""" | |
def _eval_args(cls, args): | |
# call this to qsympify the args | |
args = super()._eval_args(args) | |
for arg in args: | |
# Check if arg is a tuple | |
if not (isinstance(arg, Tuple) and len(arg) == 2): | |
raise ValueError("Each argument should be of form [state,prob]" | |
" or ( state, prob )") | |
return args | |
def states(self): | |
"""Return list of all states. | |
Examples | |
======== | |
>>> from sympy.physics.quantum.state import Ket | |
>>> from sympy.physics.quantum.density import Density | |
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) | |
>>> d.states() | |
(|0>, |1>) | |
""" | |
return Tuple(*[arg[0] for arg in self.args]) | |
def probs(self): | |
"""Return list of all probabilities. | |
Examples | |
======== | |
>>> from sympy.physics.quantum.state import Ket | |
>>> from sympy.physics.quantum.density import Density | |
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) | |
>>> d.probs() | |
(0.5, 0.5) | |
""" | |
return Tuple(*[arg[1] for arg in self.args]) | |
def get_state(self, index): | |
"""Return specific state by index. | |
Parameters | |
========== | |
index : index of state to be returned | |
Examples | |
======== | |
>>> from sympy.physics.quantum.state import Ket | |
>>> from sympy.physics.quantum.density import Density | |
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) | |
>>> d.states()[1] | |
|1> | |
""" | |
state = self.args[index][0] | |
return state | |
def get_prob(self, index): | |
"""Return probability of specific state by index. | |
Parameters | |
=========== | |
index : index of states whose probability is returned. | |
Examples | |
======== | |
>>> from sympy.physics.quantum.state import Ket | |
>>> from sympy.physics.quantum.density import Density | |
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) | |
>>> d.probs()[1] | |
0.500000000000000 | |
""" | |
prob = self.args[index][1] | |
return prob | |
def apply_op(self, op): | |
"""op will operate on each individual state. | |
Parameters | |
========== | |
op : Operator | |
Examples | |
======== | |
>>> from sympy.physics.quantum.state import Ket | |
>>> from sympy.physics.quantum.density import Density | |
>>> from sympy.physics.quantum.operator import Operator | |
>>> A = Operator('A') | |
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) | |
>>> d.apply_op(A) | |
Density((A*|0>, 0.5),(A*|1>, 0.5)) | |
""" | |
new_args = [(op*state, prob) for (state, prob) in self.args] | |
return Density(*new_args) | |
def doit(self, **hints): | |
"""Expand the density operator into an outer product format. | |
Examples | |
======== | |
>>> from sympy.physics.quantum.state import Ket | |
>>> from sympy.physics.quantum.density import Density | |
>>> from sympy.physics.quantum.operator import Operator | |
>>> A = Operator('A') | |
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) | |
>>> d.doit() | |
0.5*|0><0| + 0.5*|1><1| | |
""" | |
terms = [] | |
for (state, prob) in self.args: | |
state = state.expand() # needed to break up (a+b)*c | |
if (isinstance(state, Add)): | |
for arg in product(state.args, repeat=2): | |
terms.append(prob*self._generate_outer_prod(arg[0], | |
arg[1])) | |
else: | |
terms.append(prob*self._generate_outer_prod(state, state)) | |
return Add(*terms) | |
def _generate_outer_prod(self, arg1, arg2): | |
c_part1, nc_part1 = arg1.args_cnc() | |
c_part2, nc_part2 = arg2.args_cnc() | |
if (len(nc_part1) == 0 or len(nc_part2) == 0): | |
raise ValueError('Atleast one-pair of' | |
' Non-commutative instance required' | |
' for outer product.') | |
# Muls of Tensor Products should be expanded | |
# before this function is called | |
if (isinstance(nc_part1[0], TensorProduct) and len(nc_part1) == 1 | |
and len(nc_part2) == 1): | |
op = tensor_product_simp(nc_part1[0]*Dagger(nc_part2[0])) | |
else: | |
op = Mul(*nc_part1)*Dagger(Mul(*nc_part2)) | |
return Mul(*c_part1)*Mul(*c_part2) * op | |
def _represent(self, **options): | |
return represent(self.doit(), **options) | |
def _print_operator_name_latex(self, printer, *args): | |
return r'\rho' | |
def _print_operator_name_pretty(self, printer, *args): | |
return prettyForm('\N{GREEK SMALL LETTER RHO}') | |
def _eval_trace(self, **kwargs): | |
indices = kwargs.get('indices', []) | |
return Tr(self.doit(), indices).doit() | |
def entropy(self): | |
""" Compute the entropy of a density matrix. | |
Refer to density.entropy() method for examples. | |
""" | |
return entropy(self) | |
def entropy(density): | |
"""Compute the entropy of a matrix/density object. | |
This computes -Tr(density*ln(density)) using the eigenvalue decomposition | |
of density, which is given as either a Density instance or a matrix | |
(numpy.ndarray, sympy.Matrix or scipy.sparse). | |
Parameters | |
========== | |
density : density matrix of type Density, SymPy matrix, | |
scipy.sparse or numpy.ndarray | |
Examples | |
======== | |
>>> from sympy.physics.quantum.density import Density, entropy | |
>>> from sympy.physics.quantum.spin import JzKet | |
>>> from sympy import S | |
>>> up = JzKet(S(1)/2,S(1)/2) | |
>>> down = JzKet(S(1)/2,-S(1)/2) | |
>>> d = Density((up,S(1)/2),(down,S(1)/2)) | |
>>> entropy(d) | |
log(2)/2 | |
""" | |
if isinstance(density, Density): | |
density = represent(density) # represent in Matrix | |
if isinstance(density, scipy_sparse_matrix): | |
density = to_numpy(density) | |
if isinstance(density, Matrix): | |
eigvals = density.eigenvals().keys() | |
return expand(-sum(e*log(e) for e in eigvals)) | |
elif isinstance(density, numpy_ndarray): | |
import numpy as np | |
eigvals = np.linalg.eigvals(density) | |
return -np.sum(eigvals*np.log(eigvals)) | |
else: | |
raise ValueError( | |
"numpy.ndarray, scipy.sparse or SymPy matrix expected") | |
def fidelity(state1, state2): | |
""" Computes the fidelity [1]_ between two quantum states | |
The arguments provided to this function should be a square matrix or a | |
Density object. If it is a square matrix, it is assumed to be diagonalizable. | |
Parameters | |
========== | |
state1, state2 : a density matrix or Matrix | |
Examples | |
======== | |
>>> from sympy import S, sqrt | |
>>> from sympy.physics.quantum.dagger import Dagger | |
>>> from sympy.physics.quantum.spin import JzKet | |
>>> from sympy.physics.quantum.density import fidelity | |
>>> from sympy.physics.quantum.represent import represent | |
>>> | |
>>> up = JzKet(S(1)/2,S(1)/2) | |
>>> down = JzKet(S(1)/2,-S(1)/2) | |
>>> amp = 1/sqrt(2) | |
>>> updown = (amp*up) + (amp*down) | |
>>> | |
>>> # represent turns Kets into matrices | |
>>> up_dm = represent(up*Dagger(up)) | |
>>> down_dm = represent(down*Dagger(down)) | |
>>> updown_dm = represent(updown*Dagger(updown)) | |
>>> | |
>>> fidelity(up_dm, up_dm) | |
1 | |
>>> fidelity(up_dm, down_dm) #orthogonal states | |
0 | |
>>> fidelity(up_dm, updown_dm).evalf().round(3) | |
0.707 | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Fidelity_of_quantum_states | |
""" | |
state1 = represent(state1) if isinstance(state1, Density) else state1 | |
state2 = represent(state2) if isinstance(state2, Density) else state2 | |
if not isinstance(state1, Matrix) or not isinstance(state2, Matrix): | |
raise ValueError("state1 and state2 must be of type Density or Matrix " | |
"received type=%s for state1 and type=%s for state2" % | |
(type(state1), type(state2))) | |
if state1.shape != state2.shape and state1.is_square: | |
raise ValueError("The dimensions of both args should be equal and the " | |
"matrix obtained should be a square matrix") | |
sqrt_state1 = state1**S.Half | |
return Tr((sqrt_state1*state2*sqrt_state1)**S.Half).doit() | |