Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
""" | |
The module implements routines to model the polarization of optical fields | |
and can be used to calculate the effects of polarization optical elements on | |
the fields. | |
- Jones vectors. | |
- Stokes vectors. | |
- Jones matrices. | |
- Mueller matrices. | |
Examples | |
======== | |
We calculate a generic Jones vector: | |
from sympy import symbols, pprint, zeros, simplify | |
from sympy.physics.optics.polarization import (jones_vector, stokes_vector, | |
half_wave_retarder, polarizing_beam_splitter, jones_2_stokes) | |
psi, chi, p, I0 = symbols("psi, chi, p, I0", real=True) | |
x0 = jones_vector(psi, chi) | |
pprint(x0, use_unicode=True) | |
β‘-β β sin(Ο)β sin(Ο) + cos(Ο)β cos(Ο)β€ | |
β’ β₯ | |
β£β β sin(Ο)β cos(Ο) + sin(Ο)β cos(Ο) β¦ | |
And the more general Stokes vector: | |
s0 = stokes_vector(psi, chi, p, I0) | |
pprint(s0, use_unicode=True) | |
β‘ Iβ β€ | |
β’ β₯ | |
β’Iββ pβ cos(2β Ο)β cos(2β Ο)β₯ | |
β’ β₯ | |
β’Iββ pβ sin(2β Ο)β cos(2β Ο)β₯ | |
β’ β₯ | |
β£ Iββ pβ sin(2β Ο) β¦ | |
We calculate how the Jones vector is modified by a half-wave plate: | |
alpha = symbols("alpha", real=True) | |
HWP = half_wave_retarder(alpha) | |
x1 = simplify(HWP*x0) | |
We calculate the very common operation of passing a beam through a half-wave | |
plate and then through a polarizing beam-splitter. We do this by putting this | |
Jones vector as the first entry of a two-Jones-vector state that is transformed | |
by a 4x4 Jones matrix modelling the polarizing beam-splitter to get the | |
transmitted and reflected Jones vectors: | |
PBS = polarizing_beam_splitter() | |
X1 = zeros(4, 1) | |
X1[:2, :] = x1 | |
X2 = PBS*X1 | |
transmitted_port = X2[:2, :] | |
reflected_port = X2[2:, :] | |
This allows us to calculate how the power in both ports depends on the initial | |
polarization: | |
transmitted_power = jones_2_stokes(transmitted_port)[0] | |
reflected_power = jones_2_stokes(reflected_port)[0] | |
print(transmitted_power) | |
cos(-2*alpha + chi + psi)**2/2 + cos(2*alpha + chi - psi)**2/2 | |
print(reflected_power) | |
sin(-2*alpha + chi + psi)**2/2 + sin(2*alpha + chi - psi)**2/2 | |
Please see the description of the individual functions for further | |
details and examples. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Jones_calculus | |
.. [2] https://en.wikipedia.org/wiki/Mueller_calculus | |
.. [3] https://en.wikipedia.org/wiki/Stokes_parameters | |
""" | |
from sympy.core.numbers import (I, pi) | |
from sympy.functions.elementary.complexes import (Abs, im, re) | |
from sympy.functions.elementary.exponential import exp | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import (cos, sin) | |
from sympy.matrices.dense import Matrix | |
from sympy.simplify.simplify import simplify | |
from sympy.physics.quantum import TensorProduct | |
def jones_vector(psi, chi): | |
"""A Jones vector corresponding to a polarization ellipse with `psi` tilt, | |
and `chi` circularity. | |
Parameters | |
========== | |
psi : numeric type or SymPy Symbol | |
The tilt of the polarization relative to the `x` axis. | |
chi : numeric type or SymPy Symbol | |
The angle adjacent to the mayor axis of the polarization ellipse. | |
Returns | |
======= | |
Matrix : | |
A Jones vector. | |
Examples | |
======== | |
The axes on the PoincarΓ© sphere. | |
>>> from sympy import pprint, symbols, pi | |
>>> from sympy.physics.optics.polarization import jones_vector | |
>>> psi, chi = symbols("psi, chi", real=True) | |
A general Jones vector. | |
>>> pprint(jones_vector(psi, chi), use_unicode=True) | |
β‘-β β sin(Ο)β sin(Ο) + cos(Ο)β cos(Ο)β€ | |
β’ β₯ | |
β£β β sin(Ο)β cos(Ο) + sin(Ο)β cos(Ο) β¦ | |
Horizontal polarization. | |
>>> pprint(jones_vector(0, 0), use_unicode=True) | |
β‘1β€ | |
β’ β₯ | |
β£0β¦ | |
Vertical polarization. | |
>>> pprint(jones_vector(pi/2, 0), use_unicode=True) | |
β‘0β€ | |
β’ β₯ | |
β£1β¦ | |
Diagonal polarization. | |
>>> pprint(jones_vector(pi/4, 0), use_unicode=True) | |
β‘β2β€ | |
β’βββ₯ | |
β’2 β₯ | |
β’ β₯ | |
β’β2β₯ | |
β’βββ₯ | |
β£2 β¦ | |
Anti-diagonal polarization. | |
>>> pprint(jones_vector(-pi/4, 0), use_unicode=True) | |
β‘ β2 β€ | |
β’ ββ β₯ | |
β’ 2 β₯ | |
β’ β₯ | |
β’-β2 β₯ | |
β’βββββ₯ | |
β£ 2 β¦ | |
Right-hand circular polarization. | |
>>> pprint(jones_vector(0, pi/4), use_unicode=True) | |
β‘ β2 β€ | |
β’ ββ β₯ | |
β’ 2 β₯ | |
β’ β₯ | |
β’β2β β β₯ | |
β’βββββ₯ | |
β£ 2 β¦ | |
Left-hand circular polarization. | |
>>> pprint(jones_vector(0, -pi/4), use_unicode=True) | |
β‘ β2 β€ | |
β’ ββ β₯ | |
β’ 2 β₯ | |
β’ β₯ | |
β’-β2β β β₯ | |
β’βββββββ₯ | |
β£ 2 β¦ | |
""" | |
return Matrix([-I*sin(chi)*sin(psi) + cos(chi)*cos(psi), | |
I*sin(chi)*cos(psi) + sin(psi)*cos(chi)]) | |
def stokes_vector(psi, chi, p=1, I=1): | |
"""A Stokes vector corresponding to a polarization ellipse with ``psi`` | |
tilt, and ``chi`` circularity. | |
Parameters | |
========== | |
psi : numeric type or SymPy Symbol | |
The tilt of the polarization relative to the ``x`` axis. | |
chi : numeric type or SymPy Symbol | |
The angle adjacent to the mayor axis of the polarization ellipse. | |
p : numeric type or SymPy Symbol | |
The degree of polarization. | |
I : numeric type or SymPy Symbol | |
The intensity of the field. | |
Returns | |
======= | |
Matrix : | |
A Stokes vector. | |
Examples | |
======== | |
The axes on the PoincarΓ© sphere. | |
>>> from sympy import pprint, symbols, pi | |
>>> from sympy.physics.optics.polarization import stokes_vector | |
>>> psi, chi, p, I = symbols("psi, chi, p, I", real=True) | |
>>> pprint(stokes_vector(psi, chi, p, I), use_unicode=True) | |
β‘ I β€ | |
β’ β₯ | |
β’Iβ pβ cos(2β Ο)β cos(2β Ο)β₯ | |
β’ β₯ | |
β’Iβ pβ sin(2β Ο)β cos(2β Ο)β₯ | |
β’ β₯ | |
β£ Iβ pβ sin(2β Ο) β¦ | |
Horizontal polarization | |
>>> pprint(stokes_vector(0, 0), use_unicode=True) | |
β‘1β€ | |
β’ β₯ | |
β’1β₯ | |
β’ β₯ | |
β’0β₯ | |
β’ β₯ | |
β£0β¦ | |
Vertical polarization | |
>>> pprint(stokes_vector(pi/2, 0), use_unicode=True) | |
β‘1 β€ | |
β’ β₯ | |
β’-1β₯ | |
β’ β₯ | |
β’0 β₯ | |
β’ β₯ | |
β£0 β¦ | |
Diagonal polarization | |
>>> pprint(stokes_vector(pi/4, 0), use_unicode=True) | |
β‘1β€ | |
β’ β₯ | |
β’0β₯ | |
β’ β₯ | |
β’1β₯ | |
β’ β₯ | |
β£0β¦ | |
Anti-diagonal polarization | |
>>> pprint(stokes_vector(-pi/4, 0), use_unicode=True) | |
β‘1 β€ | |
β’ β₯ | |
β’0 β₯ | |
β’ β₯ | |
β’-1β₯ | |
β’ β₯ | |
β£0 β¦ | |
Right-hand circular polarization | |
>>> pprint(stokes_vector(0, pi/4), use_unicode=True) | |
β‘1β€ | |
β’ β₯ | |
β’0β₯ | |
β’ β₯ | |
β’0β₯ | |
β’ β₯ | |
β£1β¦ | |
Left-hand circular polarization | |
>>> pprint(stokes_vector(0, -pi/4), use_unicode=True) | |
β‘1 β€ | |
β’ β₯ | |
β’0 β₯ | |
β’ β₯ | |
β’0 β₯ | |
β’ β₯ | |
β£-1β¦ | |
Unpolarized light | |
>>> pprint(stokes_vector(0, 0, 0), use_unicode=True) | |
β‘1β€ | |
β’ β₯ | |
β’0β₯ | |
β’ β₯ | |
β’0β₯ | |
β’ β₯ | |
β£0β¦ | |
""" | |
S0 = I | |
S1 = I*p*cos(2*psi)*cos(2*chi) | |
S2 = I*p*sin(2*psi)*cos(2*chi) | |
S3 = I*p*sin(2*chi) | |
return Matrix([S0, S1, S2, S3]) | |
def jones_2_stokes(e): | |
"""Return the Stokes vector for a Jones vector ``e``. | |
Parameters | |
========== | |
e : SymPy Matrix | |
A Jones vector. | |
Returns | |
======= | |
SymPy Matrix | |
A Jones vector. | |
Examples | |
======== | |
The axes on the PoincarΓ© sphere. | |
>>> from sympy import pprint, pi | |
>>> from sympy.physics.optics.polarization import jones_vector | |
>>> from sympy.physics.optics.polarization import jones_2_stokes | |
>>> H = jones_vector(0, 0) | |
>>> V = jones_vector(pi/2, 0) | |
>>> D = jones_vector(pi/4, 0) | |
>>> A = jones_vector(-pi/4, 0) | |
>>> R = jones_vector(0, pi/4) | |
>>> L = jones_vector(0, -pi/4) | |
>>> pprint([jones_2_stokes(e) for e in [H, V, D, A, R, L]], | |
... use_unicode=True) | |
β‘β‘1β€ β‘1 β€ β‘1β€ β‘1 β€ β‘1β€ β‘1 β€β€ | |
β’β’ β₯ β’ β₯ β’ β₯ β’ β₯ β’ β₯ β’ β₯β₯ | |
β’β’1β₯ β’-1β₯ β’0β₯ β’0 β₯ β’0β₯ β’0 β₯β₯ | |
β’β’ β₯, β’ β₯, β’ β₯, β’ β₯, β’ β₯, β’ β₯β₯ | |
β’β’0β₯ β’0 β₯ β’1β₯ β’-1β₯ β’0β₯ β’0 β₯β₯ | |
β’β’ β₯ β’ β₯ β’ β₯ β’ β₯ β’ β₯ β’ β₯β₯ | |
β£β£0β¦ β£0 β¦ β£0β¦ β£0 β¦ β£1β¦ β£-1β¦β¦ | |
""" | |
ex, ey = e | |
return Matrix([Abs(ex)**2 + Abs(ey)**2, | |
Abs(ex)**2 - Abs(ey)**2, | |
2*re(ex*ey.conjugate()), | |
-2*im(ex*ey.conjugate())]) | |
def linear_polarizer(theta=0): | |
"""A linear polarizer Jones matrix with transmission axis at | |
an angle ``theta``. | |
Parameters | |
========== | |
theta : numeric type or SymPy Symbol | |
The angle of the transmission axis relative to the horizontal plane. | |
Returns | |
======= | |
SymPy Matrix | |
A Jones matrix representing the polarizer. | |
Examples | |
======== | |
A generic polarizer. | |
>>> from sympy import pprint, symbols | |
>>> from sympy.physics.optics.polarization import linear_polarizer | |
>>> theta = symbols("theta", real=True) | |
>>> J = linear_polarizer(theta) | |
>>> pprint(J, use_unicode=True) | |
β‘ 2 β€ | |
β’ cos (ΞΈ) sin(ΞΈ)β cos(ΞΈ)β₯ | |
β’ β₯ | |
β’ 2 β₯ | |
β£sin(ΞΈ)β cos(ΞΈ) sin (ΞΈ) β¦ | |
""" | |
M = Matrix([[cos(theta)**2, sin(theta)*cos(theta)], | |
[sin(theta)*cos(theta), sin(theta)**2]]) | |
return M | |
def phase_retarder(theta=0, delta=0): | |
"""A phase retarder Jones matrix with retardance ``delta`` at angle ``theta``. | |
Parameters | |
========== | |
theta : numeric type or SymPy Symbol | |
The angle of the fast axis relative to the horizontal plane. | |
delta : numeric type or SymPy Symbol | |
The phase difference between the fast and slow axes of the | |
transmitted light. | |
Returns | |
======= | |
SymPy Matrix : | |
A Jones matrix representing the retarder. | |
Examples | |
======== | |
A generic retarder. | |
>>> from sympy import pprint, symbols | |
>>> from sympy.physics.optics.polarization import phase_retarder | |
>>> theta, delta = symbols("theta, delta", real=True) | |
>>> R = phase_retarder(theta, delta) | |
>>> pprint(R, use_unicode=True) | |
β‘ -β β Ξ΄ -β β Ξ΄ β€ | |
β’ βββββ βββββ β₯ | |
β’β β β Ξ΄ 2 2 β 2 β β β Ξ΄β 2 β₯ | |
β’ββ― β sin (ΞΈ) + cos (ΞΈ)β β β― β1 - β― β β β― β sin(ΞΈ)β cos(ΞΈ)β₯ | |
β’ β₯ | |
β’ -β β Ξ΄ -β β Ξ΄ β₯ | |
β’ βββββ ββββββ₯ | |
β’β β β Ξ΄β 2 β β β Ξ΄ 2 2 β 2 β₯ | |
β£β1 - β― β β β― β sin(ΞΈ)β cos(ΞΈ) ββ― β cos (ΞΈ) + sin (ΞΈ)β β β― β¦ | |
""" | |
R = Matrix([[cos(theta)**2 + exp(I*delta)*sin(theta)**2, | |
(1-exp(I*delta))*cos(theta)*sin(theta)], | |
[(1-exp(I*delta))*cos(theta)*sin(theta), | |
sin(theta)**2 + exp(I*delta)*cos(theta)**2]]) | |
return R*exp(-I*delta/2) | |
def half_wave_retarder(theta): | |
"""A half-wave retarder Jones matrix at angle ``theta``. | |
Parameters | |
========== | |
theta : numeric type or SymPy Symbol | |
The angle of the fast axis relative to the horizontal plane. | |
Returns | |
======= | |
SymPy Matrix | |
A Jones matrix representing the retarder. | |
Examples | |
======== | |
A generic half-wave plate. | |
>>> from sympy import pprint, symbols | |
>>> from sympy.physics.optics.polarization import half_wave_retarder | |
>>> theta= symbols("theta", real=True) | |
>>> HWP = half_wave_retarder(theta) | |
>>> pprint(HWP, use_unicode=True) | |
β‘ β 2 2 β β€ | |
β’-β β β- sin (ΞΈ) + cos (ΞΈ)β -2β β β sin(ΞΈ)β cos(ΞΈ) β₯ | |
β’ β₯ | |
β’ β 2 2 ββ₯ | |
β£ -2β β β sin(ΞΈ)β cos(ΞΈ) -β β βsin (ΞΈ) - cos (ΞΈ)β β¦ | |
""" | |
return phase_retarder(theta, pi) | |
def quarter_wave_retarder(theta): | |
"""A quarter-wave retarder Jones matrix at angle ``theta``. | |
Parameters | |
========== | |
theta : numeric type or SymPy Symbol | |
The angle of the fast axis relative to the horizontal plane. | |
Returns | |
======= | |
SymPy Matrix | |
A Jones matrix representing the retarder. | |
Examples | |
======== | |
A generic quarter-wave plate. | |
>>> from sympy import pprint, symbols | |
>>> from sympy.physics.optics.polarization import quarter_wave_retarder | |
>>> theta= symbols("theta", real=True) | |
>>> QWP = quarter_wave_retarder(theta) | |
>>> pprint(QWP, use_unicode=True) | |
β‘ -β β Ο -β β Ο β€ | |
β’ βββββ βββββ β₯ | |
β’β 2 2 β 4 4 β₯ | |
β’ββ β sin (ΞΈ) + cos (ΞΈ)β β β― (1 - β )β β― β sin(ΞΈ)β cos(ΞΈ)β₯ | |
β’ β₯ | |
β’ -β β Ο -β β Ο β₯ | |
β’ βββββ ββββββ₯ | |
β’ 4 β 2 2 β 4 β₯ | |
β£(1 - β )β β― β sin(ΞΈ)β cos(ΞΈ) βsin (ΞΈ) + β β cos (ΞΈ)β β β― β¦ | |
""" | |
return phase_retarder(theta, pi/2) | |
def transmissive_filter(T): | |
"""An attenuator Jones matrix with transmittance ``T``. | |
Parameters | |
========== | |
T : numeric type or SymPy Symbol | |
The transmittance of the attenuator. | |
Returns | |
======= | |
SymPy Matrix | |
A Jones matrix representing the filter. | |
Examples | |
======== | |
A generic filter. | |
>>> from sympy import pprint, symbols | |
>>> from sympy.physics.optics.polarization import transmissive_filter | |
>>> T = symbols("T", real=True) | |
>>> NDF = transmissive_filter(T) | |
>>> pprint(NDF, use_unicode=True) | |
β‘βT 0 β€ | |
β’ β₯ | |
β£0 βTβ¦ | |
""" | |
return Matrix([[sqrt(T), 0], [0, sqrt(T)]]) | |
def reflective_filter(R): | |
"""A reflective filter Jones matrix with reflectance ``R``. | |
Parameters | |
========== | |
R : numeric type or SymPy Symbol | |
The reflectance of the filter. | |
Returns | |
======= | |
SymPy Matrix | |
A Jones matrix representing the filter. | |
Examples | |
======== | |
A generic filter. | |
>>> from sympy import pprint, symbols | |
>>> from sympy.physics.optics.polarization import reflective_filter | |
>>> R = symbols("R", real=True) | |
>>> pprint(reflective_filter(R), use_unicode=True) | |
β‘βR 0 β€ | |
β’ β₯ | |
β£0 -βRβ¦ | |
""" | |
return Matrix([[sqrt(R), 0], [0, -sqrt(R)]]) | |
def mueller_matrix(J): | |
"""The Mueller matrix corresponding to Jones matrix `J`. | |
Parameters | |
========== | |
J : SymPy Matrix | |
A Jones matrix. | |
Returns | |
======= | |
SymPy Matrix | |
The corresponding Mueller matrix. | |
Examples | |
======== | |
Generic optical components. | |
>>> from sympy import pprint, symbols | |
>>> from sympy.physics.optics.polarization import (mueller_matrix, | |
... linear_polarizer, half_wave_retarder, quarter_wave_retarder) | |
>>> theta = symbols("theta", real=True) | |
A linear_polarizer | |
>>> pprint(mueller_matrix(linear_polarizer(theta)), use_unicode=True) | |
β‘ cos(2β ΞΈ) sin(2β ΞΈ) β€ | |
β’ 1/2 ββββββββ ββββββββ 0β₯ | |
β’ 2 2 β₯ | |
β’ β₯ | |
β’cos(2β ΞΈ) cos(4β ΞΈ) 1 sin(4β ΞΈ) β₯ | |
β’ββββββββ ββββββββ + β ββββββββ 0β₯ | |
β’ 2 4 4 4 β₯ | |
β’ β₯ | |
β’sin(2β ΞΈ) sin(4β ΞΈ) 1 cos(4β ΞΈ) β₯ | |
β’ββββββββ ββββββββ β - ββββββββ 0β₯ | |
β’ 2 4 4 4 β₯ | |
β’ β₯ | |
β£ 0 0 0 0β¦ | |
A half-wave plate | |
>>> pprint(mueller_matrix(half_wave_retarder(theta)), use_unicode=True) | |
β‘1 0 0 0 β€ | |
β’ β₯ | |
β’ 4 2 β₯ | |
β’0 8β sin (ΞΈ) - 8β sin (ΞΈ) + 1 sin(4β ΞΈ) 0 β₯ | |
β’ β₯ | |
β’ 4 2 β₯ | |
β’0 sin(4β ΞΈ) - 8β sin (ΞΈ) + 8β sin (ΞΈ) - 1 0 β₯ | |
β’ β₯ | |
β£0 0 0 -1β¦ | |
A quarter-wave plate | |
>>> pprint(mueller_matrix(quarter_wave_retarder(theta)), use_unicode=True) | |
β‘1 0 0 0 β€ | |
β’ β₯ | |
β’ cos(4β ΞΈ) 1 sin(4β ΞΈ) β₯ | |
β’0 ββββββββ + β ββββββββ -sin(2β ΞΈ)β₯ | |
β’ 2 2 2 β₯ | |
β’ β₯ | |
β’ sin(4β ΞΈ) 1 cos(4β ΞΈ) β₯ | |
β’0 ββββββββ β - ββββββββ cos(2β ΞΈ) β₯ | |
β’ 2 2 2 β₯ | |
β’ β₯ | |
β£0 sin(2β ΞΈ) -cos(2β ΞΈ) 0 β¦ | |
""" | |
A = Matrix([[1, 0, 0, 1], | |
[1, 0, 0, -1], | |
[0, 1, 1, 0], | |
[0, -I, I, 0]]) | |
return simplify(A*TensorProduct(J, J.conjugate())*A.inv()) | |
def polarizing_beam_splitter(Tp=1, Rs=1, Ts=0, Rp=0, phia=0, phib=0): | |
r"""A polarizing beam splitter Jones matrix at angle `theta`. | |
Parameters | |
========== | |
J : SymPy Matrix | |
A Jones matrix. | |
Tp : numeric type or SymPy Symbol | |
The transmissivity of the P-polarized component. | |
Rs : numeric type or SymPy Symbol | |
The reflectivity of the S-polarized component. | |
Ts : numeric type or SymPy Symbol | |
The transmissivity of the S-polarized component. | |
Rp : numeric type or SymPy Symbol | |
The reflectivity of the P-polarized component. | |
phia : numeric type or SymPy Symbol | |
The phase difference between transmitted and reflected component for | |
output mode a. | |
phib : numeric type or SymPy Symbol | |
The phase difference between transmitted and reflected component for | |
output mode b. | |
Returns | |
======= | |
SymPy Matrix | |
A 4x4 matrix representing the PBS. This matrix acts on a 4x1 vector | |
whose first two entries are the Jones vector on one of the PBS ports, | |
and the last two entries the Jones vector on the other port. | |
Examples | |
======== | |
Generic polarizing beam-splitter. | |
>>> from sympy import pprint, symbols | |
>>> from sympy.physics.optics.polarization import polarizing_beam_splitter | |
>>> Ts, Rs, Tp, Rp = symbols(r"Ts, Rs, Tp, Rp", positive=True) | |
>>> phia, phib = symbols("phi_a, phi_b", real=True) | |
>>> PBS = polarizing_beam_splitter(Tp, Rs, Ts, Rp, phia, phib) | |
>>> pprint(PBS, use_unicode=False) | |
[ ____ ____ ] | |
[ \/ Tp 0 I*\/ Rp 0 ] | |
[ ] | |
[ ____ ____ I*phi_a] | |
[ 0 \/ Ts 0 -I*\/ Rs *e ] | |
[ ] | |
[ ____ ____ ] | |
[I*\/ Rp 0 \/ Tp 0 ] | |
[ ] | |
[ ____ I*phi_b ____ ] | |
[ 0 -I*\/ Rs *e 0 \/ Ts ] | |
""" | |
PBS = Matrix([[sqrt(Tp), 0, I*sqrt(Rp), 0], | |
[0, sqrt(Ts), 0, -I*sqrt(Rs)*exp(I*phia)], | |
[I*sqrt(Rp), 0, sqrt(Tp), 0], | |
[0, -I*sqrt(Rs)*exp(I*phib), 0, sqrt(Ts)]]) | |
return PBS | |