Spaces:
Sleeping
Sleeping
from sympy.core.numbers import Float | |
from sympy.core.singleton import S | |
from sympy.functions.combinatorial.factorials import factorial | |
from sympy.functions.elementary.exponential import exp | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.special.polynomials import assoc_laguerre | |
from sympy.functions.special.spherical_harmonics import Ynm | |
def R_nl(n, l, r, Z=1): | |
""" | |
Returns the Hydrogen radial wavefunction R_{nl}. | |
Parameters | |
========== | |
n : integer | |
Principal Quantum Number which is | |
an integer with possible values as 1, 2, 3, 4,... | |
l : integer | |
``l`` is the Angular Momentum Quantum Number with | |
values ranging from 0 to ``n-1``. | |
r : | |
Radial coordinate. | |
Z : | |
Atomic number (1 for Hydrogen, 2 for Helium, ...) | |
Everything is in Hartree atomic units. | |
Examples | |
======== | |
>>> from sympy.physics.hydrogen import R_nl | |
>>> from sympy.abc import r, Z | |
>>> R_nl(1, 0, r, Z) | |
2*sqrt(Z**3)*exp(-Z*r) | |
>>> R_nl(2, 0, r, Z) | |
sqrt(2)*(-Z*r + 2)*sqrt(Z**3)*exp(-Z*r/2)/4 | |
>>> R_nl(2, 1, r, Z) | |
sqrt(6)*Z*r*sqrt(Z**3)*exp(-Z*r/2)/12 | |
For Hydrogen atom, you can just use the default value of Z=1: | |
>>> R_nl(1, 0, r) | |
2*exp(-r) | |
>>> R_nl(2, 0, r) | |
sqrt(2)*(2 - r)*exp(-r/2)/4 | |
>>> R_nl(3, 0, r) | |
2*sqrt(3)*(2*r**2/9 - 2*r + 3)*exp(-r/3)/27 | |
For Silver atom, you would use Z=47: | |
>>> R_nl(1, 0, r, Z=47) | |
94*sqrt(47)*exp(-47*r) | |
>>> R_nl(2, 0, r, Z=47) | |
47*sqrt(94)*(2 - 47*r)*exp(-47*r/2)/4 | |
>>> R_nl(3, 0, r, Z=47) | |
94*sqrt(141)*(4418*r**2/9 - 94*r + 3)*exp(-47*r/3)/27 | |
The normalization of the radial wavefunction is: | |
>>> from sympy import integrate, oo | |
>>> integrate(R_nl(1, 0, r)**2 * r**2, (r, 0, oo)) | |
1 | |
>>> integrate(R_nl(2, 0, r)**2 * r**2, (r, 0, oo)) | |
1 | |
>>> integrate(R_nl(2, 1, r)**2 * r**2, (r, 0, oo)) | |
1 | |
It holds for any atomic number: | |
>>> integrate(R_nl(1, 0, r, Z=2)**2 * r**2, (r, 0, oo)) | |
1 | |
>>> integrate(R_nl(2, 0, r, Z=3)**2 * r**2, (r, 0, oo)) | |
1 | |
>>> integrate(R_nl(2, 1, r, Z=4)**2 * r**2, (r, 0, oo)) | |
1 | |
""" | |
# sympify arguments | |
n, l, r, Z = map(S, [n, l, r, Z]) | |
# radial quantum number | |
n_r = n - l - 1 | |
# rescaled "r" | |
a = 1/Z # Bohr radius | |
r0 = 2 * r / (n * a) | |
# normalization coefficient | |
C = sqrt((S(2)/(n*a))**3 * factorial(n_r) / (2*n*factorial(n + l))) | |
# This is an equivalent normalization coefficient, that can be found in | |
# some books. Both coefficients seem to be the same fast: | |
# C = S(2)/n**2 * sqrt(1/a**3 * factorial(n_r) / (factorial(n+l))) | |
return C * r0**l * assoc_laguerre(n_r, 2*l + 1, r0).expand() * exp(-r0/2) | |
def Psi_nlm(n, l, m, r, phi, theta, Z=1): | |
""" | |
Returns the Hydrogen wave function psi_{nlm}. It's the product of | |
the radial wavefunction R_{nl} and the spherical harmonic Y_{l}^{m}. | |
Parameters | |
========== | |
n : integer | |
Principal Quantum Number which is | |
an integer with possible values as 1, 2, 3, 4,... | |
l : integer | |
``l`` is the Angular Momentum Quantum Number with | |
values ranging from 0 to ``n-1``. | |
m : integer | |
``m`` is the Magnetic Quantum Number with values | |
ranging from ``-l`` to ``l``. | |
r : | |
radial coordinate | |
phi : | |
azimuthal angle | |
theta : | |
polar angle | |
Z : | |
atomic number (1 for Hydrogen, 2 for Helium, ...) | |
Everything is in Hartree atomic units. | |
Examples | |
======== | |
>>> from sympy.physics.hydrogen import Psi_nlm | |
>>> from sympy import Symbol | |
>>> r=Symbol("r", positive=True) | |
>>> phi=Symbol("phi", real=True) | |
>>> theta=Symbol("theta", real=True) | |
>>> Z=Symbol("Z", positive=True, integer=True, nonzero=True) | |
>>> Psi_nlm(1,0,0,r,phi,theta,Z) | |
Z**(3/2)*exp(-Z*r)/sqrt(pi) | |
>>> Psi_nlm(2,1,1,r,phi,theta,Z) | |
-Z**(5/2)*r*exp(I*phi)*exp(-Z*r/2)*sin(theta)/(8*sqrt(pi)) | |
Integrating the absolute square of a hydrogen wavefunction psi_{nlm} | |
over the whole space leads 1. | |
The normalization of the hydrogen wavefunctions Psi_nlm is: | |
>>> from sympy import integrate, conjugate, pi, oo, sin | |
>>> wf=Psi_nlm(2,1,1,r,phi,theta,Z) | |
>>> abs_sqrd=wf*conjugate(wf) | |
>>> jacobi=r**2*sin(theta) | |
>>> integrate(abs_sqrd*jacobi, (r,0,oo), (phi,0,2*pi), (theta,0,pi)) | |
1 | |
""" | |
# sympify arguments | |
n, l, m, r, phi, theta, Z = map(S, [n, l, m, r, phi, theta, Z]) | |
# check if values for n,l,m make physically sense | |
if n.is_integer and n < 1: | |
raise ValueError("'n' must be positive integer") | |
if l.is_integer and not (n > l): | |
raise ValueError("'n' must be greater than 'l'") | |
if m.is_integer and not (abs(m) <= l): | |
raise ValueError("|'m'| must be less or equal 'l'") | |
# return the hydrogen wave function | |
return R_nl(n, l, r, Z)*Ynm(l, m, theta, phi).expand(func=True) | |
def E_nl(n, Z=1): | |
""" | |
Returns the energy of the state (n, l) in Hartree atomic units. | |
The energy does not depend on "l". | |
Parameters | |
========== | |
n : integer | |
Principal Quantum Number which is | |
an integer with possible values as 1, 2, 3, 4,... | |
Z : | |
Atomic number (1 for Hydrogen, 2 for Helium, ...) | |
Examples | |
======== | |
>>> from sympy.physics.hydrogen import E_nl | |
>>> from sympy.abc import n, Z | |
>>> E_nl(n, Z) | |
-Z**2/(2*n**2) | |
>>> E_nl(1) | |
-1/2 | |
>>> E_nl(2) | |
-1/8 | |
>>> E_nl(3) | |
-1/18 | |
>>> E_nl(3, 47) | |
-2209/18 | |
""" | |
n, Z = S(n), S(Z) | |
if n.is_integer and (n < 1): | |
raise ValueError("'n' must be positive integer") | |
return -Z**2/(2*n**2) | |
def E_nl_dirac(n, l, spin_up=True, Z=1, c=Float("137.035999037")): | |
""" | |
Returns the relativistic energy of the state (n, l, spin) in Hartree atomic | |
units. | |
The energy is calculated from the Dirac equation. The rest mass energy is | |
*not* included. | |
Parameters | |
========== | |
n : integer | |
Principal Quantum Number which is | |
an integer with possible values as 1, 2, 3, 4,... | |
l : integer | |
``l`` is the Angular Momentum Quantum Number with | |
values ranging from 0 to ``n-1``. | |
spin_up : | |
True if the electron spin is up (default), otherwise down | |
Z : | |
Atomic number (1 for Hydrogen, 2 for Helium, ...) | |
c : | |
Speed of light in atomic units. Default value is 137.035999037, | |
taken from https://arxiv.org/abs/1012.3627 | |
Examples | |
======== | |
>>> from sympy.physics.hydrogen import E_nl_dirac | |
>>> E_nl_dirac(1, 0) | |
-0.500006656595360 | |
>>> E_nl_dirac(2, 0) | |
-0.125002080189006 | |
>>> E_nl_dirac(2, 1) | |
-0.125000416028342 | |
>>> E_nl_dirac(2, 1, False) | |
-0.125002080189006 | |
>>> E_nl_dirac(3, 0) | |
-0.0555562951740285 | |
>>> E_nl_dirac(3, 1) | |
-0.0555558020932949 | |
>>> E_nl_dirac(3, 1, False) | |
-0.0555562951740285 | |
>>> E_nl_dirac(3, 2) | |
-0.0555556377366884 | |
>>> E_nl_dirac(3, 2, False) | |
-0.0555558020932949 | |
""" | |
n, l, Z, c = map(S, [n, l, Z, c]) | |
if not (l >= 0): | |
raise ValueError("'l' must be positive or zero") | |
if not (n > l): | |
raise ValueError("'n' must be greater than 'l'") | |
if (l == 0 and spin_up is False): | |
raise ValueError("Spin must be up for l==0.") | |
# skappa is sign*kappa, where sign contains the correct sign | |
if spin_up: | |
skappa = -l - 1 | |
else: | |
skappa = -l | |
beta = sqrt(skappa**2 - Z**2/c**2) | |
return c**2/sqrt(1 + Z**2/(n + skappa + beta)**2/c**2) - c**2 | |