Spaces:
Sleeping
Sleeping
from typing import Type | |
from sympy import Interval, numer, Rational, solveset | |
from sympy.core.add import Add | |
from sympy.core.basic import Basic | |
from sympy.core.containers import Tuple | |
from sympy.core.evalf import EvalfMixin | |
from sympy.core.expr import Expr | |
from sympy.core.function import expand | |
from sympy.core.logic import fuzzy_and | |
from sympy.core.mul import Mul | |
from sympy.core.numbers import I, pi, oo | |
from sympy.core.power import Pow | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Dummy, Symbol | |
from sympy.functions import Abs | |
from sympy.core.sympify import sympify, _sympify | |
from sympy.matrices import Matrix, ImmutableMatrix, ImmutableDenseMatrix, eye, ShapeError, zeros | |
from sympy.functions.elementary.exponential import (exp, log) | |
from sympy.matrices.expressions import MatMul, MatAdd | |
from sympy.polys import Poly, rootof | |
from sympy.polys.polyroots import roots | |
from sympy.polys.polytools import (cancel, degree) | |
from sympy.series import limit | |
from sympy.utilities.misc import filldedent | |
from mpmath.libmp.libmpf import prec_to_dps | |
__all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel', 'MIMOParallel', | |
'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix', 'StateSpace', 'gbt', 'bilinear', 'forward_diff', 'backward_diff', | |
'phase_margin', 'gain_margin'] | |
def _roots(poly, var): | |
""" like roots, but works on higher-order polynomials. """ | |
r = roots(poly, var, multiple=True) | |
n = degree(poly) | |
if len(r) != n: | |
r = [rootof(poly, var, k) for k in range(n)] | |
return r | |
def gbt(tf, sample_per, alpha): | |
r""" | |
Returns falling coefficients of H(z) from numerator and denominator. | |
Explanation | |
=========== | |
Where H(z) is the corresponding discretized transfer function, | |
discretized with the generalised bilinear transformation method. | |
H(z) is obtained from the continuous transfer function H(s) | |
by substituting $s(z) = \frac{z-1}{T(\alpha z + (1-\alpha))}$ into H(s), where T is the | |
sample period. | |
Coefficients are falling, i.e. $H(z) = \frac{az+b}{cz+d}$ is returned | |
as [a, b], [c, d]. | |
Examples | |
======== | |
>>> from sympy.physics.control.lti import TransferFunction, gbt | |
>>> from sympy.abc import s, L, R, T | |
>>> tf = TransferFunction(1, s*L + R, s) | |
>>> numZ, denZ = gbt(tf, T, 0.5) | |
>>> numZ | |
[T/(2*(L + R*T/2)), T/(2*(L + R*T/2))] | |
>>> denZ | |
[1, (-L + R*T/2)/(L + R*T/2)] | |
>>> numZ, denZ = gbt(tf, T, 0) | |
>>> numZ | |
[T/L] | |
>>> denZ | |
[1, (-L + R*T)/L] | |
>>> numZ, denZ = gbt(tf, T, 1) | |
>>> numZ | |
[T/(L + R*T), 0] | |
>>> denZ | |
[1, -L/(L + R*T)] | |
>>> numZ, denZ = gbt(tf, T, 0.3) | |
>>> numZ | |
[3*T/(10*(L + 3*R*T/10)), 7*T/(10*(L + 3*R*T/10))] | |
>>> denZ | |
[1, (-L + 7*R*T/10)/(L + 3*R*T/10)] | |
References | |
========== | |
.. [1] https://www.polyu.edu.hk/ama/profile/gfzhang/Research/ZCC09_IJC.pdf | |
""" | |
if not tf.is_SISO: | |
raise NotImplementedError("Not implemented for MIMO systems.") | |
T = sample_per # and sample period T | |
s = tf.var | |
z = s # dummy discrete variable z | |
np = tf.num.as_poly(s).all_coeffs() | |
dp = tf.den.as_poly(s).all_coeffs() | |
alpha = Rational(alpha).limit_denominator(1000) | |
# The next line results from multiplying H(z) with z^N/z^N | |
N = max(len(np), len(dp)) - 1 | |
num = Add(*[ T**(N-i) * c * (z-1)**i * (alpha * z + 1 - alpha)**(N-i) for c, i in zip(np[::-1], range(len(np))) ]) | |
den = Add(*[ T**(N-i) * c * (z-1)**i * (alpha * z + 1 - alpha)**(N-i) for c, i in zip(dp[::-1], range(len(dp))) ]) | |
num_coefs = num.as_poly(z).all_coeffs() | |
den_coefs = den.as_poly(z).all_coeffs() | |
para = den_coefs[0] | |
num_coefs = [coef/para for coef in num_coefs] | |
den_coefs = [coef/para for coef in den_coefs] | |
return num_coefs, den_coefs | |
def bilinear(tf, sample_per): | |
r""" | |
Returns falling coefficients of H(z) from numerator and denominator. | |
Explanation | |
=========== | |
Where H(z) is the corresponding discretized transfer function, | |
discretized with the bilinear transform method. | |
H(z) is obtained from the continuous transfer function H(s) | |
by substituting $s(z) = \frac{2}{T}\frac{z-1}{z+1}$ into H(s), where T is the | |
sample period. | |
Coefficients are falling, i.e. $H(z) = \frac{az+b}{cz+d}$ is returned | |
as [a, b], [c, d]. | |
Examples | |
======== | |
>>> from sympy.physics.control.lti import TransferFunction, bilinear | |
>>> from sympy.abc import s, L, R, T | |
>>> tf = TransferFunction(1, s*L + R, s) | |
>>> numZ, denZ = bilinear(tf, T) | |
>>> numZ | |
[T/(2*(L + R*T/2)), T/(2*(L + R*T/2))] | |
>>> denZ | |
[1, (-L + R*T/2)/(L + R*T/2)] | |
""" | |
return gbt(tf, sample_per, S.Half) | |
def forward_diff(tf, sample_per): | |
r""" | |
Returns falling coefficients of H(z) from numerator and denominator. | |
Explanation | |
=========== | |
Where H(z) is the corresponding discretized transfer function, | |
discretized with the forward difference transform method. | |
H(z) is obtained from the continuous transfer function H(s) | |
by substituting $s(z) = \frac{z-1}{T}$ into H(s), where T is the | |
sample period. | |
Coefficients are falling, i.e. $H(z) = \frac{az+b}{cz+d}$ is returned | |
as [a, b], [c, d]. | |
Examples | |
======== | |
>>> from sympy.physics.control.lti import TransferFunction, forward_diff | |
>>> from sympy.abc import s, L, R, T | |
>>> tf = TransferFunction(1, s*L + R, s) | |
>>> numZ, denZ = forward_diff(tf, T) | |
>>> numZ | |
[T/L] | |
>>> denZ | |
[1, (-L + R*T)/L] | |
""" | |
return gbt(tf, sample_per, S.Zero) | |
def backward_diff(tf, sample_per): | |
r""" | |
Returns falling coefficients of H(z) from numerator and denominator. | |
Explanation | |
=========== | |
Where H(z) is the corresponding discretized transfer function, | |
discretized with the backward difference transform method. | |
H(z) is obtained from the continuous transfer function H(s) | |
by substituting $s(z) = \frac{z-1}{Tz}$ into H(s), where T is the | |
sample period. | |
Coefficients are falling, i.e. $H(z) = \frac{az+b}{cz+d}$ is returned | |
as [a, b], [c, d]. | |
Examples | |
======== | |
>>> from sympy.physics.control.lti import TransferFunction, backward_diff | |
>>> from sympy.abc import s, L, R, T | |
>>> tf = TransferFunction(1, s*L + R, s) | |
>>> numZ, denZ = backward_diff(tf, T) | |
>>> numZ | |
[T/(L + R*T), 0] | |
>>> denZ | |
[1, -L/(L + R*T)] | |
""" | |
return gbt(tf, sample_per, S.One) | |
def phase_margin(system): | |
r""" | |
Returns the phase margin of a continuous time system. | |
Only applicable to Transfer Functions which can generate valid bode plots. | |
Raises | |
====== | |
NotImplementedError | |
When time delay terms are present in the system. | |
ValueError | |
When a SISO LTI system is not passed. | |
When more than one free symbol is present in the system. | |
The only variable in the transfer function should be | |
the variable of the Laplace transform. | |
Examples | |
======== | |
>>> from sympy.physics.control import TransferFunction, phase_margin | |
>>> from sympy.abc import s | |
>>> tf = TransferFunction(1, s**3 + 2*s**2 + s, s) | |
>>> phase_margin(tf) | |
180*(-pi + atan((-1 + (-2*18**(1/3)/(9 + sqrt(93))**(1/3) + 12**(1/3)*(9 + sqrt(93))**(1/3))**2/36)/(-12**(1/3)*(9 + sqrt(93))**(1/3)/3 + 2*18**(1/3)/(3*(9 + sqrt(93))**(1/3)))))/pi + 180 | |
>>> phase_margin(tf).n() | |
21.3863897518751 | |
>>> tf1 = TransferFunction(s**3, s**2 + 5*s, s) | |
>>> phase_margin(tf1) | |
-180 + 180*(atan(sqrt(2)*(-51/10 - sqrt(101)/10)*sqrt(1 + sqrt(101))/(2*(sqrt(101)/2 + 51/2))) + pi)/pi | |
>>> phase_margin(tf1).n() | |
-25.1783920627277 | |
>>> tf2 = TransferFunction(1, s + 1, s) | |
>>> phase_margin(tf2) | |
-180 | |
See Also | |
======== | |
gain_margin | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Phase_margin | |
""" | |
from sympy.functions import arg | |
if not isinstance(system, SISOLinearTimeInvariant): | |
raise ValueError("Margins are only applicable for SISO LTI systems.") | |
_w = Dummy("w", real=True) | |
repl = I*_w | |
expr = system.to_expr() | |
len_free_symbols = len(expr.free_symbols) | |
if expr.has(exp): | |
raise NotImplementedError("Margins for systems with Time delay terms are not supported.") | |
elif len_free_symbols > 1: | |
raise ValueError("Extra degree of freedom found. Make sure" | |
" that there are no free symbols in the dynamical system other" | |
" than the variable of Laplace transform.") | |
w_expr = expr.subs({system.var: repl}) | |
mag = 20*log(Abs(w_expr), 10) | |
mag_sol = list(solveset(mag, _w, Interval(0, oo, left_open=True))) | |
if (len(mag_sol) == 0): | |
pm = S(-180) | |
else: | |
wcp = mag_sol[0] | |
pm = ((arg(w_expr)*S(180)/pi).subs({_w:wcp}) + S(180)) % 360 | |
if(pm >= 180): | |
pm = pm - 360 | |
return pm | |
def gain_margin(system): | |
r""" | |
Returns the gain margin of a continuous time system. | |
Only applicable to Transfer Functions which can generate valid bode plots. | |
Raises | |
====== | |
NotImplementedError | |
When time delay terms are present in the system. | |
ValueError | |
When a SISO LTI system is not passed. | |
When more than one free symbol is present in the system. | |
The only variable in the transfer function should be | |
the variable of the Laplace transform. | |
Examples | |
======== | |
>>> from sympy.physics.control import TransferFunction, gain_margin | |
>>> from sympy.abc import s | |
>>> tf = TransferFunction(1, s**3 + 2*s**2 + s, s) | |
>>> gain_margin(tf) | |
20*log(2)/log(10) | |
>>> gain_margin(tf).n() | |
6.02059991327962 | |
>>> tf1 = TransferFunction(s**3, s**2 + 5*s, s) | |
>>> gain_margin(tf1) | |
oo | |
See Also | |
======== | |
phase_margin | |
References | |
========== | |
https://en.wikipedia.org/wiki/Bode_plot | |
""" | |
if not isinstance(system, SISOLinearTimeInvariant): | |
raise ValueError("Margins are only applicable for SISO LTI systems.") | |
_w = Dummy("w", real=True) | |
repl = I*_w | |
expr = system.to_expr() | |
len_free_symbols = len(expr.free_symbols) | |
if expr.has(exp): | |
raise NotImplementedError("Margins for systems with Time delay terms are not supported.") | |
elif len_free_symbols > 1: | |
raise ValueError("Extra degree of freedom found. Make sure" | |
" that there are no free symbols in the dynamical system other" | |
" than the variable of Laplace transform.") | |
w_expr = expr.subs({system.var: repl}) | |
mag = 20*log(Abs(w_expr), 10) | |
phase = w_expr | |
phase_sol = list(solveset(numer(phase.as_real_imag()[1].cancel()),_w, Interval(0, oo, left_open = True))) | |
if (len(phase_sol) == 0): | |
gm = oo | |
else: | |
wcg = phase_sol[0] | |
gm = -mag.subs({_w:wcg}) | |
return gm | |
class LinearTimeInvariant(Basic, EvalfMixin): | |
"""A common class for all the Linear Time-Invariant Dynamical Systems.""" | |
_clstype: Type | |
# Users should not directly interact with this class. | |
def __new__(cls, *system, **kwargs): | |
if cls is LinearTimeInvariant: | |
raise NotImplementedError('The LTICommon class is not meant to be used directly.') | |
return super(LinearTimeInvariant, cls).__new__(cls, *system, **kwargs) | |
def _check_args(cls, args): | |
if not args: | |
raise ValueError("At least 1 argument must be passed.") | |
if not all(isinstance(arg, cls._clstype) for arg in args): | |
raise TypeError(f"All arguments must be of type {cls._clstype}.") | |
var_set = {arg.var for arg in args} | |
if len(var_set) != 1: | |
raise ValueError(filldedent(f""" | |
All transfer functions should use the same complex variable | |
of the Laplace transform. {len(var_set)} different | |
values found.""")) | |
def is_SISO(self): | |
"""Returns `True` if the passed LTI system is SISO else returns False.""" | |
return self._is_SISO | |
class SISOLinearTimeInvariant(LinearTimeInvariant): | |
"""A common class for all the SISO Linear Time-Invariant Dynamical Systems.""" | |
# Users should not directly interact with this class. | |
_is_SISO = True | |
class MIMOLinearTimeInvariant(LinearTimeInvariant): | |
"""A common class for all the MIMO Linear Time-Invariant Dynamical Systems.""" | |
# Users should not directly interact with this class. | |
_is_SISO = False | |
SISOLinearTimeInvariant._clstype = SISOLinearTimeInvariant | |
MIMOLinearTimeInvariant._clstype = MIMOLinearTimeInvariant | |
def _check_other_SISO(func): | |
def wrapper(*args, **kwargs): | |
if not isinstance(args[-1], SISOLinearTimeInvariant): | |
return NotImplemented | |
else: | |
return func(*args, **kwargs) | |
return wrapper | |
def _check_other_MIMO(func): | |
def wrapper(*args, **kwargs): | |
if not isinstance(args[-1], MIMOLinearTimeInvariant): | |
return NotImplemented | |
else: | |
return func(*args, **kwargs) | |
return wrapper | |
class TransferFunction(SISOLinearTimeInvariant): | |
r""" | |
A class for representing LTI (Linear, time-invariant) systems that can be strictly described | |
by ratio of polynomials in the Laplace transform complex variable. The arguments | |
are ``num``, ``den``, and ``var``, where ``num`` and ``den`` are numerator and | |
denominator polynomials of the ``TransferFunction`` respectively, and the third argument is | |
a complex variable of the Laplace transform used by these polynomials of the transfer function. | |
``num`` and ``den`` can be either polynomials or numbers, whereas ``var`` | |
has to be a :py:class:`~.Symbol`. | |
Explanation | |
=========== | |
Generally, a dynamical system representing a physical model can be described in terms of Linear | |
Ordinary Differential Equations like - | |
$\small{b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y= | |
a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x}$ | |
Here, $x$ is the input signal and $y$ is the output signal and superscript on both is the order of derivative | |
(not exponent). Derivative is taken with respect to the independent variable, $t$. Also, generally $m$ is greater | |
than $n$. | |
It is not feasible to analyse the properties of such systems in their native form therefore, we use | |
mathematical tools like Laplace transform to get a better perspective. Taking the Laplace transform | |
of both the sides in the equation (at zero initial conditions), we get - | |
$\small{\mathcal{L}[b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y]= | |
\mathcal{L}[a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x]}$ | |
Using the linearity property of Laplace transform and also considering zero initial conditions | |
(i.e. $\small{y(0^{-}) = 0}$, $\small{y'(0^{-}) = 0}$ and so on), the equation | |
above gets translated to - | |
$\small{b_{m}\mathcal{L}[y^{\left(m\right)}]+\dots+b_{1}\mathcal{L}[y^{\left(1\right)}]+b_{0}\mathcal{L}[y]= | |
a_{n}\mathcal{L}[x^{\left(n\right)}]+\dots+a_{1}\mathcal{L}[x^{\left(1\right)}]+a_{0}\mathcal{L}[x]}$ | |
Now, applying Derivative property of Laplace transform, | |
$\small{b_{m}s^{m}\mathcal{L}[y]+\dots+b_{1}s\mathcal{L}[y]+b_{0}\mathcal{L}[y]= | |
a_{n}s^{n}\mathcal{L}[x]+\dots+a_{1}s\mathcal{L}[x]+a_{0}\mathcal{L}[x]}$ | |
Here, the superscript on $s$ is **exponent**. Note that the zero initial conditions assumption, mentioned above, is very important | |
and cannot be ignored otherwise the dynamical system cannot be considered time-independent and the simplified equation above | |
cannot be reached. | |
Collecting $\mathcal{L}[y]$ and $\mathcal{L}[x]$ terms from both the sides and taking the ratio | |
$\frac{ \mathcal{L}\left\{y\right\} }{ \mathcal{L}\left\{x\right\} }$, we get the typical rational form of transfer | |
function. | |
The numerator of the transfer function is, therefore, the Laplace transform of the output signal | |
(The signals are represented as functions of time) and similarly, the denominator | |
of the transfer function is the Laplace transform of the input signal. It is also a convention | |
to denote the input and output signal's Laplace transform with capital alphabets like shown below. | |
$H(s) = \frac{Y(s)}{X(s)} = \frac{ \mathcal{L}\left\{y(t)\right\} }{ \mathcal{L}\left\{x(t)\right\} }$ | |
$s$, also known as complex frequency, is a complex variable in the Laplace domain. It corresponds to the | |
equivalent variable $t$, in the time domain. Transfer functions are sometimes also referred to as the Laplace | |
transform of the system's impulse response. Transfer function, $H$, is represented as a rational | |
function in $s$ like, | |
$H(s) =\ \frac{a_{n}s^{n}+a_{n-1}s^{n-1}+\dots+a_{1}s+a_{0}}{b_{m}s^{m}+b_{m-1}s^{m-1}+\dots+b_{1}s+b_{0}}$ | |
Parameters | |
========== | |
num : Expr, Number | |
The numerator polynomial of the transfer function. | |
den : Expr, Number | |
The denominator polynomial of the transfer function. | |
var : Symbol | |
Complex variable of the Laplace transform used by the | |
polynomials of the transfer function. | |
Raises | |
====== | |
TypeError | |
When ``var`` is not a Symbol or when ``num`` or ``den`` is not a | |
number or a polynomial. | |
ValueError | |
When ``den`` is zero. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> tf1 = TransferFunction(s + a, s**2 + s + 1, s) | |
>>> tf1 | |
TransferFunction(a + s, s**2 + s + 1, s) | |
>>> tf1.num | |
a + s | |
>>> tf1.den | |
s**2 + s + 1 | |
>>> tf1.var | |
s | |
>>> tf1.args | |
(a + s, s**2 + s + 1, s) | |
Any complex variable can be used for ``var``. | |
>>> tf2 = TransferFunction(a*p**3 - a*p**2 + s*p, p + a**2, p) | |
>>> tf2 | |
TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p) | |
>>> tf3 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) | |
>>> tf3 | |
TransferFunction((p - 1)*(p + 3), (p - 1)*(p + 5), p) | |
To negate a transfer function the ``-`` operator can be prepended: | |
>>> tf4 = TransferFunction(-a + s, p**2 + s, p) | |
>>> -tf4 | |
TransferFunction(a - s, p**2 + s, p) | |
>>> tf5 = TransferFunction(s**4 - 2*s**3 + 5*s + 4, s + 4, s) | |
>>> -tf5 | |
TransferFunction(-s**4 + 2*s**3 - 5*s - 4, s + 4, s) | |
You can use a float or an integer (or other constants) as numerator and denominator: | |
>>> tf6 = TransferFunction(1/2, 4, s) | |
>>> tf6.num | |
0.500000000000000 | |
>>> tf6.den | |
4 | |
>>> tf6.var | |
s | |
>>> tf6.args | |
(0.5, 4, s) | |
You can take the integer power of a transfer function using the ``**`` operator: | |
>>> tf7 = TransferFunction(s + a, s - a, s) | |
>>> tf7**3 | |
TransferFunction((a + s)**3, (-a + s)**3, s) | |
>>> tf7**0 | |
TransferFunction(1, 1, s) | |
>>> tf8 = TransferFunction(p + 4, p - 3, p) | |
>>> tf8**-1 | |
TransferFunction(p - 3, p + 4, p) | |
Addition, subtraction, and multiplication of transfer functions can form | |
unevaluated ``Series`` or ``Parallel`` objects. | |
>>> tf9 = TransferFunction(s + 1, s**2 + s + 1, s) | |
>>> tf10 = TransferFunction(s - p, s + 3, s) | |
>>> tf11 = TransferFunction(4*s**2 + 2*s - 4, s - 1, s) | |
>>> tf12 = TransferFunction(1 - s, s**2 + 4, s) | |
>>> tf9 + tf10 | |
Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s)) | |
>>> tf10 - tf11 | |
Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-4*s**2 - 2*s + 4, s - 1, s)) | |
>>> tf9 * tf10 | |
Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s)) | |
>>> tf10 - (tf9 + tf12) | |
Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-s - 1, s**2 + s + 1, s), TransferFunction(s - 1, s**2 + 4, s)) | |
>>> tf10 - (tf9 * tf12) | |
Parallel(TransferFunction(-p + s, s + 3, s), Series(TransferFunction(-1, 1, s), TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s))) | |
>>> tf11 * tf10 * tf9 | |
Series(TransferFunction(4*s**2 + 2*s - 4, s - 1, s), TransferFunction(-p + s, s + 3, s), TransferFunction(s + 1, s**2 + s + 1, s)) | |
>>> tf9 * tf11 + tf10 * tf12 | |
Parallel(Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)), Series(TransferFunction(-p + s, s + 3, s), TransferFunction(1 - s, s**2 + 4, s))) | |
>>> (tf9 + tf12) * (tf10 + tf11) | |
Series(Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)), Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s))) | |
These unevaluated ``Series`` or ``Parallel`` objects can convert into the | |
resultant transfer function using ``.doit()`` method or by ``.rewrite(TransferFunction)``. | |
>>> ((tf9 + tf10) * tf12).doit() | |
TransferFunction((1 - s)*((-p + s)*(s**2 + s + 1) + (s + 1)*(s + 3)), (s + 3)*(s**2 + 4)*(s**2 + s + 1), s) | |
>>> (tf9 * tf10 - tf11 * tf12).rewrite(TransferFunction) | |
TransferFunction(-(1 - s)*(s + 3)*(s**2 + s + 1)*(4*s**2 + 2*s - 4) + (-p + s)*(s - 1)*(s + 1)*(s**2 + 4), (s - 1)*(s + 3)*(s**2 + 4)*(s**2 + s + 1), s) | |
See Also | |
======== | |
Feedback, Series, Parallel | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Transfer_function | |
.. [2] https://en.wikipedia.org/wiki/Laplace_transform | |
""" | |
def __new__(cls, num, den, var): | |
num, den = _sympify(num), _sympify(den) | |
if not isinstance(var, Symbol): | |
raise TypeError("Variable input must be a Symbol.") | |
if den == 0: | |
raise ValueError("TransferFunction cannot have a zero denominator.") | |
if (((isinstance(num, (Expr, TransferFunction, Series, Parallel)) and num.has(Symbol)) or num.is_number) and | |
((isinstance(den, (Expr, TransferFunction, Series, Parallel)) and den.has(Symbol)) or den.is_number)): | |
return super(TransferFunction, cls).__new__(cls, num, den, var) | |
else: | |
raise TypeError("Unsupported type for numerator or denominator of TransferFunction.") | |
def from_rational_expression(cls, expr, var=None): | |
r""" | |
Creates a new ``TransferFunction`` efficiently from a rational expression. | |
Parameters | |
========== | |
expr : Expr, Number | |
The rational expression representing the ``TransferFunction``. | |
var : Symbol, optional | |
Complex variable of the Laplace transform used by the | |
polynomials of the transfer function. | |
Raises | |
====== | |
ValueError | |
When ``expr`` is of type ``Number`` and optional parameter ``var`` | |
is not passed. | |
When ``expr`` has more than one variables and an optional parameter | |
``var`` is not passed. | |
ZeroDivisionError | |
When denominator of ``expr`` is zero or it has ``ComplexInfinity`` | |
in its numerator. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> expr1 = (s + 5)/(3*s**2 + 2*s + 1) | |
>>> tf1 = TransferFunction.from_rational_expression(expr1) | |
>>> tf1 | |
TransferFunction(s + 5, 3*s**2 + 2*s + 1, s) | |
>>> expr2 = (a*p**3 - a*p**2 + s*p)/(p + a**2) # Expr with more than one variables | |
>>> tf2 = TransferFunction.from_rational_expression(expr2, p) | |
>>> tf2 | |
TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p) | |
In case of conflict between two or more variables in a expression, SymPy will | |
raise a ``ValueError``, if ``var`` is not passed by the user. | |
>>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1)) | |
Traceback (most recent call last): | |
... | |
ValueError: Conflicting values found for positional argument `var` ({a, s}). Specify it manually. | |
This can be corrected by specifying the ``var`` parameter manually. | |
>>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1), s) | |
>>> tf | |
TransferFunction(a*s + a, s**2 + s + 1, s) | |
``var`` also need to be specified when ``expr`` is a ``Number`` | |
>>> tf3 = TransferFunction.from_rational_expression(10, s) | |
>>> tf3 | |
TransferFunction(10, 1, s) | |
""" | |
expr = _sympify(expr) | |
if var is None: | |
_free_symbols = expr.free_symbols | |
_len_free_symbols = len(_free_symbols) | |
if _len_free_symbols == 1: | |
var = list(_free_symbols)[0] | |
elif _len_free_symbols == 0: | |
raise ValueError(filldedent(""" | |
Positional argument `var` not found in the | |
TransferFunction defined. Specify it manually.""")) | |
else: | |
raise ValueError(filldedent(""" | |
Conflicting values found for positional argument `var` ({}). | |
Specify it manually.""".format(_free_symbols))) | |
_num, _den = expr.as_numer_denom() | |
if _den == 0 or _num.has(S.ComplexInfinity): | |
raise ZeroDivisionError("TransferFunction cannot have a zero denominator.") | |
return cls(_num, _den, var) | |
def from_coeff_lists(cls, num_list, den_list, var): | |
r""" | |
Creates a new ``TransferFunction`` efficiently from a list of coefficients. | |
Parameters | |
========== | |
num_list : Sequence | |
Sequence comprising of numerator coefficients. | |
den_list : Sequence | |
Sequence comprising of denominator coefficients. | |
var : Symbol | |
Complex variable of the Laplace transform used by the | |
polynomials of the transfer function. | |
Raises | |
====== | |
ZeroDivisionError | |
When the constructed denominator is zero. | |
Examples | |
======== | |
>>> from sympy.abc import s, p | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> num = [1, 0, 2] | |
>>> den = [3, 2, 2, 1] | |
>>> tf = TransferFunction.from_coeff_lists(num, den, s) | |
>>> tf | |
TransferFunction(s**2 + 2, 3*s**3 + 2*s**2 + 2*s + 1, s) | |
# Create a Transfer Function with more than one variable | |
>>> tf1 = TransferFunction.from_coeff_lists([p, 1], [2*p, 0, 4], s) | |
>>> tf1 | |
TransferFunction(p*s + 1, 2*p*s**2 + 4, s) | |
""" | |
num_list = num_list[::-1] | |
den_list = den_list[::-1] | |
num_var_powers = [var**i for i in range(len(num_list))] | |
den_var_powers = [var**i for i in range(len(den_list))] | |
_num = sum(coeff * var_power for coeff, var_power in zip(num_list, num_var_powers)) | |
_den = sum(coeff * var_power for coeff, var_power in zip(den_list, den_var_powers)) | |
if _den == 0: | |
raise ZeroDivisionError("TransferFunction cannot have a zero denominator.") | |
return cls(_num, _den, var) | |
def from_zpk(cls, zeros, poles, gain, var): | |
r""" | |
Creates a new ``TransferFunction`` from given zeros, poles and gain. | |
Parameters | |
========== | |
zeros : Sequence | |
Sequence comprising of zeros of transfer function. | |
poles : Sequence | |
Sequence comprising of poles of transfer function. | |
gain : Number, Symbol, Expression | |
A scalar value specifying gain of the model. | |
var : Symbol | |
Complex variable of the Laplace transform used by the | |
polynomials of the transfer function. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, k | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> zeros = [1, 2, 3] | |
>>> poles = [6, 5, 4] | |
>>> gain = 7 | |
>>> tf = TransferFunction.from_zpk(zeros, poles, gain, s) | |
>>> tf | |
TransferFunction(7*(s - 3)*(s - 2)*(s - 1), (s - 6)*(s - 5)*(s - 4), s) | |
# Create a Transfer Function with variable poles and zeros | |
>>> tf1 = TransferFunction.from_zpk([p, k], [p + k, p - k], 2, s) | |
>>> tf1 | |
TransferFunction(2*(-k + s)*(-p + s), (-k - p + s)*(k - p + s), s) | |
# Complex poles or zeros are acceptable | |
>>> tf2 = TransferFunction.from_zpk([0], [1-1j, 1+1j, 2], -2, s) | |
>>> tf2 | |
TransferFunction(-2*s, (s - 2)*(s - 1.0 - 1.0*I)*(s - 1.0 + 1.0*I), s) | |
""" | |
num_poly = 1 | |
den_poly = 1 | |
for zero in zeros: | |
num_poly *= var - zero | |
for pole in poles: | |
den_poly *= var - pole | |
return cls(gain*num_poly, den_poly, var) | |
def num(self): | |
""" | |
Returns the numerator polynomial of the transfer function. | |
Examples | |
======== | |
>>> from sympy.abc import s, p | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> G1 = TransferFunction(s**2 + p*s + 3, s - 4, s) | |
>>> G1.num | |
p*s + s**2 + 3 | |
>>> G2 = TransferFunction((p + 5)*(p - 3), (p - 3)*(p + 1), p) | |
>>> G2.num | |
(p - 3)*(p + 5) | |
""" | |
return self.args[0] | |
def den(self): | |
""" | |
Returns the denominator polynomial of the transfer function. | |
Examples | |
======== | |
>>> from sympy.abc import s, p | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> G1 = TransferFunction(s + 4, p**3 - 2*p + 4, s) | |
>>> G1.den | |
p**3 - 2*p + 4 | |
>>> G2 = TransferFunction(3, 4, s) | |
>>> G2.den | |
4 | |
""" | |
return self.args[1] | |
def var(self): | |
""" | |
Returns the complex variable of the Laplace transform used by the polynomials of | |
the transfer function. | |
Examples | |
======== | |
>>> from sympy.abc import s, p | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) | |
>>> G1.var | |
p | |
>>> G2 = TransferFunction(0, s - 5, s) | |
>>> G2.var | |
s | |
""" | |
return self.args[2] | |
def _eval_subs(self, old, new): | |
arg_num = self.num.subs(old, new) | |
arg_den = self.den.subs(old, new) | |
argnew = TransferFunction(arg_num, arg_den, self.var) | |
return self if old == self.var else argnew | |
def _eval_evalf(self, prec): | |
return TransferFunction( | |
self.num._eval_evalf(prec), | |
self.den._eval_evalf(prec), | |
self.var) | |
def _eval_simplify(self, **kwargs): | |
tf = cancel(Mul(self.num, 1/self.den, evaluate=False), expand=False).as_numer_denom() | |
num_, den_ = tf[0], tf[1] | |
return TransferFunction(num_, den_, self.var) | |
def _eval_rewrite_as_StateSpace(self, *args): | |
""" | |
Returns the equivalent space space model of the transfer function model. | |
The state space model will be returned in the controllable cannonical form. | |
Unlike the space state to transfer function model conversion, the transfer function | |
to state space model conversion is not unique. There can be multiple state space | |
representations of a given transfer function model. | |
Examples | |
======== | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control import TransferFunction, StateSpace | |
>>> tf = TransferFunction(s**2 + 1, s**3 + 2*s + 10, s) | |
>>> tf.rewrite(StateSpace) | |
StateSpace(Matrix([ | |
[ 0, 1, 0], | |
[ 0, 0, 1], | |
[-10, -2, 0]]), Matrix([ | |
[0], | |
[0], | |
[1]]), Matrix([[1, 0, 1]]), Matrix([[0]])) | |
""" | |
if not self.is_proper: | |
raise ValueError("Transfer Function must be proper.") | |
num_poly = Poly(self.num, self.var) | |
den_poly = Poly(self.den, self.var) | |
n = den_poly.degree() | |
num_coeffs = num_poly.all_coeffs() | |
den_coeffs = den_poly.all_coeffs() | |
diff = n - num_poly.degree() | |
num_coeffs = [0]*diff + num_coeffs | |
a = den_coeffs[1:] | |
a_mat = Matrix([[(-1)*coefficient/den_coeffs[0] for coefficient in reversed(a)]]) | |
vert = zeros(n-1, 1) | |
mat = eye(n-1) | |
A = vert.row_join(mat) | |
A = A.col_join(a_mat) | |
B = zeros(n, 1) | |
B[n-1] = 1 | |
i = n | |
C = [] | |
while(i > 0): | |
C.append(num_coeffs[i] - den_coeffs[i]*num_coeffs[0]) | |
i -= 1 | |
C = Matrix([C]) | |
D = Matrix([num_coeffs[0]]) | |
return StateSpace(A, B, C, D) | |
def expand(self): | |
""" | |
Returns the transfer function with numerator and denominator | |
in expanded form. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> G1 = TransferFunction((a - s)**2, (s**2 + a)**2, s) | |
>>> G1.expand() | |
TransferFunction(a**2 - 2*a*s + s**2, a**2 + 2*a*s**2 + s**4, s) | |
>>> G2 = TransferFunction((p + 3*b)*(p - b), (p - b)*(p + 2*b), p) | |
>>> G2.expand() | |
TransferFunction(-3*b**2 + 2*b*p + p**2, -2*b**2 + b*p + p**2, p) | |
""" | |
return TransferFunction(expand(self.num), expand(self.den), self.var) | |
def dc_gain(self): | |
""" | |
Computes the gain of the response as the frequency approaches zero. | |
The DC gain is infinite for systems with pure integrators. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> tf1 = TransferFunction(s + 3, s**2 - 9, s) | |
>>> tf1.dc_gain() | |
-1/3 | |
>>> tf2 = TransferFunction(p**2, p - 3 + p**3, p) | |
>>> tf2.dc_gain() | |
0 | |
>>> tf3 = TransferFunction(a*p**2 - b, s + b, s) | |
>>> tf3.dc_gain() | |
(a*p**2 - b)/b | |
>>> tf4 = TransferFunction(1, s, s) | |
>>> tf4.dc_gain() | |
oo | |
""" | |
m = Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False) | |
return limit(m, self.var, 0) | |
def poles(self): | |
""" | |
Returns the poles of a transfer function. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) | |
>>> tf1.poles() | |
[-5, 1] | |
>>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) | |
>>> tf2.poles() | |
[I, I, -I, -I] | |
>>> tf3 = TransferFunction(s**2, a*s + p, s) | |
>>> tf3.poles() | |
[-p/a] | |
""" | |
return _roots(Poly(self.den, self.var), self.var) | |
def zeros(self): | |
""" | |
Returns the zeros of a transfer function. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) | |
>>> tf1.zeros() | |
[-3, 1] | |
>>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) | |
>>> tf2.zeros() | |
[1, 1] | |
>>> tf3 = TransferFunction(s**2, a*s + p, s) | |
>>> tf3.zeros() | |
[0, 0] | |
""" | |
return _roots(Poly(self.num, self.var), self.var) | |
def eval_frequency(self, other): | |
""" | |
Returns the system response at any point in the real or complex plane. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> from sympy import I | |
>>> tf1 = TransferFunction(1, s**2 + 2*s + 1, s) | |
>>> omega = 0.1 | |
>>> tf1.eval_frequency(I*omega) | |
1/(0.99 + 0.2*I) | |
>>> tf2 = TransferFunction(s**2, a*s + p, s) | |
>>> tf2.eval_frequency(2) | |
4/(2*a + p) | |
>>> tf2.eval_frequency(I*2) | |
-4/(2*I*a + p) | |
""" | |
arg_num = self.num.subs(self.var, other) | |
arg_den = self.den.subs(self.var, other) | |
argnew = TransferFunction(arg_num, arg_den, self.var).to_expr() | |
return argnew.expand() | |
def is_stable(self): | |
""" | |
Returns True if the transfer function is asymptotically stable; else False. | |
This would not check the marginal or conditional stability of the system. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a | |
>>> from sympy import symbols | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> q, r = symbols('q, r', negative=True) | |
>>> tf1 = TransferFunction((1 - s)**2, (s + 1)**2, s) | |
>>> tf1.is_stable() | |
True | |
>>> tf2 = TransferFunction((1 - p)**2, (s**2 + 1)**2, s) | |
>>> tf2.is_stable() | |
False | |
>>> tf3 = TransferFunction(4, q*s - r, s) | |
>>> tf3.is_stable() | |
False | |
>>> tf4 = TransferFunction(p + 1, a*p - s**2, p) | |
>>> tf4.is_stable() is None # Not enough info about the symbols to determine stability | |
True | |
""" | |
return fuzzy_and(pole.as_real_imag()[0].is_negative for pole in self.poles()) | |
def __add__(self, other): | |
if isinstance(other, (TransferFunction, Series)): | |
if not self.var == other.var: | |
raise ValueError(filldedent(""" | |
All the transfer functions should use the same complex variable | |
of the Laplace transform.""")) | |
return Parallel(self, other) | |
elif isinstance(other, Parallel): | |
if not self.var == other.var: | |
raise ValueError(filldedent(""" | |
All the transfer functions should use the same complex variable | |
of the Laplace transform.""")) | |
arg_list = list(other.args) | |
return Parallel(self, *arg_list) | |
else: | |
raise ValueError("TransferFunction cannot be added with {}.". | |
format(type(other))) | |
def __radd__(self, other): | |
return self + other | |
def __sub__(self, other): | |
if isinstance(other, (TransferFunction, Series)): | |
if not self.var == other.var: | |
raise ValueError(filldedent(""" | |
All the transfer functions should use the same complex variable | |
of the Laplace transform.""")) | |
return Parallel(self, -other) | |
elif isinstance(other, Parallel): | |
if not self.var == other.var: | |
raise ValueError(filldedent(""" | |
All the transfer functions should use the same complex variable | |
of the Laplace transform.""")) | |
arg_list = [-i for i in list(other.args)] | |
return Parallel(self, *arg_list) | |
else: | |
raise ValueError("{} cannot be subtracted from a TransferFunction." | |
.format(type(other))) | |
def __rsub__(self, other): | |
return -self + other | |
def __mul__(self, other): | |
if isinstance(other, (TransferFunction, Parallel)): | |
if not self.var == other.var: | |
raise ValueError(filldedent(""" | |
All the transfer functions should use the same complex variable | |
of the Laplace transform.""")) | |
return Series(self, other) | |
elif isinstance(other, Series): | |
if not self.var == other.var: | |
raise ValueError(filldedent(""" | |
All the transfer functions should use the same complex variable | |
of the Laplace transform.""")) | |
arg_list = list(other.args) | |
return Series(self, *arg_list) | |
else: | |
raise ValueError("TransferFunction cannot be multiplied with {}." | |
.format(type(other))) | |
__rmul__ = __mul__ | |
def __truediv__(self, other): | |
if isinstance(other, TransferFunction): | |
if not self.var == other.var: | |
raise ValueError(filldedent(""" | |
All the transfer functions should use the same complex variable | |
of the Laplace transform.""")) | |
return Series(self, TransferFunction(other.den, other.num, self.var)) | |
elif (isinstance(other, Parallel) and len(other.args | |
) == 2 and isinstance(other.args[0], TransferFunction) | |
and isinstance(other.args[1], (Series, TransferFunction))): | |
if not self.var == other.var: | |
raise ValueError(filldedent(""" | |
Both TransferFunction and Parallel should use the | |
same complex variable of the Laplace transform.""")) | |
if other.args[1] == self: | |
# plant and controller with unit feedback. | |
return Feedback(self, other.args[0]) | |
other_arg_list = list(other.args[1].args) if isinstance( | |
other.args[1], Series) else other.args[1] | |
if other_arg_list == other.args[1]: | |
return Feedback(self, other_arg_list) | |
elif self in other_arg_list: | |
other_arg_list.remove(self) | |
else: | |
return Feedback(self, Series(*other_arg_list)) | |
if len(other_arg_list) == 1: | |
return Feedback(self, *other_arg_list) | |
else: | |
return Feedback(self, Series(*other_arg_list)) | |
else: | |
raise ValueError("TransferFunction cannot be divided by {}.". | |
format(type(other))) | |
__rtruediv__ = __truediv__ | |
def __pow__(self, p): | |
p = sympify(p) | |
if not p.is_Integer: | |
raise ValueError("Exponent must be an integer.") | |
if p is S.Zero: | |
return TransferFunction(1, 1, self.var) | |
elif p > 0: | |
num_, den_ = self.num**p, self.den**p | |
else: | |
p = abs(p) | |
num_, den_ = self.den**p, self.num**p | |
return TransferFunction(num_, den_, self.var) | |
def __neg__(self): | |
return TransferFunction(-self.num, self.den, self.var) | |
def is_proper(self): | |
""" | |
Returns True if degree of the numerator polynomial is less than | |
or equal to degree of the denominator polynomial, else False. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) | |
>>> tf1.is_proper | |
False | |
>>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*p + 2, p) | |
>>> tf2.is_proper | |
True | |
""" | |
return degree(self.num, self.var) <= degree(self.den, self.var) | |
def is_strictly_proper(self): | |
""" | |
Returns True if degree of the numerator polynomial is strictly less | |
than degree of the denominator polynomial, else False. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) | |
>>> tf1.is_strictly_proper | |
False | |
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) | |
>>> tf2.is_strictly_proper | |
True | |
""" | |
return degree(self.num, self.var) < degree(self.den, self.var) | |
def is_biproper(self): | |
""" | |
Returns True if degree of the numerator polynomial is equal to | |
degree of the denominator polynomial, else False. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) | |
>>> tf1.is_biproper | |
True | |
>>> tf2 = TransferFunction(p**2, p + a, p) | |
>>> tf2.is_biproper | |
False | |
""" | |
return degree(self.num, self.var) == degree(self.den, self.var) | |
def to_expr(self): | |
""" | |
Converts a ``TransferFunction`` object to SymPy Expr. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction | |
>>> from sympy import Expr | |
>>> tf1 = TransferFunction(s, a*s**2 + 1, s) | |
>>> tf1.to_expr() | |
s/(a*s**2 + 1) | |
>>> isinstance(_, Expr) | |
True | |
>>> tf2 = TransferFunction(1, (p + 3*b)*(b - p), p) | |
>>> tf2.to_expr() | |
1/((b - p)*(3*b + p)) | |
>>> tf3 = TransferFunction((s - 2)*(s - 3), (s - 1)*(s - 2)*(s - 3), s) | |
>>> tf3.to_expr() | |
((s - 3)*(s - 2))/(((s - 3)*(s - 2)*(s - 1))) | |
""" | |
if self.num != 1: | |
return Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False) | |
else: | |
return Pow(self.den, -1, evaluate=False) | |
def _flatten_args(args, _cls): | |
temp_args = [] | |
for arg in args: | |
if isinstance(arg, _cls): | |
temp_args.extend(arg.args) | |
else: | |
temp_args.append(arg) | |
return tuple(temp_args) | |
def _dummify_args(_arg, var): | |
dummy_dict = {} | |
dummy_arg_list = [] | |
for arg in _arg: | |
_s = Dummy() | |
dummy_dict[_s] = var | |
dummy_arg = arg.subs({var: _s}) | |
dummy_arg_list.append(dummy_arg) | |
return dummy_arg_list, dummy_dict | |
class Series(SISOLinearTimeInvariant): | |
r""" | |
A class for representing a series configuration of SISO systems. | |
Parameters | |
========== | |
args : SISOLinearTimeInvariant | |
SISO systems in a series configuration. | |
evaluate : Boolean, Keyword | |
When passed ``True``, returns the equivalent | |
``Series(*args).doit()``. Set to ``False`` by default. | |
Raises | |
====== | |
ValueError | |
When no argument is passed. | |
``var`` attribute is not same for every system. | |
TypeError | |
Any of the passed ``*args`` has unsupported type | |
A combination of SISO and MIMO systems is | |
passed. There should be homogeneity in the | |
type of systems passed, SISO in this case. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, Series, Parallel | |
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) | |
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) | |
>>> tf3 = TransferFunction(p**2, p + s, s) | |
>>> S1 = Series(tf1, tf2) | |
>>> S1 | |
Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)) | |
>>> S1.var | |
s | |
>>> S2 = Series(tf2, Parallel(tf3, -tf1)) | |
>>> S2 | |
Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Parallel(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s))) | |
>>> S2.var | |
s | |
>>> S3 = Series(Parallel(tf1, tf2), Parallel(tf2, tf3)) | |
>>> S3 | |
Series(Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s))) | |
>>> S3.var | |
s | |
You can get the resultant transfer function by using ``.doit()`` method: | |
>>> S3 = Series(tf1, tf2, -tf3) | |
>>> S3.doit() | |
TransferFunction(-p**2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) | |
>>> S4 = Series(tf2, Parallel(tf1, -tf3)) | |
>>> S4.doit() | |
TransferFunction((s**3 - 2)*(-p**2*(-p + s) + (p + s)*(a*p**2 + b*s)), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) | |
Notes | |
===== | |
All the transfer functions should use the same complex variable | |
``var`` of the Laplace transform. | |
See Also | |
======== | |
MIMOSeries, Parallel, TransferFunction, Feedback | |
""" | |
def __new__(cls, *args, evaluate=False): | |
args = _flatten_args(args, Series) | |
cls._check_args(args) | |
obj = super().__new__(cls, *args) | |
return obj.doit() if evaluate else obj | |
def var(self): | |
""" | |
Returns the complex variable used by all the transfer functions. | |
Examples | |
======== | |
>>> from sympy.abc import p | |
>>> from sympy.physics.control.lti import TransferFunction, Series, Parallel | |
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) | |
>>> G2 = TransferFunction(p, 4 - p, p) | |
>>> G3 = TransferFunction(0, p**4 - 1, p) | |
>>> Series(G1, G2).var | |
p | |
>>> Series(-G3, Parallel(G1, G2)).var | |
p | |
""" | |
return self.args[0].var | |
def doit(self, **hints): | |
""" | |
Returns the resultant transfer function obtained after evaluating | |
the transfer functions in series configuration. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, Series | |
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) | |
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) | |
>>> Series(tf2, tf1).doit() | |
TransferFunction((s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s) | |
>>> Series(-tf1, -tf2).doit() | |
TransferFunction((2 - s**3)*(-a*p**2 - b*s), (-p + s)*(s**4 + 5*s + 6), s) | |
""" | |
_num_arg = (arg.doit().num for arg in self.args) | |
_den_arg = (arg.doit().den for arg in self.args) | |
res_num = Mul(*_num_arg, evaluate=True) | |
res_den = Mul(*_den_arg, evaluate=True) | |
return TransferFunction(res_num, res_den, self.var) | |
def _eval_rewrite_as_TransferFunction(self, *args, **kwargs): | |
return self.doit() | |
def __add__(self, other): | |
if isinstance(other, Parallel): | |
arg_list = list(other.args) | |
return Parallel(self, *arg_list) | |
return Parallel(self, other) | |
__radd__ = __add__ | |
def __sub__(self, other): | |
return self + (-other) | |
def __rsub__(self, other): | |
return -self + other | |
def __mul__(self, other): | |
arg_list = list(self.args) | |
return Series(*arg_list, other) | |
def __truediv__(self, other): | |
if isinstance(other, TransferFunction): | |
return Series(*self.args, TransferFunction(other.den, other.num, other.var)) | |
elif isinstance(other, Series): | |
tf_self = self.rewrite(TransferFunction) | |
tf_other = other.rewrite(TransferFunction) | |
return tf_self / tf_other | |
elif (isinstance(other, Parallel) and len(other.args) == 2 | |
and isinstance(other.args[0], TransferFunction) and isinstance(other.args[1], Series)): | |
if not self.var == other.var: | |
raise ValueError(filldedent(""" | |
All the transfer functions should use the same complex variable | |
of the Laplace transform.""")) | |
self_arg_list = set(self.args) | |
other_arg_list = set(other.args[1].args) | |
res = list(self_arg_list ^ other_arg_list) | |
if len(res) == 0: | |
return Feedback(self, other.args[0]) | |
elif len(res) == 1: | |
return Feedback(self, *res) | |
else: | |
return Feedback(self, Series(*res)) | |
else: | |
raise ValueError("This transfer function expression is invalid.") | |
def __neg__(self): | |
return Series(TransferFunction(-1, 1, self.var), self) | |
def to_expr(self): | |
"""Returns the equivalent ``Expr`` object.""" | |
return Mul(*(arg.to_expr() for arg in self.args), evaluate=False) | |
def is_proper(self): | |
""" | |
Returns True if degree of the numerator polynomial of the resultant transfer | |
function is less than or equal to degree of the denominator polynomial of | |
the same, else False. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, Series | |
>>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) | |
>>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s) | |
>>> tf3 = TransferFunction(s, s**2 + s + 1, s) | |
>>> S1 = Series(-tf2, tf1) | |
>>> S1.is_proper | |
False | |
>>> S2 = Series(tf1, tf2, tf3) | |
>>> S2.is_proper | |
True | |
""" | |
return self.doit().is_proper | |
def is_strictly_proper(self): | |
""" | |
Returns True if degree of the numerator polynomial of the resultant transfer | |
function is strictly less than degree of the denominator polynomial of | |
the same, else False. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, Series | |
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) | |
>>> tf2 = TransferFunction(s**3 - 2, s**2 + 5*s + 6, s) | |
>>> tf3 = TransferFunction(1, s**2 + s + 1, s) | |
>>> S1 = Series(tf1, tf2) | |
>>> S1.is_strictly_proper | |
False | |
>>> S2 = Series(tf1, tf2, tf3) | |
>>> S2.is_strictly_proper | |
True | |
""" | |
return self.doit().is_strictly_proper | |
def is_biproper(self): | |
r""" | |
Returns True if degree of the numerator polynomial of the resultant transfer | |
function is equal to degree of the denominator polynomial of | |
the same, else False. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, Series | |
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) | |
>>> tf2 = TransferFunction(p, s**2, s) | |
>>> tf3 = TransferFunction(s**2, 1, s) | |
>>> S1 = Series(tf1, -tf2) | |
>>> S1.is_biproper | |
False | |
>>> S2 = Series(tf2, tf3) | |
>>> S2.is_biproper | |
True | |
""" | |
return self.doit().is_biproper | |
def _mat_mul_compatible(*args): | |
"""To check whether shapes are compatible for matrix mul.""" | |
return all(args[i].num_outputs == args[i+1].num_inputs for i in range(len(args)-1)) | |
class MIMOSeries(MIMOLinearTimeInvariant): | |
r""" | |
A class for representing a series configuration of MIMO systems. | |
Parameters | |
========== | |
args : MIMOLinearTimeInvariant | |
MIMO systems in a series configuration. | |
evaluate : Boolean, Keyword | |
When passed ``True``, returns the equivalent | |
``MIMOSeries(*args).doit()``. Set to ``False`` by default. | |
Raises | |
====== | |
ValueError | |
When no argument is passed. | |
``var`` attribute is not same for every system. | |
``num_outputs`` of the MIMO system is not equal to the | |
``num_inputs`` of its adjacent MIMO system. (Matrix | |
multiplication constraint, basically) | |
TypeError | |
Any of the passed ``*args`` has unsupported type | |
A combination of SISO and MIMO systems is | |
passed. There should be homogeneity in the | |
type of systems passed, MIMO in this case. | |
Examples | |
======== | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import MIMOSeries, TransferFunctionMatrix | |
>>> from sympy import Matrix, pprint | |
>>> mat_a = Matrix([[5*s], [5]]) # 2 Outputs 1 Input | |
>>> mat_b = Matrix([[5, 1/(6*s**2)]]) # 1 Output 2 Inputs | |
>>> mat_c = Matrix([[1, s], [5/s, 1]]) # 2 Outputs 2 Inputs | |
>>> tfm_a = TransferFunctionMatrix.from_Matrix(mat_a, s) | |
>>> tfm_b = TransferFunctionMatrix.from_Matrix(mat_b, s) | |
>>> tfm_c = TransferFunctionMatrix.from_Matrix(mat_c, s) | |
>>> MIMOSeries(tfm_c, tfm_b, tfm_a) | |
MIMOSeries(TransferFunctionMatrix(((TransferFunction(1, 1, s), TransferFunction(s, 1, s)), (TransferFunction(5, s, s), TransferFunction(1, 1, s)))), TransferFunctionMatrix(((TransferFunction(5, 1, s), TransferFunction(1, 6*s**2, s)),)), TransferFunctionMatrix(((TransferFunction(5*s, 1, s),), (TransferFunction(5, 1, s),)))) | |
>>> pprint(_, use_unicode=False) # For Better Visualization | |
[5*s] [1 s] | |
[---] [5 1 ] [- -] | |
[ 1 ] [- ----] [1 1] | |
[ ] *[1 2] *[ ] | |
[ 5 ] [ 6*s ]{t} [5 1] | |
[ - ] [- -] | |
[ 1 ]{t} [s 1]{t} | |
>>> MIMOSeries(tfm_c, tfm_b, tfm_a).doit() | |
TransferFunctionMatrix(((TransferFunction(150*s**4 + 25*s, 6*s**3, s), TransferFunction(150*s**4 + 5*s, 6*s**2, s)), (TransferFunction(150*s**3 + 25, 6*s**3, s), TransferFunction(150*s**3 + 5, 6*s**2, s)))) | |
>>> pprint(_, use_unicode=False) # (2 Inputs -A-> 2 Outputs) -> (2 Inputs -B-> 1 Output) -> (1 Input -C-> 2 Outputs) is equivalent to (2 Inputs -Series Equivalent-> 2 Outputs). | |
[ 4 4 ] | |
[150*s + 25*s 150*s + 5*s] | |
[------------- ------------] | |
[ 3 2 ] | |
[ 6*s 6*s ] | |
[ ] | |
[ 3 3 ] | |
[ 150*s + 25 150*s + 5 ] | |
[ ----------- ---------- ] | |
[ 3 2 ] | |
[ 6*s 6*s ]{t} | |
Notes | |
===== | |
All the transfer function matrices should use the same complex variable ``var`` of the Laplace transform. | |
``MIMOSeries(A, B)`` is not equivalent to ``A*B``. It is always in the reverse order, that is ``B*A``. | |
See Also | |
======== | |
Series, MIMOParallel | |
""" | |
def __new__(cls, *args, evaluate=False): | |
cls._check_args(args) | |
if _mat_mul_compatible(*args): | |
obj = super().__new__(cls, *args) | |
else: | |
raise ValueError(filldedent(""" | |
Number of input signals do not match the number | |
of output signals of adjacent systems for some args.""")) | |
return obj.doit() if evaluate else obj | |
def var(self): | |
""" | |
Returns the complex variable used by all the transfer functions. | |
Examples | |
======== | |
>>> from sympy.abc import p | |
>>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix | |
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) | |
>>> G2 = TransferFunction(p, 4 - p, p) | |
>>> G3 = TransferFunction(0, p**4 - 1, p) | |
>>> tfm_1 = TransferFunctionMatrix([[G1, G2, G3]]) | |
>>> tfm_2 = TransferFunctionMatrix([[G1], [G2], [G3]]) | |
>>> MIMOSeries(tfm_2, tfm_1).var | |
p | |
""" | |
return self.args[0].var | |
def num_inputs(self): | |
"""Returns the number of input signals of the series system.""" | |
return self.args[0].num_inputs | |
def num_outputs(self): | |
"""Returns the number of output signals of the series system.""" | |
return self.args[-1].num_outputs | |
def shape(self): | |
"""Returns the shape of the equivalent MIMO system.""" | |
return self.num_outputs, self.num_inputs | |
def doit(self, cancel=False, **kwargs): | |
""" | |
Returns the resultant transfer function matrix obtained after evaluating | |
the MIMO systems arranged in a series configuration. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix | |
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) | |
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) | |
>>> tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf2]]) | |
>>> tfm2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf1]]) | |
>>> MIMOSeries(tfm2, tfm1).doit() | |
TransferFunctionMatrix(((TransferFunction(2*(-p + s)*(s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)**2*(s**4 + 5*s + 6)**2, s), TransferFunction((-p + s)**2*(s**3 - 2)*(a*p**2 + b*s) + (-p + s)*(a*p**2 + b*s)**2*(s**4 + 5*s + 6), (-p + s)**3*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2)**2*(s**4 + 5*s + 6) + (s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6)**2, (-p + s)*(s**4 + 5*s + 6)**3, s), TransferFunction(2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s)))) | |
""" | |
_arg = (arg.doit()._expr_mat for arg in reversed(self.args)) | |
if cancel: | |
res = MatMul(*_arg, evaluate=True) | |
return TransferFunctionMatrix.from_Matrix(res, self.var) | |
_dummy_args, _dummy_dict = _dummify_args(_arg, self.var) | |
res = MatMul(*_dummy_args, evaluate=True) | |
temp_tfm = TransferFunctionMatrix.from_Matrix(res, self.var) | |
return temp_tfm.subs(_dummy_dict) | |
def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs): | |
return self.doit() | |
def __add__(self, other): | |
if isinstance(other, MIMOParallel): | |
arg_list = list(other.args) | |
return MIMOParallel(self, *arg_list) | |
return MIMOParallel(self, other) | |
__radd__ = __add__ | |
def __sub__(self, other): | |
return self + (-other) | |
def __rsub__(self, other): | |
return -self + other | |
def __mul__(self, other): | |
if isinstance(other, MIMOSeries): | |
self_arg_list = list(self.args) | |
other_arg_list = list(other.args) | |
return MIMOSeries(*other_arg_list, *self_arg_list) # A*B = MIMOSeries(B, A) | |
arg_list = list(self.args) | |
return MIMOSeries(other, *arg_list) | |
def __neg__(self): | |
arg_list = list(self.args) | |
arg_list[0] = -arg_list[0] | |
return MIMOSeries(*arg_list) | |
class Parallel(SISOLinearTimeInvariant): | |
r""" | |
A class for representing a parallel configuration of SISO systems. | |
Parameters | |
========== | |
args : SISOLinearTimeInvariant | |
SISO systems in a parallel arrangement. | |
evaluate : Boolean, Keyword | |
When passed ``True``, returns the equivalent | |
``Parallel(*args).doit()``. Set to ``False`` by default. | |
Raises | |
====== | |
ValueError | |
When no argument is passed. | |
``var`` attribute is not same for every system. | |
TypeError | |
Any of the passed ``*args`` has unsupported type | |
A combination of SISO and MIMO systems is | |
passed. There should be homogeneity in the | |
type of systems passed. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, Parallel, Series | |
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) | |
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) | |
>>> tf3 = TransferFunction(p**2, p + s, s) | |
>>> P1 = Parallel(tf1, tf2) | |
>>> P1 | |
Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)) | |
>>> P1.var | |
s | |
>>> P2 = Parallel(tf2, Series(tf3, -tf1)) | |
>>> P2 | |
Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Series(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s))) | |
>>> P2.var | |
s | |
>>> P3 = Parallel(Series(tf1, tf2), Series(tf2, tf3)) | |
>>> P3 | |
Parallel(Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s))) | |
>>> P3.var | |
s | |
You can get the resultant transfer function by using ``.doit()`` method: | |
>>> Parallel(tf1, tf2, -tf3).doit() | |
TransferFunction(-p**2*(-p + s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2) + (p + s)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) | |
>>> Parallel(tf2, Series(tf1, -tf3)).doit() | |
TransferFunction(-p**2*(a*p**2 + b*s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) | |
Notes | |
===== | |
All the transfer functions should use the same complex variable | |
``var`` of the Laplace transform. | |
See Also | |
======== | |
Series, TransferFunction, Feedback | |
""" | |
def __new__(cls, *args, evaluate=False): | |
args = _flatten_args(args, Parallel) | |
cls._check_args(args) | |
obj = super().__new__(cls, *args) | |
return obj.doit() if evaluate else obj | |
def var(self): | |
""" | |
Returns the complex variable used by all the transfer functions. | |
Examples | |
======== | |
>>> from sympy.abc import p | |
>>> from sympy.physics.control.lti import TransferFunction, Parallel, Series | |
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) | |
>>> G2 = TransferFunction(p, 4 - p, p) | |
>>> G3 = TransferFunction(0, p**4 - 1, p) | |
>>> Parallel(G1, G2).var | |
p | |
>>> Parallel(-G3, Series(G1, G2)).var | |
p | |
""" | |
return self.args[0].var | |
def doit(self, **hints): | |
""" | |
Returns the resultant transfer function obtained after evaluating | |
the transfer functions in parallel configuration. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, Parallel | |
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) | |
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) | |
>>> Parallel(tf2, tf1).doit() | |
TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s) | |
>>> Parallel(-tf1, -tf2).doit() | |
TransferFunction((2 - s**3)*(-p + s) + (-a*p**2 - b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s) | |
""" | |
_arg = (arg.doit().to_expr() for arg in self.args) | |
res = Add(*_arg).as_numer_denom() | |
return TransferFunction(*res, self.var) | |
def _eval_rewrite_as_TransferFunction(self, *args, **kwargs): | |
return self.doit() | |
def __add__(self, other): | |
self_arg_list = list(self.args) | |
return Parallel(*self_arg_list, other) | |
__radd__ = __add__ | |
def __sub__(self, other): | |
return self + (-other) | |
def __rsub__(self, other): | |
return -self + other | |
def __mul__(self, other): | |
if isinstance(other, Series): | |
arg_list = list(other.args) | |
return Series(self, *arg_list) | |
return Series(self, other) | |
def __neg__(self): | |
return Series(TransferFunction(-1, 1, self.var), self) | |
def to_expr(self): | |
"""Returns the equivalent ``Expr`` object.""" | |
return Add(*(arg.to_expr() for arg in self.args), evaluate=False) | |
def is_proper(self): | |
""" | |
Returns True if degree of the numerator polynomial of the resultant transfer | |
function is less than or equal to degree of the denominator polynomial of | |
the same, else False. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, Parallel | |
>>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) | |
>>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s) | |
>>> tf3 = TransferFunction(s, s**2 + s + 1, s) | |
>>> P1 = Parallel(-tf2, tf1) | |
>>> P1.is_proper | |
False | |
>>> P2 = Parallel(tf2, tf3) | |
>>> P2.is_proper | |
True | |
""" | |
return self.doit().is_proper | |
def is_strictly_proper(self): | |
""" | |
Returns True if degree of the numerator polynomial of the resultant transfer | |
function is strictly less than degree of the denominator polynomial of | |
the same, else False. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, Parallel | |
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) | |
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) | |
>>> tf3 = TransferFunction(s, s**2 + s + 1, s) | |
>>> P1 = Parallel(tf1, tf2) | |
>>> P1.is_strictly_proper | |
False | |
>>> P2 = Parallel(tf2, tf3) | |
>>> P2.is_strictly_proper | |
True | |
""" | |
return self.doit().is_strictly_proper | |
def is_biproper(self): | |
""" | |
Returns True if degree of the numerator polynomial of the resultant transfer | |
function is equal to degree of the denominator polynomial of | |
the same, else False. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, Parallel | |
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) | |
>>> tf2 = TransferFunction(p**2, p + s, s) | |
>>> tf3 = TransferFunction(s, s**2 + s + 1, s) | |
>>> P1 = Parallel(tf1, -tf2) | |
>>> P1.is_biproper | |
True | |
>>> P2 = Parallel(tf2, tf3) | |
>>> P2.is_biproper | |
False | |
""" | |
return self.doit().is_biproper | |
class MIMOParallel(MIMOLinearTimeInvariant): | |
r""" | |
A class for representing a parallel configuration of MIMO systems. | |
Parameters | |
========== | |
args : MIMOLinearTimeInvariant | |
MIMO Systems in a parallel arrangement. | |
evaluate : Boolean, Keyword | |
When passed ``True``, returns the equivalent | |
``MIMOParallel(*args).doit()``. Set to ``False`` by default. | |
Raises | |
====== | |
ValueError | |
When no argument is passed. | |
``var`` attribute is not same for every system. | |
All MIMO systems passed do not have same shape. | |
TypeError | |
Any of the passed ``*args`` has unsupported type | |
A combination of SISO and MIMO systems is | |
passed. There should be homogeneity in the | |
type of systems passed, MIMO in this case. | |
Examples | |
======== | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOParallel | |
>>> from sympy import Matrix, pprint | |
>>> expr_1 = 1/s | |
>>> expr_2 = s/(s**2-1) | |
>>> expr_3 = (2 + s)/(s**2 - 1) | |
>>> expr_4 = 5 | |
>>> tfm_a = TransferFunctionMatrix.from_Matrix(Matrix([[expr_1, expr_2], [expr_3, expr_4]]), s) | |
>>> tfm_b = TransferFunctionMatrix.from_Matrix(Matrix([[expr_2, expr_1], [expr_4, expr_3]]), s) | |
>>> tfm_c = TransferFunctionMatrix.from_Matrix(Matrix([[expr_3, expr_4], [expr_1, expr_2]]), s) | |
>>> MIMOParallel(tfm_a, tfm_b, tfm_c) | |
MIMOParallel(TransferFunctionMatrix(((TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s)), (TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)))), TransferFunctionMatrix(((TransferFunction(s, s**2 - 1, s), TransferFunction(1, s, s)), (TransferFunction(5, 1, s), TransferFunction(s + 2, s**2 - 1, s)))), TransferFunctionMatrix(((TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)), (TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s))))) | |
>>> pprint(_, use_unicode=False) # For Better Visualization | |
[ 1 s ] [ s 1 ] [s + 2 5 ] | |
[ - ------] [------ - ] [------ - ] | |
[ s 2 ] [ 2 s ] [ 2 1 ] | |
[ s - 1] [s - 1 ] [s - 1 ] | |
[ ] + [ ] + [ ] | |
[s + 2 5 ] [ 5 s + 2 ] [ 1 s ] | |
[------ - ] [ - ------] [ - ------] | |
[ 2 1 ] [ 1 2 ] [ s 2 ] | |
[s - 1 ]{t} [ s - 1]{t} [ s - 1]{t} | |
>>> MIMOParallel(tfm_a, tfm_b, tfm_c).doit() | |
TransferFunctionMatrix(((TransferFunction(s**2 + s*(2*s + 2) - 1, s*(s**2 - 1), s), TransferFunction(2*s**2 + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s)), (TransferFunction(s**2 + s*(s + 2) + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s), TransferFunction(5*s**2 + 2*s - 3, s**2 - 1, s)))) | |
>>> pprint(_, use_unicode=False) | |
[ 2 2 / 2 \ ] | |
[ s + s*(2*s + 2) - 1 2*s + 5*s*\s - 1/ - 1] | |
[ -------------------- -----------------------] | |
[ / 2 \ / 2 \ ] | |
[ s*\s - 1/ s*\s - 1/ ] | |
[ ] | |
[ 2 / 2 \ 2 ] | |
[s + s*(s + 2) + 5*s*\s - 1/ - 1 5*s + 2*s - 3 ] | |
[--------------------------------- -------------- ] | |
[ / 2 \ 2 ] | |
[ s*\s - 1/ s - 1 ]{t} | |
Notes | |
===== | |
All the transfer function matrices should use the same complex variable | |
``var`` of the Laplace transform. | |
See Also | |
======== | |
Parallel, MIMOSeries | |
""" | |
def __new__(cls, *args, evaluate=False): | |
args = _flatten_args(args, MIMOParallel) | |
cls._check_args(args) | |
if any(arg.shape != args[0].shape for arg in args): | |
raise TypeError("Shape of all the args is not equal.") | |
obj = super().__new__(cls, *args) | |
return obj.doit() if evaluate else obj | |
def var(self): | |
""" | |
Returns the complex variable used by all the systems. | |
Examples | |
======== | |
>>> from sympy.abc import p | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOParallel | |
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) | |
>>> G2 = TransferFunction(p, 4 - p, p) | |
>>> G3 = TransferFunction(0, p**4 - 1, p) | |
>>> G4 = TransferFunction(p**2, p**2 - 1, p) | |
>>> tfm_a = TransferFunctionMatrix([[G1, G2], [G3, G4]]) | |
>>> tfm_b = TransferFunctionMatrix([[G2, G1], [G4, G3]]) | |
>>> MIMOParallel(tfm_a, tfm_b).var | |
p | |
""" | |
return self.args[0].var | |
def num_inputs(self): | |
"""Returns the number of input signals of the parallel system.""" | |
return self.args[0].num_inputs | |
def num_outputs(self): | |
"""Returns the number of output signals of the parallel system.""" | |
return self.args[0].num_outputs | |
def shape(self): | |
"""Returns the shape of the equivalent MIMO system.""" | |
return self.num_outputs, self.num_inputs | |
def doit(self, **hints): | |
""" | |
Returns the resultant transfer function matrix obtained after evaluating | |
the MIMO systems arranged in a parallel configuration. | |
Examples | |
======== | |
>>> from sympy.abc import s, p, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, MIMOParallel, TransferFunctionMatrix | |
>>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) | |
>>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) | |
>>> tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) | |
>>> tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) | |
>>> MIMOParallel(tfm_1, tfm_2).doit() | |
TransferFunctionMatrix(((TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)))) | |
""" | |
_arg = (arg.doit()._expr_mat for arg in self.args) | |
res = MatAdd(*_arg, evaluate=True) | |
return TransferFunctionMatrix.from_Matrix(res, self.var) | |
def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs): | |
return self.doit() | |
def __add__(self, other): | |
self_arg_list = list(self.args) | |
return MIMOParallel(*self_arg_list, other) | |
__radd__ = __add__ | |
def __sub__(self, other): | |
return self + (-other) | |
def __rsub__(self, other): | |
return -self + other | |
def __mul__(self, other): | |
if isinstance(other, MIMOSeries): | |
arg_list = list(other.args) | |
return MIMOSeries(*arg_list, self) | |
return MIMOSeries(other, self) | |
def __neg__(self): | |
arg_list = [-arg for arg in list(self.args)] | |
return MIMOParallel(*arg_list) | |
class Feedback(TransferFunction): | |
r""" | |
A class for representing closed-loop feedback interconnection between two | |
SISO input/output systems. | |
The first argument, ``sys1``, is the feedforward part of the closed-loop | |
system or in simple words, the dynamical model representing the process | |
to be controlled. The second argument, ``sys2``, is the feedback system | |
and controls the fed back signal to ``sys1``. Both ``sys1`` and ``sys2`` | |
can either be ``Series`` or ``TransferFunction`` objects. | |
Parameters | |
========== | |
sys1 : Series, TransferFunction | |
The feedforward path system. | |
sys2 : Series, TransferFunction, optional | |
The feedback path system (often a feedback controller). | |
It is the model sitting on the feedback path. | |
If not specified explicitly, the sys2 is | |
assumed to be unit (1.0) transfer function. | |
sign : int, optional | |
The sign of feedback. Can either be ``1`` | |
(for positive feedback) or ``-1`` (for negative feedback). | |
Default value is `-1`. | |
Raises | |
====== | |
ValueError | |
When ``sys1`` and ``sys2`` are not using the | |
same complex variable of the Laplace transform. | |
When a combination of ``sys1`` and ``sys2`` yields | |
zero denominator. | |
TypeError | |
When either ``sys1`` or ``sys2`` is not a ``Series`` or a | |
``TransferFunction`` object. | |
Examples | |
======== | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import TransferFunction, Feedback | |
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) | |
>>> controller = TransferFunction(5*s - 10, s + 7, s) | |
>>> F1 = Feedback(plant, controller) | |
>>> F1 | |
Feedback(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1) | |
>>> F1.var | |
s | |
>>> F1.args | |
(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1) | |
You can get the feedforward and feedback path systems by using ``.sys1`` and ``.sys2`` respectively. | |
>>> F1.sys1 | |
TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) | |
>>> F1.sys2 | |
TransferFunction(5*s - 10, s + 7, s) | |
You can get the resultant closed loop transfer function obtained by negative feedback | |
interconnection using ``.doit()`` method. | |
>>> F1.doit() | |
TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s) | |
>>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s) | |
>>> C = TransferFunction(5*s + 10, s + 10, s) | |
>>> F2 = Feedback(G*C, TransferFunction(1, 1, s)) | |
>>> F2.doit() | |
TransferFunction((s + 10)*(5*s + 10)*(s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s + 10)*((s + 10)*(s**2 + 2*s + 3) + (5*s + 10)*(2*s**2 + 5*s + 1))*(s**2 + 2*s + 3), s) | |
To negate a ``Feedback`` object, the ``-`` operator can be prepended: | |
>>> -F1 | |
Feedback(TransferFunction(-3*s**2 - 7*s + 3, s**2 - 4*s + 2, s), TransferFunction(10 - 5*s, s + 7, s), -1) | |
>>> -F2 | |
Feedback(Series(TransferFunction(-1, 1, s), TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s), TransferFunction(5*s + 10, s + 10, s)), TransferFunction(-1, 1, s), -1) | |
See Also | |
======== | |
MIMOFeedback, Series, Parallel | |
""" | |
def __new__(cls, sys1, sys2=None, sign=-1): | |
if not sys2: | |
sys2 = TransferFunction(1, 1, sys1.var) | |
if not (isinstance(sys1, (TransferFunction, Series, Feedback)) | |
and isinstance(sys2, (TransferFunction, Series, Feedback))): | |
raise TypeError("Unsupported type for `sys1` or `sys2` of Feedback.") | |
if sign not in [-1, 1]: | |
raise ValueError(filldedent(""" | |
Unsupported type for feedback. `sign` arg should | |
either be 1 (positive feedback loop) or -1 | |
(negative feedback loop).""")) | |
if Mul(sys1.to_expr(), sys2.to_expr()).simplify() == sign: | |
raise ValueError("The equivalent system will have zero denominator.") | |
if sys1.var != sys2.var: | |
raise ValueError(filldedent(""" | |
Both `sys1` and `sys2` should be using the | |
same complex variable.""")) | |
return super(TransferFunction, cls).__new__(cls, sys1, sys2, _sympify(sign)) | |
def sys1(self): | |
""" | |
Returns the feedforward system of the feedback interconnection. | |
Examples | |
======== | |
>>> from sympy.abc import s, p | |
>>> from sympy.physics.control.lti import TransferFunction, Feedback | |
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) | |
>>> controller = TransferFunction(5*s - 10, s + 7, s) | |
>>> F1 = Feedback(plant, controller) | |
>>> F1.sys1 | |
TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) | |
>>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) | |
>>> C = TransferFunction(5*p + 10, p + 10, p) | |
>>> P = TransferFunction(1 - s, p + 2, p) | |
>>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) | |
>>> F2.sys1 | |
TransferFunction(1, 1, p) | |
""" | |
return self.args[0] | |
def sys2(self): | |
""" | |
Returns the feedback controller of the feedback interconnection. | |
Examples | |
======== | |
>>> from sympy.abc import s, p | |
>>> from sympy.physics.control.lti import TransferFunction, Feedback | |
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) | |
>>> controller = TransferFunction(5*s - 10, s + 7, s) | |
>>> F1 = Feedback(plant, controller) | |
>>> F1.sys2 | |
TransferFunction(5*s - 10, s + 7, s) | |
>>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) | |
>>> C = TransferFunction(5*p + 10, p + 10, p) | |
>>> P = TransferFunction(1 - s, p + 2, p) | |
>>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) | |
>>> F2.sys2 | |
Series(TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p), TransferFunction(5*p + 10, p + 10, p), TransferFunction(1 - s, p + 2, p)) | |
""" | |
return self.args[1] | |
def var(self): | |
""" | |
Returns the complex variable of the Laplace transform used by all | |
the transfer functions involved in the feedback interconnection. | |
Examples | |
======== | |
>>> from sympy.abc import s, p | |
>>> from sympy.physics.control.lti import TransferFunction, Feedback | |
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) | |
>>> controller = TransferFunction(5*s - 10, s + 7, s) | |
>>> F1 = Feedback(plant, controller) | |
>>> F1.var | |
s | |
>>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) | |
>>> C = TransferFunction(5*p + 10, p + 10, p) | |
>>> P = TransferFunction(1 - s, p + 2, p) | |
>>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) | |
>>> F2.var | |
p | |
""" | |
return self.sys1.var | |
def sign(self): | |
""" | |
Returns the type of MIMO Feedback model. ``1`` | |
for Positive and ``-1`` for Negative. | |
""" | |
return self.args[2] | |
def num(self): | |
""" | |
Returns the numerator of the closed loop feedback system. | |
""" | |
return self.sys1 | |
def den(self): | |
""" | |
Returns the denominator of the closed loop feedback model. | |
""" | |
unit = TransferFunction(1, 1, self.var) | |
arg_list = list(self.sys1.args) if isinstance(self.sys1, Series) else [self.sys1] | |
if self.sign == 1: | |
return Parallel(unit, -Series(self.sys2, *arg_list)) | |
return Parallel(unit, Series(self.sys2, *arg_list)) | |
def sensitivity(self): | |
""" | |
Returns the sensitivity function of the feedback loop. | |
Sensitivity of a Feedback system is the ratio | |
of change in the open loop gain to the change in | |
the closed loop gain. | |
.. note:: | |
This method would not return the complementary | |
sensitivity function. | |
Examples | |
======== | |
>>> from sympy.abc import p | |
>>> from sympy.physics.control.lti import TransferFunction, Feedback | |
>>> C = TransferFunction(5*p + 10, p + 10, p) | |
>>> P = TransferFunction(1 - p, p + 2, p) | |
>>> F_1 = Feedback(P, C) | |
>>> F_1.sensitivity | |
1/((1 - p)*(5*p + 10)/((p + 2)*(p + 10)) + 1) | |
""" | |
return 1/(1 - self.sign*self.sys1.to_expr()*self.sys2.to_expr()) | |
def doit(self, cancel=False, expand=False, **hints): | |
""" | |
Returns the resultant transfer function obtained by the | |
feedback interconnection. | |
Examples | |
======== | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import TransferFunction, Feedback | |
>>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) | |
>>> controller = TransferFunction(5*s - 10, s + 7, s) | |
>>> F1 = Feedback(plant, controller) | |
>>> F1.doit() | |
TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s) | |
>>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s) | |
>>> F2 = Feedback(G, TransferFunction(1, 1, s)) | |
>>> F2.doit() | |
TransferFunction((s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s**2 + 2*s + 3)*(3*s**2 + 7*s + 4), s) | |
Use kwarg ``expand=True`` to expand the resultant transfer function. | |
Use ``cancel=True`` to cancel out the common terms in numerator and | |
denominator. | |
>>> F2.doit(cancel=True, expand=True) | |
TransferFunction(2*s**2 + 5*s + 1, 3*s**2 + 7*s + 4, s) | |
>>> F2.doit(expand=True) | |
TransferFunction(2*s**4 + 9*s**3 + 17*s**2 + 17*s + 3, 3*s**4 + 13*s**3 + 27*s**2 + 29*s + 12, s) | |
""" | |
arg_list = list(self.sys1.args) if isinstance(self.sys1, Series) else [self.sys1] | |
# F_n and F_d are resultant TFs of num and den of Feedback. | |
F_n, unit = self.sys1.doit(), TransferFunction(1, 1, self.sys1.var) | |
if self.sign == -1: | |
F_d = Parallel(unit, Series(self.sys2, *arg_list)).doit() | |
else: | |
F_d = Parallel(unit, -Series(self.sys2, *arg_list)).doit() | |
_resultant_tf = TransferFunction(F_n.num * F_d.den, F_n.den * F_d.num, F_n.var) | |
if cancel: | |
_resultant_tf = _resultant_tf.simplify() | |
if expand: | |
_resultant_tf = _resultant_tf.expand() | |
return _resultant_tf | |
def _eval_rewrite_as_TransferFunction(self, num, den, sign, **kwargs): | |
return self.doit() | |
def to_expr(self): | |
""" | |
Converts a ``Feedback`` object to SymPy Expr. | |
Examples | |
======== | |
>>> from sympy.abc import s, a, b | |
>>> from sympy.physics.control.lti import TransferFunction, Feedback | |
>>> from sympy import Expr | |
>>> tf1 = TransferFunction(a+s, 1, s) | |
>>> tf2 = TransferFunction(b+s, 1, s) | |
>>> fd1 = Feedback(tf1, tf2) | |
>>> fd1.to_expr() | |
(a + s)/((a + s)*(b + s) + 1) | |
>>> isinstance(_, Expr) | |
True | |
""" | |
return self.doit().to_expr() | |
def __neg__(self): | |
return Feedback(-self.sys1, -self.sys2, self.sign) | |
def _is_invertible(a, b, sign): | |
""" | |
Checks whether a given pair of MIMO | |
systems passed is invertible or not. | |
""" | |
_mat = eye(a.num_outputs) - sign*(a.doit()._expr_mat)*(b.doit()._expr_mat) | |
_det = _mat.det() | |
return _det != 0 | |
class MIMOFeedback(MIMOLinearTimeInvariant): | |
r""" | |
A class for representing closed-loop feedback interconnection between two | |
MIMO input/output systems. | |
Parameters | |
========== | |
sys1 : MIMOSeries, TransferFunctionMatrix | |
The MIMO system placed on the feedforward path. | |
sys2 : MIMOSeries, TransferFunctionMatrix | |
The system placed on the feedback path | |
(often a feedback controller). | |
sign : int, optional | |
The sign of feedback. Can either be ``1`` | |
(for positive feedback) or ``-1`` (for negative feedback). | |
Default value is `-1`. | |
Raises | |
====== | |
ValueError | |
When ``sys1`` and ``sys2`` are not using the | |
same complex variable of the Laplace transform. | |
Forward path model should have an equal number of inputs/outputs | |
to the feedback path outputs/inputs. | |
When product of ``sys1`` and ``sys2`` is not a square matrix. | |
When the equivalent MIMO system is not invertible. | |
TypeError | |
When either ``sys1`` or ``sys2`` is not a ``MIMOSeries`` or a | |
``TransferFunctionMatrix`` object. | |
Examples | |
======== | |
>>> from sympy import Matrix, pprint | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOFeedback | |
>>> plant_mat = Matrix([[1, 1/s], [0, 1]]) | |
>>> controller_mat = Matrix([[10, 0], [0, 10]]) # Constant Gain | |
>>> plant = TransferFunctionMatrix.from_Matrix(plant_mat, s) | |
>>> controller = TransferFunctionMatrix.from_Matrix(controller_mat, s) | |
>>> feedback = MIMOFeedback(plant, controller) # Negative Feedback (default) | |
>>> pprint(feedback, use_unicode=False) | |
/ [1 1] [10 0 ] \-1 [1 1] | |
| [- -] [-- - ] | [- -] | |
| [1 s] [1 1 ] | [1 s] | |
|I + [ ] *[ ] | * [ ] | |
| [0 1] [0 10] | [0 1] | |
| [- -] [- --] | [- -] | |
\ [1 1]{t} [1 1 ]{t}/ [1 1]{t} | |
To get the equivalent system matrix, use either ``doit`` or ``rewrite`` method. | |
>>> pprint(feedback.doit(), use_unicode=False) | |
[1 1 ] | |
[-- -----] | |
[11 121*s] | |
[ ] | |
[0 1 ] | |
[- -- ] | |
[1 11 ]{t} | |
To negate the ``MIMOFeedback`` object, use ``-`` operator. | |
>>> neg_feedback = -feedback | |
>>> pprint(neg_feedback.doit(), use_unicode=False) | |
[-1 -1 ] | |
[--- -----] | |
[11 121*s] | |
[ ] | |
[ 0 -1 ] | |
[ - --- ] | |
[ 1 11 ]{t} | |
See Also | |
======== | |
Feedback, MIMOSeries, MIMOParallel | |
""" | |
def __new__(cls, sys1, sys2, sign=-1): | |
if not (isinstance(sys1, (TransferFunctionMatrix, MIMOSeries)) | |
and isinstance(sys2, (TransferFunctionMatrix, MIMOSeries))): | |
raise TypeError("Unsupported type for `sys1` or `sys2` of MIMO Feedback.") | |
if sys1.num_inputs != sys2.num_outputs or \ | |
sys1.num_outputs != sys2.num_inputs: | |
raise ValueError(filldedent(""" | |
Product of `sys1` and `sys2` must | |
yield a square matrix.""")) | |
if sign not in (-1, 1): | |
raise ValueError(filldedent(""" | |
Unsupported type for feedback. `sign` arg should | |
either be 1 (positive feedback loop) or -1 | |
(negative feedback loop).""")) | |
if not _is_invertible(sys1, sys2, sign): | |
raise ValueError("Non-Invertible system inputted.") | |
if sys1.var != sys2.var: | |
raise ValueError(filldedent(""" | |
Both `sys1` and `sys2` should be using the | |
same complex variable.""")) | |
return super().__new__(cls, sys1, sys2, _sympify(sign)) | |
def sys1(self): | |
r""" | |
Returns the system placed on the feedforward path of the MIMO feedback interconnection. | |
Examples | |
======== | |
>>> from sympy import pprint | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback | |
>>> tf1 = TransferFunction(s**2 + s + 1, s**2 - s + 1, s) | |
>>> tf2 = TransferFunction(1, s, s) | |
>>> tf3 = TransferFunction(1, 1, s) | |
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) | |
>>> sys2 = TransferFunctionMatrix([[tf3, tf3], [tf3, tf2]]) | |
>>> F_1 = MIMOFeedback(sys1, sys2, 1) | |
>>> F_1.sys1 | |
TransferFunctionMatrix(((TransferFunction(s**2 + s + 1, s**2 - s + 1, s), TransferFunction(1, s, s)), (TransferFunction(1, s, s), TransferFunction(s**2 + s + 1, s**2 - s + 1, s)))) | |
>>> pprint(_, use_unicode=False) | |
[ 2 ] | |
[s + s + 1 1 ] | |
[---------- - ] | |
[ 2 s ] | |
[s - s + 1 ] | |
[ ] | |
[ 2 ] | |
[ 1 s + s + 1] | |
[ - ----------] | |
[ s 2 ] | |
[ s - s + 1]{t} | |
""" | |
return self.args[0] | |
def sys2(self): | |
r""" | |
Returns the feedback controller of the MIMO feedback interconnection. | |
Examples | |
======== | |
>>> from sympy import pprint | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback | |
>>> tf1 = TransferFunction(s**2, s**3 - s + 1, s) | |
>>> tf2 = TransferFunction(1, s, s) | |
>>> tf3 = TransferFunction(1, 1, s) | |
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) | |
>>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) | |
>>> F_1 = MIMOFeedback(sys1, sys2) | |
>>> F_1.sys2 | |
TransferFunctionMatrix(((TransferFunction(s**2, s**3 - s + 1, s), TransferFunction(1, 1, s)), (TransferFunction(1, 1, s), TransferFunction(1, s, s)))) | |
>>> pprint(_, use_unicode=False) | |
[ 2 ] | |
[ s 1] | |
[---------- -] | |
[ 3 1] | |
[s - s + 1 ] | |
[ ] | |
[ 1 1] | |
[ - -] | |
[ 1 s]{t} | |
""" | |
return self.args[1] | |
def var(self): | |
r""" | |
Returns the complex variable of the Laplace transform used by all | |
the transfer functions involved in the MIMO feedback loop. | |
Examples | |
======== | |
>>> from sympy.abc import p | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback | |
>>> tf1 = TransferFunction(p, 1 - p, p) | |
>>> tf2 = TransferFunction(1, p, p) | |
>>> tf3 = TransferFunction(1, 1, p) | |
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) | |
>>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) | |
>>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback | |
>>> F_1.var | |
p | |
""" | |
return self.sys1.var | |
def sign(self): | |
r""" | |
Returns the type of feedback interconnection of two models. ``1`` | |
for Positive and ``-1`` for Negative. | |
""" | |
return self.args[2] | |
def sensitivity(self): | |
r""" | |
Returns the sensitivity function matrix of the feedback loop. | |
Sensitivity of a closed-loop system is the ratio of change | |
in the open loop gain to the change in the closed loop gain. | |
.. note:: | |
This method would not return the complementary | |
sensitivity function. | |
Examples | |
======== | |
>>> from sympy import pprint | |
>>> from sympy.abc import p | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback | |
>>> tf1 = TransferFunction(p, 1 - p, p) | |
>>> tf2 = TransferFunction(1, p, p) | |
>>> tf3 = TransferFunction(1, 1, p) | |
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) | |
>>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) | |
>>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback | |
>>> F_2 = MIMOFeedback(sys1, sys2) # Negative feedback | |
>>> pprint(F_1.sensitivity, use_unicode=False) | |
[ 4 3 2 5 4 2 ] | |
[- p + 3*p - 4*p + 3*p - 1 p - 2*p + 3*p - 3*p + 1 ] | |
[---------------------------- -----------------------------] | |
[ 4 3 2 5 4 3 2 ] | |
[ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3*p] | |
[ ] | |
[ 4 3 2 3 2 ] | |
[ p - p - p + p 3*p - 6*p + 4*p - 1 ] | |
[ -------------------------- -------------------------- ] | |
[ 4 3 2 4 3 2 ] | |
[ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3 ] | |
>>> pprint(F_2.sensitivity, use_unicode=False) | |
[ 4 3 2 5 4 2 ] | |
[p - 3*p + 2*p + p - 1 p - 2*p + 3*p - 3*p + 1] | |
[------------------------ --------------------------] | |
[ 4 3 5 4 2 ] | |
[ p - 3*p + 2*p - 1 p - 3*p + 2*p - p ] | |
[ ] | |
[ 4 3 2 4 3 ] | |
[ p - p - p + p 2*p - 3*p + 2*p - 1 ] | |
[ ------------------- --------------------- ] | |
[ 4 3 4 3 ] | |
[ p - 3*p + 2*p - 1 p - 3*p + 2*p - 1 ] | |
""" | |
_sys1_mat = self.sys1.doit()._expr_mat | |
_sys2_mat = self.sys2.doit()._expr_mat | |
return (eye(self.sys1.num_inputs) - \ | |
self.sign*_sys1_mat*_sys2_mat).inv() | |
def doit(self, cancel=True, expand=False, **hints): | |
r""" | |
Returns the resultant transfer function matrix obtained by the | |
feedback interconnection. | |
Examples | |
======== | |
>>> from sympy import pprint | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback | |
>>> tf1 = TransferFunction(s, 1 - s, s) | |
>>> tf2 = TransferFunction(1, s, s) | |
>>> tf3 = TransferFunction(5, 1, s) | |
>>> tf4 = TransferFunction(s - 1, s, s) | |
>>> tf5 = TransferFunction(0, 1, s) | |
>>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) | |
>>> sys2 = TransferFunctionMatrix([[tf3, tf5], [tf5, tf5]]) | |
>>> F_1 = MIMOFeedback(sys1, sys2, 1) | |
>>> pprint(F_1, use_unicode=False) | |
/ [ s 1 ] [5 0] \-1 [ s 1 ] | |
| [----- - ] [- -] | [----- - ] | |
| [1 - s s ] [1 1] | [1 - s s ] | |
|I - [ ] *[ ] | * [ ] | |
| [ 5 s - 1] [0 0] | [ 5 s - 1] | |
| [ - -----] [- -] | [ - -----] | |
\ [ 1 s ]{t} [1 1]{t}/ [ 1 s ]{t} | |
>>> pprint(F_1.doit(), use_unicode=False) | |
[ -s s - 1 ] | |
[------- ----------- ] | |
[6*s - 1 s*(6*s - 1) ] | |
[ ] | |
[5*s - 5 (s - 1)*(6*s + 24)] | |
[------- ------------------] | |
[6*s - 1 s*(6*s - 1) ]{t} | |
If the user wants the resultant ``TransferFunctionMatrix`` object without | |
canceling the common factors then the ``cancel`` kwarg should be passed ``False``. | |
>>> pprint(F_1.doit(cancel=False), use_unicode=False) | |
[ s*(s - 1) s - 1 ] | |
[ ----------------- ----------- ] | |
[ (1 - s)*(6*s - 1) s*(6*s - 1) ] | |
[ ] | |
[s*(25*s - 25) + 5*(1 - s)*(6*s - 1) s*(s - 1)*(6*s - 1) + s*(25*s - 25)] | |
[----------------------------------- -----------------------------------] | |
[ (1 - s)*(6*s - 1) 2 ] | |
[ s *(6*s - 1) ]{t} | |
If the user wants the expanded form of the resultant transfer function matrix, | |
the ``expand`` kwarg should be passed as ``True``. | |
>>> pprint(F_1.doit(expand=True), use_unicode=False) | |
[ -s s - 1 ] | |
[------- -------- ] | |
[6*s - 1 2 ] | |
[ 6*s - s ] | |
[ ] | |
[ 2 ] | |
[5*s - 5 6*s + 18*s - 24] | |
[------- ----------------] | |
[6*s - 1 2 ] | |
[ 6*s - s ]{t} | |
""" | |
_mat = self.sensitivity * self.sys1.doit()._expr_mat | |
_resultant_tfm = _to_TFM(_mat, self.var) | |
if cancel: | |
_resultant_tfm = _resultant_tfm.simplify() | |
if expand: | |
_resultant_tfm = _resultant_tfm.expand() | |
return _resultant_tfm | |
def _eval_rewrite_as_TransferFunctionMatrix(self, sys1, sys2, sign, **kwargs): | |
return self.doit() | |
def __neg__(self): | |
return MIMOFeedback(-self.sys1, -self.sys2, self.sign) | |
def _to_TFM(mat, var): | |
"""Private method to convert ImmutableMatrix to TransferFunctionMatrix efficiently""" | |
to_tf = lambda expr: TransferFunction.from_rational_expression(expr, var) | |
arg = [[to_tf(expr) for expr in row] for row in mat.tolist()] | |
return TransferFunctionMatrix(arg) | |
class TransferFunctionMatrix(MIMOLinearTimeInvariant): | |
r""" | |
A class for representing the MIMO (multiple-input and multiple-output) | |
generalization of the SISO (single-input and single-output) transfer function. | |
It is a matrix of transfer functions (``TransferFunction``, SISO-``Series`` or SISO-``Parallel``). | |
There is only one argument, ``arg`` which is also the compulsory argument. | |
``arg`` is expected to be strictly of the type list of lists | |
which holds the transfer functions or reducible to transfer functions. | |
Parameters | |
========== | |
arg : Nested ``List`` (strictly). | |
Users are expected to input a nested list of ``TransferFunction``, ``Series`` | |
and/or ``Parallel`` objects. | |
Examples | |
======== | |
.. note:: | |
``pprint()`` can be used for better visualization of ``TransferFunctionMatrix`` objects. | |
>>> from sympy.abc import s, p, a | |
>>> from sympy import pprint | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel | |
>>> tf_1 = TransferFunction(s + a, s**2 + s + 1, s) | |
>>> tf_2 = TransferFunction(p**4 - 3*p + 2, s + p, s) | |
>>> tf_3 = TransferFunction(3, s + 2, s) | |
>>> tf_4 = TransferFunction(-a + p, 9*s - 9, s) | |
>>> tfm_1 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_3]]) | |
>>> tfm_1 | |
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),))) | |
>>> tfm_1.var | |
s | |
>>> tfm_1.num_inputs | |
1 | |
>>> tfm_1.num_outputs | |
3 | |
>>> tfm_1.shape | |
(3, 1) | |
>>> tfm_1.args | |
(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)),) | |
>>> tfm_2 = TransferFunctionMatrix([[tf_1, -tf_3], [tf_2, -tf_1], [tf_3, -tf_2]]) | |
>>> tfm_2 | |
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)))) | |
>>> pprint(tfm_2, use_unicode=False) # pretty-printing for better visualization | |
[ a + s -3 ] | |
[ ---------- ----- ] | |
[ 2 s + 2 ] | |
[ s + s + 1 ] | |
[ ] | |
[ 4 ] | |
[p - 3*p + 2 -a - s ] | |
[------------ ---------- ] | |
[ p + s 2 ] | |
[ s + s + 1 ] | |
[ ] | |
[ 4 ] | |
[ 3 - p + 3*p - 2] | |
[ ----- --------------] | |
[ s + 2 p + s ]{t} | |
TransferFunctionMatrix can be transposed, if user wants to switch the input and output transfer functions | |
>>> tfm_2.transpose() | |
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(3, s + 2, s)), (TransferFunction(-3, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)))) | |
>>> pprint(_, use_unicode=False) | |
[ 4 ] | |
[ a + s p - 3*p + 2 3 ] | |
[---------- ------------ ----- ] | |
[ 2 p + s s + 2 ] | |
[s + s + 1 ] | |
[ ] | |
[ 4 ] | |
[ -3 -a - s - p + 3*p - 2] | |
[ ----- ---------- --------------] | |
[ s + 2 2 p + s ] | |
[ s + s + 1 ]{t} | |
>>> tf_5 = TransferFunction(5, s, s) | |
>>> tf_6 = TransferFunction(5*s, (2 + s**2), s) | |
>>> tf_7 = TransferFunction(5, (s*(2 + s**2)), s) | |
>>> tf_8 = TransferFunction(5, 1, s) | |
>>> tfm_3 = TransferFunctionMatrix([[tf_5, tf_6], [tf_7, tf_8]]) | |
>>> tfm_3 | |
TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s)))) | |
>>> pprint(tfm_3, use_unicode=False) | |
[ 5 5*s ] | |
[ - ------] | |
[ s 2 ] | |
[ s + 2] | |
[ ] | |
[ 5 5 ] | |
[---------- - ] | |
[ / 2 \ 1 ] | |
[s*\s + 2/ ]{t} | |
>>> tfm_3.var | |
s | |
>>> tfm_3.shape | |
(2, 2) | |
>>> tfm_3.num_outputs | |
2 | |
>>> tfm_3.num_inputs | |
2 | |
>>> tfm_3.args | |
(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s))),) | |
To access the ``TransferFunction`` at any index in the ``TransferFunctionMatrix``, use the index notation. | |
>>> tfm_3[1, 0] # gives the TransferFunction present at 2nd Row and 1st Col. Similar to that in Matrix classes | |
TransferFunction(5, s*(s**2 + 2), s) | |
>>> tfm_3[0, 0] # gives the TransferFunction present at 1st Row and 1st Col. | |
TransferFunction(5, s, s) | |
>>> tfm_3[:, 0] # gives the first column | |
TransferFunctionMatrix(((TransferFunction(5, s, s),), (TransferFunction(5, s*(s**2 + 2), s),))) | |
>>> pprint(_, use_unicode=False) | |
[ 5 ] | |
[ - ] | |
[ s ] | |
[ ] | |
[ 5 ] | |
[----------] | |
[ / 2 \] | |
[s*\s + 2/]{t} | |
>>> tfm_3[0, :] # gives the first row | |
TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)),)) | |
>>> pprint(_, use_unicode=False) | |
[5 5*s ] | |
[- ------] | |
[s 2 ] | |
[ s + 2]{t} | |
To negate a transfer function matrix, ``-`` operator can be prepended: | |
>>> tfm_4 = TransferFunctionMatrix([[tf_2], [-tf_1], [tf_3]]) | |
>>> -tfm_4 | |
TransferFunctionMatrix(((TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(-3, s + 2, s),))) | |
>>> tfm_5 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, -tf_1]]) | |
>>> -tfm_5 | |
TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)), (TransferFunction(-3, s + 2, s), TransferFunction(a + s, s**2 + s + 1, s)))) | |
``subs()`` returns the ``TransferFunctionMatrix`` object with the value substituted in the expression. This will not | |
mutate your original ``TransferFunctionMatrix``. | |
>>> tfm_2.subs(p, 2) # substituting p everywhere in tfm_2 with 2. | |
TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s)))) | |
>>> pprint(_, use_unicode=False) | |
[ a + s -3 ] | |
[---------- ----- ] | |
[ 2 s + 2 ] | |
[s + s + 1 ] | |
[ ] | |
[ 12 -a - s ] | |
[ ----- ----------] | |
[ s + 2 2 ] | |
[ s + s + 1] | |
[ ] | |
[ 3 -12 ] | |
[ ----- ----- ] | |
[ s + 2 s + 2 ]{t} | |
>>> pprint(tfm_2, use_unicode=False) # State of tfm_2 is unchanged after substitution | |
[ a + s -3 ] | |
[ ---------- ----- ] | |
[ 2 s + 2 ] | |
[ s + s + 1 ] | |
[ ] | |
[ 4 ] | |
[p - 3*p + 2 -a - s ] | |
[------------ ---------- ] | |
[ p + s 2 ] | |
[ s + s + 1 ] | |
[ ] | |
[ 4 ] | |
[ 3 - p + 3*p - 2] | |
[ ----- --------------] | |
[ s + 2 p + s ]{t} | |
``subs()`` also supports multiple substitutions. | |
>>> tfm_2.subs({p: 2, a: 1}) # substituting p with 2 and a with 1 | |
TransferFunctionMatrix(((TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-s - 1, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s)))) | |
>>> pprint(_, use_unicode=False) | |
[ s + 1 -3 ] | |
[---------- ----- ] | |
[ 2 s + 2 ] | |
[s + s + 1 ] | |
[ ] | |
[ 12 -s - 1 ] | |
[ ----- ----------] | |
[ s + 2 2 ] | |
[ s + s + 1] | |
[ ] | |
[ 3 -12 ] | |
[ ----- ----- ] | |
[ s + 2 s + 2 ]{t} | |
Users can reduce the ``Series`` and ``Parallel`` elements of the matrix to ``TransferFunction`` by using | |
``doit()``. | |
>>> tfm_6 = TransferFunctionMatrix([[Series(tf_3, tf_4), Parallel(tf_3, tf_4)]]) | |
>>> tfm_6 | |
TransferFunctionMatrix(((Series(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s)), Parallel(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s))),)) | |
>>> pprint(tfm_6, use_unicode=False) | |
[-a + p 3 -a + p 3 ] | |
[-------*----- ------- + -----] | |
[9*s - 9 s + 2 9*s - 9 s + 2]{t} | |
>>> tfm_6.doit() | |
TransferFunctionMatrix(((TransferFunction(-3*a + 3*p, (s + 2)*(9*s - 9), s), TransferFunction(27*s + (-a + p)*(s + 2) - 27, (s + 2)*(9*s - 9), s)),)) | |
>>> pprint(_, use_unicode=False) | |
[ -3*a + 3*p 27*s + (-a + p)*(s + 2) - 27] | |
[----------------- ----------------------------] | |
[(s + 2)*(9*s - 9) (s + 2)*(9*s - 9) ]{t} | |
>>> tf_9 = TransferFunction(1, s, s) | |
>>> tf_10 = TransferFunction(1, s**2, s) | |
>>> tfm_7 = TransferFunctionMatrix([[Series(tf_9, tf_10), tf_9], [tf_10, Parallel(tf_9, tf_10)]]) | |
>>> tfm_7 | |
TransferFunctionMatrix(((Series(TransferFunction(1, s, s), TransferFunction(1, s**2, s)), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), Parallel(TransferFunction(1, s, s), TransferFunction(1, s**2, s))))) | |
>>> pprint(tfm_7, use_unicode=False) | |
[ 1 1 ] | |
[---- - ] | |
[ 2 s ] | |
[s*s ] | |
[ ] | |
[ 1 1 1] | |
[ -- -- + -] | |
[ 2 2 s] | |
[ s s ]{t} | |
>>> tfm_7.doit() | |
TransferFunctionMatrix(((TransferFunction(1, s**3, s), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), TransferFunction(s**2 + s, s**3, s)))) | |
>>> pprint(_, use_unicode=False) | |
[1 1 ] | |
[-- - ] | |
[ 3 s ] | |
[s ] | |
[ ] | |
[ 2 ] | |
[1 s + s] | |
[-- ------] | |
[ 2 3 ] | |
[s s ]{t} | |
Addition, subtraction, and multiplication of transfer function matrices can form | |
unevaluated ``Series`` or ``Parallel`` objects. | |
- For addition and subtraction: | |
All the transfer function matrices must have the same shape. | |
- For multiplication (C = A * B): | |
The number of inputs of the first transfer function matrix (A) must be equal to the | |
number of outputs of the second transfer function matrix (B). | |
Also, use pretty-printing (``pprint``) to analyse better. | |
>>> tfm_8 = TransferFunctionMatrix([[tf_3], [tf_2], [-tf_1]]) | |
>>> tfm_9 = TransferFunctionMatrix([[-tf_3]]) | |
>>> tfm_10 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_4]]) | |
>>> tfm_11 = TransferFunctionMatrix([[tf_4], [-tf_1]]) | |
>>> tfm_12 = TransferFunctionMatrix([[tf_4, -tf_1, tf_3], [-tf_2, -tf_4, -tf_3]]) | |
>>> tfm_8 + tfm_10 | |
MIMOParallel(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),)))) | |
>>> pprint(_, use_unicode=False) | |
[ 3 ] [ a + s ] | |
[ ----- ] [ ---------- ] | |
[ s + 2 ] [ 2 ] | |
[ ] [ s + s + 1 ] | |
[ 4 ] [ ] | |
[p - 3*p + 2] [ 4 ] | |
[------------] + [p - 3*p + 2] | |
[ p + s ] [------------] | |
[ ] [ p + s ] | |
[ -a - s ] [ ] | |
[ ---------- ] [ -a + p ] | |
[ 2 ] [ ------- ] | |
[ s + s + 1 ]{t} [ 9*s - 9 ]{t} | |
>>> -tfm_10 - tfm_8 | |
MIMOParallel(TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a - p, 9*s - 9, s),))), TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),)))) | |
>>> pprint(_, use_unicode=False) | |
[ -a - s ] [ -3 ] | |
[ ---------- ] [ ----- ] | |
[ 2 ] [ s + 2 ] | |
[ s + s + 1 ] [ ] | |
[ ] [ 4 ] | |
[ 4 ] [- p + 3*p - 2] | |
[- p + 3*p - 2] + [--------------] | |
[--------------] [ p + s ] | |
[ p + s ] [ ] | |
[ ] [ a + s ] | |
[ a - p ] [ ---------- ] | |
[ ------- ] [ 2 ] | |
[ 9*s - 9 ]{t} [ s + s + 1 ]{t} | |
>>> tfm_12 * tfm_8 | |
MIMOSeries(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s))))) | |
>>> pprint(_, use_unicode=False) | |
[ 3 ] | |
[ ----- ] | |
[ -a + p -a - s 3 ] [ s + 2 ] | |
[ ------- ---------- -----] [ ] | |
[ 9*s - 9 2 s + 2] [ 4 ] | |
[ s + s + 1 ] [p - 3*p + 2] | |
[ ] *[------------] | |
[ 4 ] [ p + s ] | |
[- p + 3*p - 2 a - p -3 ] [ ] | |
[-------------- ------- -----] [ -a - s ] | |
[ p + s 9*s - 9 s + 2]{t} [ ---------- ] | |
[ 2 ] | |
[ s + s + 1 ]{t} | |
>>> tfm_12 * tfm_8 * tfm_9 | |
MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s))))) | |
>>> pprint(_, use_unicode=False) | |
[ 3 ] | |
[ ----- ] | |
[ -a + p -a - s 3 ] [ s + 2 ] | |
[ ------- ---------- -----] [ ] | |
[ 9*s - 9 2 s + 2] [ 4 ] | |
[ s + s + 1 ] [p - 3*p + 2] [ -3 ] | |
[ ] *[------------] *[-----] | |
[ 4 ] [ p + s ] [s + 2]{t} | |
[- p + 3*p - 2 a - p -3 ] [ ] | |
[-------------- ------- -----] [ -a - s ] | |
[ p + s 9*s - 9 s + 2]{t} [ ---------- ] | |
[ 2 ] | |
[ s + s + 1 ]{t} | |
>>> tfm_10 + tfm_8*tfm_9 | |
MIMOParallel(TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),))), MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))))) | |
>>> pprint(_, use_unicode=False) | |
[ a + s ] [ 3 ] | |
[ ---------- ] [ ----- ] | |
[ 2 ] [ s + 2 ] | |
[ s + s + 1 ] [ ] | |
[ ] [ 4 ] | |
[ 4 ] [p - 3*p + 2] [ -3 ] | |
[p - 3*p + 2] + [------------] *[-----] | |
[------------] [ p + s ] [s + 2]{t} | |
[ p + s ] [ ] | |
[ ] [ -a - s ] | |
[ -a + p ] [ ---------- ] | |
[ ------- ] [ 2 ] | |
[ 9*s - 9 ]{t} [ s + s + 1 ]{t} | |
These unevaluated ``Series`` or ``Parallel`` objects can convert into the | |
resultant transfer function matrix using ``.doit()`` method or by | |
``.rewrite(TransferFunctionMatrix)``. | |
>>> (-tfm_8 + tfm_10 + tfm_8*tfm_9).doit() | |
TransferFunctionMatrix(((TransferFunction((a + s)*(s + 2)**3 - 3*(s + 2)**2*(s**2 + s + 1) - 9*(s + 2)*(s**2 + s + 1), (s + 2)**3*(s**2 + s + 1), s),), (TransferFunction((p + s)*(-3*p**4 + 9*p - 6), (p + s)**2*(s + 2), s),), (TransferFunction((-a + p)*(s + 2)*(s**2 + s + 1)**2 + (a + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + (3*a + 3*s)*(9*s - 9)*(s**2 + s + 1), (s + 2)*(9*s - 9)*(s**2 + s + 1)**2, s),))) | |
>>> (-tfm_12 * -tfm_8 * -tfm_9).rewrite(TransferFunctionMatrix) | |
TransferFunctionMatrix(((TransferFunction(3*(-3*a + 3*p)*(p + s)*(s + 2)*(s**2 + s + 1)**2 + 3*(-3*a - 3*s)*(p + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + 3*(a + s)*(s + 2)**2*(9*s - 9)*(-p**4 + 3*p - 2)*(s**2 + s + 1), (p + s)*(s + 2)**3*(9*s - 9)*(s**2 + s + 1)**2, s),), (TransferFunction(3*(-a + p)*(p + s)*(s + 2)**2*(-p**4 + 3*p - 2)*(s**2 + s + 1) + 3*(3*a + 3*s)*(p + s)**2*(s + 2)*(9*s - 9) + 3*(p + s)*(s + 2)*(9*s - 9)*(-3*p**4 + 9*p - 6)*(s**2 + s + 1), (p + s)**2*(s + 2)**3*(9*s - 9)*(s**2 + s + 1), s),))) | |
See Also | |
======== | |
TransferFunction, MIMOSeries, MIMOParallel, Feedback | |
""" | |
def __new__(cls, arg): | |
expr_mat_arg = [] | |
try: | |
var = arg[0][0].var | |
except TypeError: | |
raise ValueError(filldedent(""" | |
`arg` param in TransferFunctionMatrix should | |
strictly be a nested list containing TransferFunction | |
objects.""")) | |
for row in arg: | |
temp = [] | |
for element in row: | |
if not isinstance(element, SISOLinearTimeInvariant): | |
raise TypeError(filldedent(""" | |
Each element is expected to be of | |
type `SISOLinearTimeInvariant`.""")) | |
if var != element.var: | |
raise ValueError(filldedent(""" | |
Conflicting value(s) found for `var`. All TransferFunction | |
instances in TransferFunctionMatrix should use the same | |
complex variable in Laplace domain.""")) | |
temp.append(element.to_expr()) | |
expr_mat_arg.append(temp) | |
if isinstance(arg, (tuple, list, Tuple)): | |
# Making nested Tuple (sympy.core.containers.Tuple) from nested list or nested Python tuple | |
arg = Tuple(*(Tuple(*r, sympify=False) for r in arg), sympify=False) | |
obj = super(TransferFunctionMatrix, cls).__new__(cls, arg) | |
obj._expr_mat = ImmutableMatrix(expr_mat_arg) | |
return obj | |
def from_Matrix(cls, matrix, var): | |
""" | |
Creates a new ``TransferFunctionMatrix`` efficiently from a SymPy Matrix of ``Expr`` objects. | |
Parameters | |
========== | |
matrix : ``ImmutableMatrix`` having ``Expr``/``Number`` elements. | |
var : Symbol | |
Complex variable of the Laplace transform which will be used by the | |
all the ``TransferFunction`` objects in the ``TransferFunctionMatrix``. | |
Examples | |
======== | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import TransferFunctionMatrix | |
>>> from sympy import Matrix, pprint | |
>>> M = Matrix([[s, 1/s], [1/(s+1), s]]) | |
>>> M_tf = TransferFunctionMatrix.from_Matrix(M, s) | |
>>> pprint(M_tf, use_unicode=False) | |
[ s 1] | |
[ - -] | |
[ 1 s] | |
[ ] | |
[ 1 s] | |
[----- -] | |
[s + 1 1]{t} | |
>>> M_tf.elem_poles() | |
[[[], [0]], [[-1], []]] | |
>>> M_tf.elem_zeros() | |
[[[0], []], [[], [0]]] | |
""" | |
return _to_TFM(matrix, var) | |
def var(self): | |
""" | |
Returns the complex variable used by all the transfer functions or | |
``Series``/``Parallel`` objects in a transfer function matrix. | |
Examples | |
======== | |
>>> from sympy.abc import p, s | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel | |
>>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) | |
>>> G2 = TransferFunction(p, 4 - p, p) | |
>>> G3 = TransferFunction(0, p**4 - 1, p) | |
>>> G4 = TransferFunction(s + 1, s**2 + s + 1, s) | |
>>> S1 = Series(G1, G2) | |
>>> S2 = Series(-G3, Parallel(G2, -G1)) | |
>>> tfm1 = TransferFunctionMatrix([[G1], [G2], [G3]]) | |
>>> tfm1.var | |
p | |
>>> tfm2 = TransferFunctionMatrix([[-S1, -S2], [S1, S2]]) | |
>>> tfm2.var | |
p | |
>>> tfm3 = TransferFunctionMatrix([[G4]]) | |
>>> tfm3.var | |
s | |
""" | |
return self.args[0][0][0].var | |
def num_inputs(self): | |
""" | |
Returns the number of inputs of the system. | |
Examples | |
======== | |
>>> from sympy.abc import s, p | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix | |
>>> G1 = TransferFunction(s + 3, s**2 - 3, s) | |
>>> G2 = TransferFunction(4, s**2, s) | |
>>> G3 = TransferFunction(p**2 + s**2, p - 3, s) | |
>>> tfm_1 = TransferFunctionMatrix([[G2, -G1, G3], [-G2, -G1, -G3]]) | |
>>> tfm_1.num_inputs | |
3 | |
See Also | |
======== | |
num_outputs | |
""" | |
return self._expr_mat.shape[1] | |
def num_outputs(self): | |
""" | |
Returns the number of outputs of the system. | |
Examples | |
======== | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import TransferFunctionMatrix | |
>>> from sympy import Matrix | |
>>> M_1 = Matrix([[s], [1/s]]) | |
>>> TFM = TransferFunctionMatrix.from_Matrix(M_1, s) | |
>>> print(TFM) | |
TransferFunctionMatrix(((TransferFunction(s, 1, s),), (TransferFunction(1, s, s),))) | |
>>> TFM.num_outputs | |
2 | |
See Also | |
======== | |
num_inputs | |
""" | |
return self._expr_mat.shape[0] | |
def shape(self): | |
""" | |
Returns the shape of the transfer function matrix, that is, ``(# of outputs, # of inputs)``. | |
Examples | |
======== | |
>>> from sympy.abc import s, p | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix | |
>>> tf1 = TransferFunction(p**2 - 1, s**4 + s**3 - p, p) | |
>>> tf2 = TransferFunction(1 - p, p**2 - 3*p + 7, p) | |
>>> tf3 = TransferFunction(3, 4, p) | |
>>> tfm1 = TransferFunctionMatrix([[tf1, -tf2]]) | |
>>> tfm1.shape | |
(1, 2) | |
>>> tfm2 = TransferFunctionMatrix([[-tf2, tf3], [tf1, -tf1]]) | |
>>> tfm2.shape | |
(2, 2) | |
""" | |
return self._expr_mat.shape | |
def __neg__(self): | |
neg = -self._expr_mat | |
return _to_TFM(neg, self.var) | |
def __add__(self, other): | |
if not isinstance(other, MIMOParallel): | |
return MIMOParallel(self, other) | |
other_arg_list = list(other.args) | |
return MIMOParallel(self, *other_arg_list) | |
def __sub__(self, other): | |
return self + (-other) | |
def __mul__(self, other): | |
if not isinstance(other, MIMOSeries): | |
return MIMOSeries(other, self) | |
other_arg_list = list(other.args) | |
return MIMOSeries(*other_arg_list, self) | |
def __getitem__(self, key): | |
trunc = self._expr_mat.__getitem__(key) | |
if isinstance(trunc, ImmutableMatrix): | |
return _to_TFM(trunc, self.var) | |
return TransferFunction.from_rational_expression(trunc, self.var) | |
def transpose(self): | |
"""Returns the transpose of the ``TransferFunctionMatrix`` (switched input and output layers).""" | |
transposed_mat = self._expr_mat.transpose() | |
return _to_TFM(transposed_mat, self.var) | |
def elem_poles(self): | |
""" | |
Returns the poles of each element of the ``TransferFunctionMatrix``. | |
.. note:: | |
Actual poles of a MIMO system are NOT the poles of individual elements. | |
Examples | |
======== | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix | |
>>> tf_1 = TransferFunction(3, (s + 1), s) | |
>>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) | |
>>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) | |
>>> tf_4 = TransferFunction(s + 2, s**2 + 5*s - 10, s) | |
>>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) | |
>>> tfm_1 | |
TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s + 2, s**2 + 5*s - 10, s)))) | |
>>> tfm_1.elem_poles() | |
[[[-1], [-2, -1]], [[-2, -1], [-5/2 + sqrt(65)/2, -sqrt(65)/2 - 5/2]]] | |
See Also | |
======== | |
elem_zeros | |
""" | |
return [[element.poles() for element in row] for row in self.doit().args[0]] | |
def elem_zeros(self): | |
""" | |
Returns the zeros of each element of the ``TransferFunctionMatrix``. | |
.. note:: | |
Actual zeros of a MIMO system are NOT the zeros of individual elements. | |
Examples | |
======== | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix | |
>>> tf_1 = TransferFunction(3, (s + 1), s) | |
>>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) | |
>>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) | |
>>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s) | |
>>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) | |
>>> tfm_1 | |
TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)))) | |
>>> tfm_1.elem_zeros() | |
[[[], [-6]], [[-3], [4, 5]]] | |
See Also | |
======== | |
elem_poles | |
""" | |
return [[element.zeros() for element in row] for row in self.doit().args[0]] | |
def eval_frequency(self, other): | |
""" | |
Evaluates system response of each transfer function in the ``TransferFunctionMatrix`` at any point in the real or complex plane. | |
Examples | |
======== | |
>>> from sympy.abc import s | |
>>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix | |
>>> from sympy import I | |
>>> tf_1 = TransferFunction(3, (s + 1), s) | |
>>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) | |
>>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) | |
>>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s) | |
>>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) | |
>>> tfm_1 | |
TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)))) | |
>>> tfm_1.eval_frequency(2) | |
Matrix([ | |
[ 1, 2/3], | |
[5/12, 3/2]]) | |
>>> tfm_1.eval_frequency(I*2) | |
Matrix([ | |
[ 3/5 - 6*I/5, -I], | |
[3/20 - 11*I/20, -101/74 + 23*I/74]]) | |
""" | |
mat = self._expr_mat.subs(self.var, other) | |
return mat.expand() | |
def _flat(self): | |
"""Returns flattened list of args in TransferFunctionMatrix""" | |
return [elem for tup in self.args[0] for elem in tup] | |
def _eval_evalf(self, prec): | |
"""Calls evalf() on each transfer function in the transfer function matrix""" | |
dps = prec_to_dps(prec) | |
mat = self._expr_mat.applyfunc(lambda a: a.evalf(n=dps)) | |
return _to_TFM(mat, self.var) | |
def _eval_simplify(self, **kwargs): | |
"""Simplifies the transfer function matrix""" | |
simp_mat = self._expr_mat.applyfunc(lambda a: cancel(a, expand=False)) | |
return _to_TFM(simp_mat, self.var) | |
def expand(self, **hints): | |
"""Expands the transfer function matrix""" | |
expand_mat = self._expr_mat.expand(**hints) | |
return _to_TFM(expand_mat, self.var) | |
class StateSpace(LinearTimeInvariant): | |
r""" | |
State space model (ssm) of a linear, time invariant control system. | |
Represents the standard state-space model with A, B, C, D as state-space matrices. | |
This makes the linear control system: | |
(1) x'(t) = A * x(t) + B * u(t); x in R^n , u in R^k | |
(2) y(t) = C * x(t) + D * u(t); y in R^m | |
where u(t) is any input signal, y(t) the corresponding output, and x(t) the system's state. | |
Parameters | |
========== | |
A : Matrix | |
The State matrix of the state space model. | |
B : Matrix | |
The Input-to-State matrix of the state space model. | |
C : Matrix | |
The State-to-Output matrix of the state space model. | |
D : Matrix | |
The Feedthrough matrix of the state space model. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
The easiest way to create a StateSpaceModel is via four matrices: | |
>>> A = Matrix([[1, 2], [1, 0]]) | |
>>> B = Matrix([1, 1]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([0]) | |
>>> StateSpace(A, B, C, D) | |
StateSpace(Matrix([ | |
[1, 2], | |
[1, 0]]), Matrix([ | |
[1], | |
[1]]), Matrix([[0, 1]]), Matrix([[0]])) | |
One can use less matrices. The rest will be filled with a minimum of zeros: | |
>>> StateSpace(A, B) | |
StateSpace(Matrix([ | |
[1, 2], | |
[1, 0]]), Matrix([ | |
[1], | |
[1]]), Matrix([[0, 0]]), Matrix([[0]])) | |
See Also | |
======== | |
TransferFunction, TransferFunctionMatrix | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/State-space_representation | |
.. [2] https://in.mathworks.com/help/control/ref/ss.html | |
""" | |
def __new__(cls, A=None, B=None, C=None, D=None): | |
if A is None: | |
A = zeros(1) | |
if B is None: | |
B = zeros(A.rows, 1) | |
if C is None: | |
C = zeros(1, A.cols) | |
if D is None: | |
D = zeros(C.rows, B.cols) | |
A = _sympify(A) | |
B = _sympify(B) | |
C = _sympify(C) | |
D = _sympify(D) | |
if (isinstance(A, ImmutableDenseMatrix) and isinstance(B, ImmutableDenseMatrix) and | |
isinstance(C, ImmutableDenseMatrix) and isinstance(D, ImmutableDenseMatrix)): | |
# Check State Matrix is square | |
if A.rows != A.cols: | |
raise ShapeError("Matrix A must be a square matrix.") | |
# Check State and Input matrices have same rows | |
if A.rows != B.rows: | |
raise ShapeError("Matrices A and B must have the same number of rows.") | |
# Check Ouput and Feedthrough matrices have same rows | |
if C.rows != D.rows: | |
raise ShapeError("Matrices C and D must have the same number of rows.") | |
# Check State and Ouput matrices have same columns | |
if A.cols != C.cols: | |
raise ShapeError("Matrices A and C must have the same number of columns.") | |
# Check Input and Feedthrough matrices have same columns | |
if B.cols != D.cols: | |
raise ShapeError("Matrices B and D must have the same number of columns.") | |
obj = super(StateSpace, cls).__new__(cls, A, B, C, D) | |
obj._A = A | |
obj._B = B | |
obj._C = C | |
obj._D = D | |
# Determine if the system is SISO or MIMO | |
num_outputs = D.rows | |
num_inputs = D.cols | |
if num_inputs == 1 and num_outputs == 1: | |
obj._is_SISO = True | |
obj._clstype = SISOLinearTimeInvariant | |
else: | |
obj._is_SISO = False | |
obj._clstype = MIMOLinearTimeInvariant | |
return obj | |
else: | |
raise TypeError("A, B, C and D inputs must all be sympy Matrices.") | |
def state_matrix(self): | |
""" | |
Returns the state matrix of the model. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[1, 2], [1, 0]]) | |
>>> B = Matrix([1, 1]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([0]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ss.state_matrix | |
Matrix([ | |
[1, 2], | |
[1, 0]]) | |
""" | |
return self._A | |
def input_matrix(self): | |
""" | |
Returns the input matrix of the model. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[1, 2], [1, 0]]) | |
>>> B = Matrix([1, 1]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([0]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ss.input_matrix | |
Matrix([ | |
[1], | |
[1]]) | |
""" | |
return self._B | |
def output_matrix(self): | |
""" | |
Returns the output matrix of the model. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[1, 2], [1, 0]]) | |
>>> B = Matrix([1, 1]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([0]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ss.output_matrix | |
Matrix([[0, 1]]) | |
""" | |
return self._C | |
def feedforward_matrix(self): | |
""" | |
Returns the feedforward matrix of the model. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[1, 2], [1, 0]]) | |
>>> B = Matrix([1, 1]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([0]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ss.feedforward_matrix | |
Matrix([[0]]) | |
""" | |
return self._D | |
def num_states(self): | |
""" | |
Returns the number of states of the model. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[1, 2], [1, 0]]) | |
>>> B = Matrix([1, 1]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([0]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ss.num_states | |
2 | |
""" | |
return self._A.rows | |
def num_inputs(self): | |
""" | |
Returns the number of inputs of the model. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[1, 2], [1, 0]]) | |
>>> B = Matrix([1, 1]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([0]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ss.num_inputs | |
1 | |
""" | |
return self._D.cols | |
def num_outputs(self): | |
""" | |
Returns the number of outputs of the model. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[1, 2], [1, 0]]) | |
>>> B = Matrix([1, 1]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([0]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ss.num_outputs | |
1 | |
""" | |
return self._D.rows | |
def _eval_evalf(self, prec): | |
""" | |
Returns state space model where numerical expressions are evaluated into floating point numbers. | |
""" | |
dps = prec_to_dps(prec) | |
return StateSpace( | |
self._A.evalf(n = dps), | |
self._B.evalf(n = dps), | |
self._C.evalf(n = dps), | |
self._D.evalf(n = dps)) | |
def _eval_rewrite_as_TransferFunction(self, *args): | |
""" | |
Returns the equivalent Transfer Function of the state space model. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import TransferFunction, StateSpace | |
>>> A = Matrix([[-5, -1], [3, -1]]) | |
>>> B = Matrix([2, 5]) | |
>>> C = Matrix([[1, 2]]) | |
>>> D = Matrix([0]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ss.rewrite(TransferFunction) | |
[[TransferFunction(12*s + 59, s**2 + 6*s + 8, s)]] | |
""" | |
s = Symbol('s') | |
n = self._A.shape[0] | |
I = eye(n) | |
G = self._C*(s*I - self._A).solve(self._B) + self._D | |
G = G.simplify() | |
to_tf = lambda expr: TransferFunction.from_rational_expression(expr, s) | |
tf_mat = [[to_tf(expr) for expr in sublist] for sublist in G.tolist()] | |
return tf_mat | |
def __add__(self, other): | |
""" | |
Add two State Space systems (parallel connection). | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A1 = Matrix([[1]]) | |
>>> B1 = Matrix([[2]]) | |
>>> C1 = Matrix([[-1]]) | |
>>> D1 = Matrix([[-2]]) | |
>>> A2 = Matrix([[-1]]) | |
>>> B2 = Matrix([[-2]]) | |
>>> C2 = Matrix([[1]]) | |
>>> D2 = Matrix([[2]]) | |
>>> ss1 = StateSpace(A1, B1, C1, D1) | |
>>> ss2 = StateSpace(A2, B2, C2, D2) | |
>>> ss1 + ss2 | |
StateSpace(Matrix([ | |
[1, 0], | |
[0, -1]]), Matrix([ | |
[ 2], | |
[-2]]), Matrix([[-1, 1]]), Matrix([[0]])) | |
""" | |
# Check for scalars | |
if isinstance(other, (int, float, complex, Symbol)): | |
A = self._A | |
B = self._B | |
C = self._C | |
D = self._D.applyfunc(lambda element: element + other) | |
else: | |
# Check nature of system | |
if not isinstance(other, StateSpace): | |
raise ValueError("Addition is only supported for 2 State Space models.") | |
# Check dimensions of system | |
elif ((self.num_inputs != other.num_inputs) or (self.num_outputs != other.num_outputs)): | |
raise ShapeError("Systems with incompatible inputs and outputs cannot be added.") | |
m1 = (self._A).row_join(zeros(self._A.shape[0], other._A.shape[-1])) | |
m2 = zeros(other._A.shape[0], self._A.shape[-1]).row_join(other._A) | |
A = m1.col_join(m2) | |
B = self._B.col_join(other._B) | |
C = self._C.row_join(other._C) | |
D = self._D + other._D | |
return StateSpace(A, B, C, D) | |
def __radd__(self, other): | |
""" | |
Right add two State Space systems. | |
Examples | |
======== | |
>>> from sympy.physics.control import StateSpace | |
>>> s = StateSpace() | |
>>> 5 + s | |
StateSpace(Matrix([[0]]), Matrix([[0]]), Matrix([[0]]), Matrix([[5]])) | |
""" | |
return self + other | |
def __sub__(self, other): | |
""" | |
Subtract two State Space systems. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A1 = Matrix([[1]]) | |
>>> B1 = Matrix([[2]]) | |
>>> C1 = Matrix([[-1]]) | |
>>> D1 = Matrix([[-2]]) | |
>>> A2 = Matrix([[-1]]) | |
>>> B2 = Matrix([[-2]]) | |
>>> C2 = Matrix([[1]]) | |
>>> D2 = Matrix([[2]]) | |
>>> ss1 = StateSpace(A1, B1, C1, D1) | |
>>> ss2 = StateSpace(A2, B2, C2, D2) | |
>>> ss1 - ss2 | |
StateSpace(Matrix([ | |
[1, 0], | |
[0, -1]]), Matrix([ | |
[ 2], | |
[-2]]), Matrix([[-1, -1]]), Matrix([[-4]])) | |
""" | |
return self + (-other) | |
def __rsub__(self, other): | |
""" | |
Right subtract two tate Space systems. | |
Examples | |
======== | |
>>> from sympy.physics.control import StateSpace | |
>>> s = StateSpace() | |
>>> 5 - s | |
StateSpace(Matrix([[0]]), Matrix([[0]]), Matrix([[0]]), Matrix([[5]])) | |
""" | |
return other + (-self) | |
def __neg__(self): | |
""" | |
Returns the negation of the state space model. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[-5, -1], [3, -1]]) | |
>>> B = Matrix([2, 5]) | |
>>> C = Matrix([[1, 2]]) | |
>>> D = Matrix([0]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> -ss | |
StateSpace(Matrix([ | |
[-5, -1], | |
[ 3, -1]]), Matrix([ | |
[2], | |
[5]]), Matrix([[-1, -2]]), Matrix([[0]])) | |
""" | |
return StateSpace(self._A, self._B, -self._C, -self._D) | |
def __mul__(self, other): | |
""" | |
Multiplication of two State Space systems (serial connection). | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[-5, -1], [3, -1]]) | |
>>> B = Matrix([2, 5]) | |
>>> C = Matrix([[1, 2]]) | |
>>> D = Matrix([0]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ss*5 | |
StateSpace(Matrix([ | |
[-5, -1], | |
[ 3, -1]]), Matrix([ | |
[2], | |
[5]]), Matrix([[5, 10]]), Matrix([[0]])) | |
""" | |
# Check for scalars | |
if isinstance(other, (int, float, complex, Symbol)): | |
A = self._A | |
B = self._B | |
C = self._C.applyfunc(lambda element: element*other) | |
D = self._D.applyfunc(lambda element: element*other) | |
else: | |
# Check nature of system | |
if not isinstance(other, StateSpace): | |
raise ValueError("Multiplication is only supported for 2 State Space models.") | |
# Check dimensions of system | |
elif self.num_inputs != other.num_outputs: | |
raise ShapeError("Systems with incompatible inputs and outputs cannot be multiplied.") | |
m1 = (other._A).row_join(zeros(other._A.shape[0], self._A.shape[1])) | |
m2 = (self._B * other._C).row_join(self._A) | |
A = m1.col_join(m2) | |
B = (other._B).col_join(self._B * other._D) | |
C = (self._D * other._C).row_join(self._C) | |
D = self._D * other._D | |
return StateSpace(A, B, C, D) | |
def __rmul__(self, other): | |
""" | |
Right multiply two tate Space systems. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[-5, -1], [3, -1]]) | |
>>> B = Matrix([2, 5]) | |
>>> C = Matrix([[1, 2]]) | |
>>> D = Matrix([0]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> 5*ss | |
StateSpace(Matrix([ | |
[-5, -1], | |
[ 3, -1]]), Matrix([ | |
[10], | |
[25]]), Matrix([[1, 2]]), Matrix([[0]])) | |
""" | |
if isinstance(other, (int, float, complex, Symbol)): | |
A = self._A | |
C = self._C | |
B = self._B.applyfunc(lambda element: element*other) | |
D = self._D.applyfunc(lambda element: element*other) | |
return StateSpace(A, B, C, D) | |
else: | |
return self*other | |
def __repr__(self): | |
A_str = self._A.__repr__() | |
B_str = self._B.__repr__() | |
C_str = self._C.__repr__() | |
D_str = self._D.__repr__() | |
return f"StateSpace(\n{A_str},\n\n{B_str},\n\n{C_str},\n\n{D_str})" | |
def append(self, other): | |
""" | |
Returns the first model appended with the second model. The order is preserved. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A1 = Matrix([[1]]) | |
>>> B1 = Matrix([[2]]) | |
>>> C1 = Matrix([[-1]]) | |
>>> D1 = Matrix([[-2]]) | |
>>> A2 = Matrix([[-1]]) | |
>>> B2 = Matrix([[-2]]) | |
>>> C2 = Matrix([[1]]) | |
>>> D2 = Matrix([[2]]) | |
>>> ss1 = StateSpace(A1, B1, C1, D1) | |
>>> ss2 = StateSpace(A2, B2, C2, D2) | |
>>> ss1.append(ss2) | |
StateSpace(Matrix([ | |
[1, 0], | |
[0, -1]]), Matrix([ | |
[2, 0], | |
[0, -2]]), Matrix([ | |
[-1, 0], | |
[ 0, 1]]), Matrix([ | |
[-2, 0], | |
[ 0, 2]])) | |
""" | |
n = self.num_states + other.num_states | |
m = self.num_inputs + other.num_inputs | |
p = self.num_outputs + other.num_outputs | |
A = zeros(n, n) | |
B = zeros(n, m) | |
C = zeros(p, n) | |
D = zeros(p, m) | |
A[:self.num_states, :self.num_states] = self._A | |
A[self.num_states:, self.num_states:] = other._A | |
B[:self.num_states, :self.num_inputs] = self._B | |
B[self.num_states:, self.num_inputs:] = other._B | |
C[:self.num_outputs, :self.num_states] = self._C | |
C[self.num_outputs:, self.num_states:] = other._C | |
D[:self.num_outputs, :self.num_inputs] = self._D | |
D[self.num_outputs:, self.num_inputs:] = other._D | |
return StateSpace(A, B, C, D) | |
def observability_matrix(self): | |
""" | |
Returns the observability matrix of the state space model: | |
[C, C * A^1, C * A^2, .. , C * A^(n-1)]; A in R^(n x n), C in R^(m x k) | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[-1.5, -2], [1, 0]]) | |
>>> B = Matrix([0.5, 0]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([1]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ob = ss.observability_matrix() | |
>>> ob | |
Matrix([ | |
[0, 1], | |
[1, 0]]) | |
References | |
========== | |
.. [1] https://in.mathworks.com/help/control/ref/statespacemodel.obsv.html | |
""" | |
n = self.num_states | |
ob = self._C | |
for i in range(1,n): | |
ob = ob.col_join(self._C * self._A**i) | |
return ob | |
def observable_subspace(self): | |
""" | |
Returns the observable subspace of the state space model. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[-1.5, -2], [1, 0]]) | |
>>> B = Matrix([0.5, 0]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([1]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ob_subspace = ss.observable_subspace() | |
>>> ob_subspace | |
[Matrix([ | |
[0], | |
[1]]), Matrix([ | |
[1], | |
[0]])] | |
""" | |
return self.observability_matrix().columnspace() | |
def is_observable(self): | |
""" | |
Returns if the state space model is observable. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[-1.5, -2], [1, 0]]) | |
>>> B = Matrix([0.5, 0]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([1]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ss.is_observable() | |
True | |
""" | |
return self.observability_matrix().rank() == self.num_states | |
def controllability_matrix(self): | |
""" | |
Returns the controllability matrix of the system: | |
[B, A * B, A^2 * B, .. , A^(n-1) * B]; A in R^(n x n), B in R^(n x m) | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[-1.5, -2], [1, 0]]) | |
>>> B = Matrix([0.5, 0]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([1]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ss.controllability_matrix() | |
Matrix([ | |
[0.5, -0.75], | |
[ 0, 0.5]]) | |
References | |
========== | |
.. [1] https://in.mathworks.com/help/control/ref/statespacemodel.ctrb.html | |
""" | |
co = self._B | |
n = self._A.shape[0] | |
for i in range(1, n): | |
co = co.row_join(((self._A)**i) * self._B) | |
return co | |
def controllable_subspace(self): | |
""" | |
Returns the controllable subspace of the state space model. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[-1.5, -2], [1, 0]]) | |
>>> B = Matrix([0.5, 0]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([1]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> co_subspace = ss.controllable_subspace() | |
>>> co_subspace | |
[Matrix([ | |
[0.5], | |
[ 0]]), Matrix([ | |
[-0.75], | |
[ 0.5]])] | |
""" | |
return self.controllability_matrix().columnspace() | |
def is_controllable(self): | |
""" | |
Returns if the state space model is controllable. | |
Examples | |
======== | |
>>> from sympy import Matrix | |
>>> from sympy.physics.control import StateSpace | |
>>> A = Matrix([[-1.5, -2], [1, 0]]) | |
>>> B = Matrix([0.5, 0]) | |
>>> C = Matrix([[0, 1]]) | |
>>> D = Matrix([1]) | |
>>> ss = StateSpace(A, B, C, D) | |
>>> ss.is_controllable() | |
True | |
""" | |
return self.controllability_matrix().rank() == self.num_states | |