Spaces:
Sleeping
Sleeping
import os | |
from sympy.functions.elementary.trigonometric import (cos, sin) | |
from sympy.external import import_module | |
from sympy.testing.pytest import skip | |
from sympy.parsing.autolev import parse_autolev | |
antlr4 = import_module("antlr4") | |
if not antlr4: | |
disabled = True | |
FILE_DIR = os.path.dirname( | |
os.path.dirname(os.path.abspath(os.path.realpath(__file__)))) | |
def _test_examples(in_filename, out_filename, test_name=""): | |
in_file_path = os.path.join(FILE_DIR, 'autolev', 'test-examples', | |
in_filename) | |
correct_file_path = os.path.join(FILE_DIR, 'autolev', 'test-examples', | |
out_filename) | |
with open(in_file_path) as f: | |
generated_code = parse_autolev(f, include_numeric=True) | |
with open(correct_file_path) as f: | |
for idx, line1 in enumerate(f): | |
if line1.startswith("#"): | |
break | |
try: | |
line2 = generated_code.split('\n')[idx] | |
assert line1.rstrip() == line2.rstrip() | |
except Exception: | |
msg = 'mismatch in ' + test_name + ' in line no: {0}' | |
raise AssertionError(msg.format(idx+1)) | |
def test_rule_tests(): | |
l = ["ruletest1", "ruletest2", "ruletest3", "ruletest4", "ruletest5", | |
"ruletest6", "ruletest7", "ruletest8", "ruletest9", "ruletest10", | |
"ruletest11", "ruletest12"] | |
for i in l: | |
in_filepath = i + ".al" | |
out_filepath = i + ".py" | |
_test_examples(in_filepath, out_filepath, i) | |
def test_pydy_examples(): | |
l = ["mass_spring_damper", "chaos_pendulum", "double_pendulum", | |
"non_min_pendulum"] | |
for i in l: | |
in_filepath = os.path.join("pydy-example-repo", i + ".al") | |
out_filepath = os.path.join("pydy-example-repo", i + ".py") | |
_test_examples(in_filepath, out_filepath, i) | |
def test_autolev_tutorial(): | |
dir_path = os.path.join(FILE_DIR, 'autolev', 'test-examples', | |
'autolev-tutorial') | |
if os.path.isdir(dir_path): | |
l = ["tutor1", "tutor2", "tutor3", "tutor4", "tutor5", "tutor6", | |
"tutor7"] | |
for i in l: | |
in_filepath = os.path.join("autolev-tutorial", i + ".al") | |
out_filepath = os.path.join("autolev-tutorial", i + ".py") | |
_test_examples(in_filepath, out_filepath, i) | |
def test_dynamics_online(): | |
dir_path = os.path.join(FILE_DIR, 'autolev', 'test-examples', | |
'dynamics-online') | |
if os.path.isdir(dir_path): | |
ch1 = ["1-4", "1-5", "1-6", "1-7", "1-8", "1-9_1", "1-9_2", "1-9_3"] | |
ch2 = ["2-1", "2-2", "2-3", "2-4", "2-5", "2-6", "2-7", "2-8", "2-9", | |
"circular"] | |
ch3 = ["3-1_1", "3-1_2", "3-2_1", "3-2_2", "3-2_3", "3-2_4", "3-2_5", | |
"3-3"] | |
ch4 = ["4-1_1", "4-2_1", "4-4_1", "4-4_2", "4-5_1", "4-5_2"] | |
chapters = [(ch1, "ch1"), (ch2, "ch2"), (ch3, "ch3"), (ch4, "ch4")] | |
for ch, name in chapters: | |
for i in ch: | |
in_filepath = os.path.join("dynamics-online", name, i + ".al") | |
out_filepath = os.path.join("dynamics-online", name, i + ".py") | |
_test_examples(in_filepath, out_filepath, i) | |
def test_output_01(): | |
"""Autolev example calculates the position, velocity, and acceleration of a | |
point and expresses in a single reference frame:: | |
(1) FRAMES C,D,F | |
(2) VARIABLES FD'',DC'' | |
(3) CONSTANTS R,L | |
(4) POINTS O,E | |
(5) SIMPROT(F,D,1,FD) | |
-> (6) F_D = [1, 0, 0; 0, COS(FD), -SIN(FD); 0, SIN(FD), COS(FD)] | |
(7) SIMPROT(D,C,2,DC) | |
-> (8) D_C = [COS(DC), 0, SIN(DC); 0, 1, 0; -SIN(DC), 0, COS(DC)] | |
(9) W_C_F> = EXPRESS(W_C_F>, F) | |
-> (10) W_C_F> = FD'*F1> + COS(FD)*DC'*F2> + SIN(FD)*DC'*F3> | |
(11) P_O_E>=R*D2>-L*C1> | |
(12) P_O_E>=EXPRESS(P_O_E>, D) | |
-> (13) P_O_E> = -L*COS(DC)*D1> + R*D2> + L*SIN(DC)*D3> | |
(14) V_E_F>=EXPRESS(DT(P_O_E>,F),D) | |
-> (15) V_E_F> = L*SIN(DC)*DC'*D1> - L*SIN(DC)*FD'*D2> + (R*FD'+L*COS(DC)*DC')*D3> | |
(16) A_E_F>=EXPRESS(DT(V_E_F>,F),D) | |
-> (17) A_E_F> = L*(COS(DC)*DC'^2+SIN(DC)*DC'')*D1> + (-R*FD'^2-2*L*COS(DC)*DC'*FD'-L*SIN(DC)*FD'')*D2> + (R*FD''+L*COS(DC)*DC''-L*SIN(DC)*DC'^2-L*SIN(DC)*FD'^2)*D3> | |
""" | |
if not antlr4: | |
skip('Test skipped: antlr4 is not installed.') | |
autolev_input = """\ | |
FRAMES C,D,F | |
VARIABLES FD'',DC'' | |
CONSTANTS R,L | |
POINTS O,E | |
SIMPROT(F,D,1,FD) | |
SIMPROT(D,C,2,DC) | |
W_C_F>=EXPRESS(W_C_F>,F) | |
P_O_E>=R*D2>-L*C1> | |
P_O_E>=EXPRESS(P_O_E>,D) | |
V_E_F>=EXPRESS(DT(P_O_E>,F),D) | |
A_E_F>=EXPRESS(DT(V_E_F>,F),D)\ | |
""" | |
sympy_input = parse_autolev(autolev_input) | |
g = {} | |
l = {} | |
exec(sympy_input, g, l) | |
w_c_f = l['frame_c'].ang_vel_in(l['frame_f']) | |
# P_O_E> means "the position of point E wrt to point O" | |
p_o_e = l['point_e'].pos_from(l['point_o']) | |
v_e_f = l['point_e'].vel(l['frame_f']) | |
a_e_f = l['point_e'].acc(l['frame_f']) | |
# NOTE : The Autolev outputs above were manually transformed into | |
# equivalent SymPy physics vector expressions. Would be nice to automate | |
# this transformation. | |
expected_w_c_f = (l['fd'].diff()*l['frame_f'].x + | |
cos(l['fd'])*l['dc'].diff()*l['frame_f'].y + | |
sin(l['fd'])*l['dc'].diff()*l['frame_f'].z) | |
assert (w_c_f - expected_w_c_f).simplify() == 0 | |
expected_p_o_e = (-l['l']*cos(l['dc'])*l['frame_d'].x + | |
l['r']*l['frame_d'].y + | |
l['l']*sin(l['dc'])*l['frame_d'].z) | |
assert (p_o_e - expected_p_o_e).simplify() == 0 | |
expected_v_e_f = (l['l']*sin(l['dc'])*l['dc'].diff()*l['frame_d'].x - | |
l['l']*sin(l['dc'])*l['fd'].diff()*l['frame_d'].y + | |
(l['r']*l['fd'].diff() + | |
l['l']*cos(l['dc'])*l['dc'].diff())*l['frame_d'].z) | |
assert (v_e_f - expected_v_e_f).simplify() == 0 | |
expected_a_e_f = (l['l']*(cos(l['dc'])*l['dc'].diff()**2 + | |
sin(l['dc'])*l['dc'].diff().diff())*l['frame_d'].x + | |
(-l['r']*l['fd'].diff()**2 - | |
2*l['l']*cos(l['dc'])*l['dc'].diff()*l['fd'].diff() - | |
l['l']*sin(l['dc'])*l['fd'].diff().diff())*l['frame_d'].y + | |
(l['r']*l['fd'].diff().diff() + | |
l['l']*cos(l['dc'])*l['dc'].diff().diff() - | |
l['l']*sin(l['dc'])*l['dc'].diff()**2 - | |
l['l']*sin(l['dc'])*l['fd'].diff()**2)*l['frame_d'].z) | |
assert (a_e_f - expected_a_e_f).simplify() == 0 | |