Spaces:
Sleeping
Sleeping
from collections import defaultdict | |
from sympy.utilities.iterables import multiset, is_palindromic as _palindromic | |
from sympy.utilities.misc import as_int | |
def digits(n, b=10, digits=None): | |
""" | |
Return a list of the digits of ``n`` in base ``b``. The first | |
element in the list is ``b`` (or ``-b`` if ``n`` is negative). | |
Examples | |
======== | |
>>> from sympy.ntheory.digits import digits | |
>>> digits(35) | |
[10, 3, 5] | |
If the number is negative, the negative sign will be placed on the | |
base (which is the first element in the returned list): | |
>>> digits(-35) | |
[-10, 3, 5] | |
Bases other than 10 (and greater than 1) can be selected with ``b``: | |
>>> digits(27, b=2) | |
[2, 1, 1, 0, 1, 1] | |
Use the ``digits`` keyword if a certain number of digits is desired: | |
>>> digits(35, digits=4) | |
[10, 0, 0, 3, 5] | |
Parameters | |
========== | |
n: integer | |
The number whose digits are returned. | |
b: integer | |
The base in which digits are computed. | |
digits: integer (or None for all digits) | |
The number of digits to be returned (padded with zeros, if | |
necessary). | |
See Also | |
======== | |
sympy.core.intfunc.num_digits, count_digits | |
""" | |
b = as_int(b) | |
n = as_int(n) | |
if b < 2: | |
raise ValueError("b must be greater than 1") | |
else: | |
x, y = abs(n), [] | |
while x >= b: | |
x, r = divmod(x, b) | |
y.append(r) | |
y.append(x) | |
y.append(-b if n < 0 else b) | |
y.reverse() | |
ndig = len(y) - 1 | |
if digits is not None: | |
if ndig > digits: | |
raise ValueError( | |
"For %s, at least %s digits are needed." % (n, ndig)) | |
elif ndig < digits: | |
y[1:1] = [0]*(digits - ndig) | |
return y | |
def count_digits(n, b=10): | |
""" | |
Return a dictionary whose keys are the digits of ``n`` in the | |
given base, ``b``, with keys indicating the digits appearing in the | |
number and values indicating how many times that digit appeared. | |
Examples | |
======== | |
>>> from sympy.ntheory import count_digits | |
>>> count_digits(1111339) | |
{1: 4, 3: 2, 9: 1} | |
The digits returned are always represented in base-10 | |
but the number itself can be entered in any format that is | |
understood by Python; the base of the number can also be | |
given if it is different than 10: | |
>>> n = 0xFA; n | |
250 | |
>>> count_digits(_) | |
{0: 1, 2: 1, 5: 1} | |
>>> count_digits(n, 16) | |
{10: 1, 15: 1} | |
The default dictionary will return a 0 for any digit that did | |
not appear in the number. For example, which digits appear 7 | |
times in ``77!``: | |
>>> from sympy import factorial | |
>>> c77 = count_digits(factorial(77)) | |
>>> [i for i in range(10) if c77[i] == 7] | |
[1, 3, 7, 9] | |
See Also | |
======== | |
sympy.core.intfunc.num_digits, digits | |
""" | |
rv = defaultdict(int, multiset(digits(n, b)).items()) | |
rv.pop(b) if b in rv else rv.pop(-b) # b or -b is there | |
return rv | |
def is_palindromic(n, b=10): | |
"""return True if ``n`` is the same when read from left to right | |
or right to left in the given base, ``b``. | |
Examples | |
======== | |
>>> from sympy.ntheory import is_palindromic | |
>>> all(is_palindromic(i) for i in (-11, 1, 22, 121)) | |
True | |
The second argument allows you to test numbers in other | |
bases. For example, 88 is palindromic in base-10 but not | |
in base-8: | |
>>> is_palindromic(88, 8) | |
False | |
On the other hand, a number can be palindromic in base-8 but | |
not in base-10: | |
>>> 0o121, is_palindromic(0o121) | |
(81, False) | |
Or it might be palindromic in both bases: | |
>>> oct(121), is_palindromic(121, 8) and is_palindromic(121) | |
('0o171', True) | |
""" | |
return _palindromic(digits(n, b), 1) | |