Spaces:
Sleeping
Sleeping
"""Numerical Methods for Holonomic Functions""" | |
from sympy.core.sympify import sympify | |
from sympy.holonomic.holonomic import DMFsubs | |
from mpmath import mp | |
def _evalf(func, points, derivatives=False, method='RK4'): | |
""" | |
Numerical methods for numerical integration along a given set of | |
points in the complex plane. | |
""" | |
ann = func.annihilator | |
a = ann.order | |
R = ann.parent.base | |
K = R.get_field() | |
if method == 'Euler': | |
meth = _euler | |
else: | |
meth = _rk4 | |
dmf = [] | |
for j in ann.listofpoly: | |
dmf.append(K.new(j.to_list())) | |
red = [-dmf[i] / dmf[a] for i in range(a)] | |
y0 = func.y0 | |
if len(y0) < a: | |
raise TypeError("Not Enough Initial Conditions") | |
x0 = func.x0 | |
sol = [meth(red, x0, points[0], y0, a)] | |
for i, j in enumerate(points[1:]): | |
sol.append(meth(red, points[i], j, sol[-1], a)) | |
if not derivatives: | |
return [sympify(i[0]) for i in sol] | |
else: | |
return sympify(sol) | |
def _euler(red, x0, x1, y0, a): | |
""" | |
Euler's method for numerical integration. | |
From x0 to x1 with initial values given at x0 as vector y0. | |
""" | |
A = sympify(x0)._to_mpmath(mp.prec) | |
B = sympify(x1)._to_mpmath(mp.prec) | |
y_0 = [sympify(i)._to_mpmath(mp.prec) for i in y0] | |
h = B - A | |
f_0 = y_0[1:] | |
f_0_n = 0 | |
for i in range(a): | |
f_0_n += sympify(DMFsubs(red[i], A, mpm=True))._to_mpmath(mp.prec) * y_0[i] | |
f_0.append(f_0_n) | |
sol = [] | |
for i in range(a): | |
sol.append(y_0[i] + h * f_0[i]) | |
return sol | |
def _rk4(red, x0, x1, y0, a): | |
""" | |
Runge-Kutta 4th order numerical method. | |
""" | |
A = sympify(x0)._to_mpmath(mp.prec) | |
B = sympify(x1)._to_mpmath(mp.prec) | |
y_0 = [sympify(i)._to_mpmath(mp.prec) for i in y0] | |
h = B - A | |
f_0_n = 0 | |
f_1_n = 0 | |
f_2_n = 0 | |
f_3_n = 0 | |
f_0 = y_0[1:] | |
for i in range(a): | |
f_0_n += sympify(DMFsubs(red[i], A, mpm=True))._to_mpmath(mp.prec) * y_0[i] | |
f_0.append(f_0_n) | |
f_1 = [y_0[i] + f_0[i]*h/2 for i in range(1, a)] | |
for i in range(a): | |
f_1_n += sympify(DMFsubs(red[i], A + h/2, mpm=True))._to_mpmath(mp.prec) * (y_0[i] + f_0[i]*h/2) | |
f_1.append(f_1_n) | |
f_2 = [y_0[i] + f_1[i]*h/2 for i in range(1, a)] | |
for i in range(a): | |
f_2_n += sympify(DMFsubs(red[i], A + h/2, mpm=True))._to_mpmath(mp.prec) * (y_0[i] + f_1[i]*h/2) | |
f_2.append(f_2_n) | |
f_3 = [y_0[i] + f_2[i]*h for i in range(1, a)] | |
for i in range(a): | |
f_3_n += sympify(DMFsubs(red[i], A + h, mpm=True))._to_mpmath(mp.prec) * (y_0[i] + f_2[i]*h) | |
f_3.append(f_3_n) | |
sol = [] | |
for i in range(a): | |
sol.append(y_0[i] + h * (f_0[i]+2*f_1[i]+2*f_2[i]+f_3[i])/6) | |
return sol | |