Spaces:
Sleeping
Sleeping
from sympy.core import expand | |
from sympy.core.numbers import (Rational, oo, pi) | |
from sympy.core.relational import Eq | |
from sympy.core.singleton import S | |
from sympy.core.symbol import (Symbol, symbols) | |
from sympy.functions.elementary.complexes import Abs | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import sec | |
from sympy.geometry.line import Segment2D | |
from sympy.geometry.point import Point2D | |
from sympy.geometry import (Circle, Ellipse, GeometryError, Line, Point, | |
Polygon, Ray, RegularPolygon, Segment, | |
Triangle, intersection) | |
from sympy.testing.pytest import raises, slow | |
from sympy.integrals.integrals import integrate | |
from sympy.functions.special.elliptic_integrals import elliptic_e | |
from sympy.functions.elementary.miscellaneous import Max | |
def test_ellipse_equation_using_slope(): | |
from sympy.abc import x, y | |
e1 = Ellipse(Point(1, 0), 3, 2) | |
assert str(e1.equation(_slope=1)) == str((-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1) | |
e2 = Ellipse(Point(0, 0), 4, 1) | |
assert str(e2.equation(_slope=1)) == str((-x + y)**2/2 + (x + y)**2/32 - 1) | |
e3 = Ellipse(Point(1, 5), 6, 2) | |
assert str(e3.equation(_slope=2)) == str((-2*x + y - 3)**2/20 + (x + 2*y - 11)**2/180 - 1) | |
def test_object_from_equation(): | |
from sympy.abc import x, y, a, b, c, d, e | |
assert Circle(x**2 + y**2 + 3*x + 4*y - 8) == Circle(Point2D(S(-3) / 2, -2), sqrt(57) / 2) | |
assert Circle(x**2 + y**2 + 6*x + 8*y + 25) == Circle(Point2D(-3, -4), 0) | |
assert Circle(a**2 + b**2 + 6*a + 8*b + 25, x='a', y='b') == Circle(Point2D(-3, -4), 0) | |
assert Circle(x**2 + y**2 - 25) == Circle(Point2D(0, 0), 5) | |
assert Circle(x**2 + y**2) == Circle(Point2D(0, 0), 0) | |
assert Circle(a**2 + b**2, x='a', y='b') == Circle(Point2D(0, 0), 0) | |
assert Circle(x**2 + y**2 + 6*x + 8) == Circle(Point2D(-3, 0), 1) | |
assert Circle(x**2 + y**2 + 6*y + 8) == Circle(Point2D(0, -3), 1) | |
assert Circle((x - 1)**2 + y**2 - 9) == Circle(Point2D(1, 0), 3) | |
assert Circle(6*(x**2) + 6*(y**2) + 6*x + 8*y - 25) == Circle(Point2D(Rational(-1, 2), Rational(-2, 3)), 5*sqrt(7)/6) | |
assert Circle(Eq(a**2 + b**2, 25), x='a', y=b) == Circle(Point2D(0, 0), 5) | |
raises(GeometryError, lambda: Circle(x**2 + y**2 + 3*x + 4*y + 26)) | |
raises(GeometryError, lambda: Circle(x**2 + y**2 + 25)) | |
raises(GeometryError, lambda: Circle(a**2 + b**2 + 25, x='a', y='b')) | |
raises(GeometryError, lambda: Circle(x**2 + 6*y + 8)) | |
raises(GeometryError, lambda: Circle(6*(x ** 2) + 4*(y**2) + 6*x + 8*y + 25)) | |
raises(ValueError, lambda: Circle(a**2 + b**2 + 3*a + 4*b - 8)) | |
# .equation() adds 'real=True' assumption; '==' would fail if assumptions differed | |
x, y = symbols('x y', real=True) | |
eq = a*x**2 + a*y**2 + c*x + d*y + e | |
assert expand(Circle(eq).equation()*a) == eq | |
def test_ellipse_geom(): | |
x = Symbol('x', real=True) | |
y = Symbol('y', real=True) | |
t = Symbol('t', real=True) | |
y1 = Symbol('y1', real=True) | |
half = S.Half | |
p1 = Point(0, 0) | |
p2 = Point(1, 1) | |
p4 = Point(0, 1) | |
e1 = Ellipse(p1, 1, 1) | |
e2 = Ellipse(p2, half, 1) | |
e3 = Ellipse(p1, y1, y1) | |
c1 = Circle(p1, 1) | |
c2 = Circle(p2, 1) | |
c3 = Circle(Point(sqrt(2), sqrt(2)), 1) | |
l1 = Line(p1, p2) | |
# Test creation with three points | |
cen, rad = Point(3*half, 2), 5*half | |
assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad) | |
assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2)) | |
raises(ValueError, lambda: Ellipse(None, None, None, 1)) | |
raises(ValueError, lambda: Ellipse()) | |
raises(GeometryError, lambda: Circle(Point(0, 0))) | |
raises(GeometryError, lambda: Circle(Symbol('x')*Symbol('y'))) | |
# Basic Stuff | |
assert Ellipse(None, 1, 1).center == Point(0, 0) | |
assert e1 == c1 | |
assert e1 != e2 | |
assert e1 != l1 | |
assert p4 in e1 | |
assert e1 in e1 | |
assert e2 in e2 | |
assert 1 not in e2 | |
assert p2 not in e2 | |
assert e1.area == pi | |
assert e2.area == pi/2 | |
assert e3.area == pi*y1*abs(y1) | |
assert c1.area == e1.area | |
assert c1.circumference == e1.circumference | |
assert e3.circumference == 2*pi*y1 | |
assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi] | |
assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi] | |
assert c1.minor == 1 | |
assert c1.major == 1 | |
assert c1.hradius == 1 | |
assert c1.vradius == 1 | |
assert Ellipse((1, 1), 0, 0) == Point(1, 1) | |
assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1)) | |
assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2)) | |
# Private Functions | |
assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1))) | |
assert c1 in e1 | |
assert (Line(p1, p2) in e1) is False | |
assert e1.__cmp__(e1) == 0 | |
assert e1.__cmp__(Point(0, 0)) > 0 | |
# Encloses | |
assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True | |
assert e1.encloses(Line(p1, p2)) is False | |
assert e1.encloses(Ray(p1, p2)) is False | |
assert e1.encloses(e1) is False | |
assert e1.encloses( | |
Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True | |
assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True | |
assert e1.encloses(RegularPolygon(p1, 5, 3)) is False | |
assert e1.encloses(RegularPolygon(p2, 5, 3)) is False | |
assert e2.arbitrary_point() in e2 | |
raises(ValueError, lambda: Ellipse(Point(x, y), 1, 1).arbitrary_point(parameter='x')) | |
# Foci | |
f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0) | |
ef = Ellipse(Point(0, 0), 4, 2) | |
assert ef.foci in [(f1, f2), (f2, f1)] | |
# Tangents | |
v = sqrt(2) / 2 | |
p1_1 = Point(v, v) | |
p1_2 = p2 + Point(half, 0) | |
p1_3 = p2 + Point(0, 1) | |
assert e1.tangent_lines(p4) == c1.tangent_lines(p4) | |
assert e2.tangent_lines(p1_2) == [Line(Point(Rational(3, 2), 1), Point(Rational(3, 2), S.Half))] | |
assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(Rational(5, 4), 2))] | |
assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))] | |
assert c1.tangent_lines(p1) == [] | |
assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1))) | |
assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1))) | |
assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2)))) | |
assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False | |
assert c1.is_tangent(e1) is True | |
assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True | |
assert c1.is_tangent( | |
Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is False | |
assert c1.is_tangent( | |
Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False | |
assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False | |
assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \ | |
[Line(Point(0, 0), Point(Rational(77, 25), Rational(132, 25))), | |
Line(Point(0, 0), Point(Rational(33, 5), Rational(22, 5)))] | |
assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \ | |
[Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))] | |
assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \ | |
[Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))] | |
assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \ | |
[Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))), | |
Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ] | |
assert Circle(Point(5, 5), 5).tangent_lines(Point(4, 0)) == \ | |
[Line(Point(4, 0), Point(Rational(40, 13), Rational(5, 13))), | |
Line(Point(4, 0), Point(5, 0))] | |
assert Circle(Point(5, 5), 5).tangent_lines(Point(0, 6)) == \ | |
[Line(Point(0, 6), Point(0, 7)), | |
Line(Point(0, 6), Point(Rational(5, 13), Rational(90, 13)))] | |
# for numerical calculations, we shouldn't demand exact equality, | |
# so only test up to the desired precision | |
def lines_close(l1, l2, prec): | |
""" tests whether l1 and 12 are within 10**(-prec) | |
of each other """ | |
return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec) | |
def line_list_close(ll1, ll2, prec): | |
return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2)) | |
e = Ellipse(Point(0, 0), 2, 1) | |
assert e.normal_lines(Point(0, 0)) == \ | |
[Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))] | |
assert e.normal_lines(Point(1, 0)) == \ | |
[Line(Point(0, 0), Point(1, 0))] | |
assert e.normal_lines((0, 1)) == \ | |
[Line(Point(0, 0), Point(0, 1))] | |
assert line_list_close(e.normal_lines(Point(1, 1), 2), [ | |
Line(Point(Rational(-51, 26), Rational(-1, 5)), Point(Rational(-25, 26), Rational(17, 83))), | |
Line(Point(Rational(28, 29), Rational(-7, 8)), Point(Rational(57, 29), Rational(-9, 2)))], 2) | |
# test the failure of Poly.intervals and checks a point on the boundary | |
p = Point(sqrt(3), S.Half) | |
assert p in e | |
assert line_list_close(e.normal_lines(p, 2), [ | |
Line(Point(Rational(-341, 171), Rational(-1, 13)), Point(Rational(-170, 171), Rational(5, 64))), | |
Line(Point(Rational(26, 15), Rational(-1, 2)), Point(Rational(41, 15), Rational(-43, 26)))], 2) | |
# be sure to use the slope that isn't undefined on boundary | |
e = Ellipse((0, 0), 2, 2*sqrt(3)/3) | |
assert line_list_close(e.normal_lines((1, 1), 2), [ | |
Line(Point(Rational(-64, 33), Rational(-20, 71)), Point(Rational(-31, 33), Rational(2, 13))), | |
Line(Point(1, -1), Point(2, -4))], 2) | |
# general ellipse fails except under certain conditions | |
e = Ellipse((0, 0), x, 1) | |
assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))] | |
raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1))) | |
# Properties | |
major = 3 | |
minor = 1 | |
e4 = Ellipse(p2, minor, major) | |
assert e4.focus_distance == sqrt(major**2 - minor**2) | |
ecc = e4.focus_distance / major | |
assert e4.eccentricity == ecc | |
assert e4.periapsis == major*(1 - ecc) | |
assert e4.apoapsis == major*(1 + ecc) | |
assert e4.semilatus_rectum == major*(1 - ecc ** 2) | |
# independent of orientation | |
e4 = Ellipse(p2, major, minor) | |
assert e4.focus_distance == sqrt(major**2 - minor**2) | |
ecc = e4.focus_distance / major | |
assert e4.eccentricity == ecc | |
assert e4.periapsis == major*(1 - ecc) | |
assert e4.apoapsis == major*(1 + ecc) | |
# Intersection | |
l1 = Line(Point(1, -5), Point(1, 5)) | |
l2 = Line(Point(-5, -1), Point(5, -1)) | |
l3 = Line(Point(-1, -1), Point(1, 1)) | |
l4 = Line(Point(-10, 0), Point(0, 10)) | |
pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)] | |
assert intersection(e2, l4) == [] | |
assert intersection(c1, Point(1, 0)) == [Point(1, 0)] | |
assert intersection(c1, l1) == [Point(1, 0)] | |
assert intersection(c1, l2) == [Point(0, -1)] | |
assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]] | |
assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)] | |
assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)] | |
assert e1.intersection(l1) == [Point(1, 0)] | |
assert e2.intersection(l4) == [] | |
assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)] | |
assert e1.intersection(Circle(Point(5, 0), 1)) == [] | |
assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)] | |
assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == [] | |
assert e1.intersection(Point(2, 0)) == [] | |
assert e1.intersection(e1) == e1 | |
assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)] | |
assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)] | |
assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == [] | |
assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2) | |
) == [Point(5.0, 0, evaluate=False)] | |
assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == [] | |
assert Circle((0, 0), S.Half).intersection( | |
Triangle((-1, 0), (1, 0), (0, 1))) == [ | |
Point(Rational(-1, 2), 0), Point(S.Half, 0)] | |
raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1)))) | |
raises(TypeError, lambda: intersection(e2, Rational(12))) | |
raises(TypeError, lambda: Ellipse.intersection(e2, 1)) | |
# some special case intersections | |
csmall = Circle(p1, 3) | |
cbig = Circle(p1, 5) | |
cout = Circle(Point(5, 5), 1) | |
# one circle inside of another | |
assert csmall.intersection(cbig) == [] | |
# separate circles | |
assert csmall.intersection(cout) == [] | |
# coincident circles | |
assert csmall.intersection(csmall) == csmall | |
v = sqrt(2) | |
t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0)) | |
points = intersection(t1, c1) | |
assert len(points) == 4 | |
assert Point(0, 1) in points | |
assert Point(0, -1) in points | |
assert Point(v/2, v/2) in points | |
assert Point(v/2, -v/2) in points | |
circ = Circle(Point(0, 0), 5) | |
elip = Ellipse(Point(0, 0), 5, 20) | |
assert intersection(circ, elip) in \ | |
[[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]] | |
assert elip.tangent_lines(Point(0, 0)) == [] | |
elip = Ellipse(Point(0, 0), 3, 2) | |
assert elip.tangent_lines(Point(3, 0)) == \ | |
[Line(Point(3, 0), Point(3, -12))] | |
e1 = Ellipse(Point(0, 0), 5, 10) | |
e2 = Ellipse(Point(2, 1), 4, 8) | |
a = Rational(53, 17) | |
c = 2*sqrt(3991)/17 | |
ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)] | |
assert e1.intersection(e2) == ans | |
e2 = Ellipse(Point(x, y), 4, 8) | |
c = sqrt(3991) | |
ans = [Point(-c/68 + a, c*Rational(2, 17) + a/2), Point(c/68 + a, c*Rational(-2, 17) + a/2)] | |
assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans | |
# Combinations of above | |
assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0]) | |
e = Ellipse((1, 2), 3, 2) | |
assert e.tangent_lines(Point(10, 0)) == \ | |
[Line(Point(10, 0), Point(1, 0)), | |
Line(Point(10, 0), Point(Rational(14, 5), Rational(18, 5)))] | |
# encloses_point | |
e = Ellipse((0, 0), 1, 2) | |
assert e.encloses_point(e.center) | |
assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) | |
assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) | |
assert e.encloses_point(e.center + Point(e.hradius, 0)) is False | |
assert e.encloses_point( | |
e.center + Point(e.hradius + Rational(1, 10), 0)) is False | |
e = Ellipse((0, 0), 2, 1) | |
assert e.encloses_point(e.center) | |
assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) | |
assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) | |
assert e.encloses_point(e.center + Point(e.hradius, 0)) is False | |
assert e.encloses_point( | |
e.center + Point(e.hradius + Rational(1, 10), 0)) is False | |
assert c1.encloses_point(Point(1, 0)) is False | |
assert c1.encloses_point(Point(0.3, 0.4)) is True | |
assert e.scale(2, 3) == Ellipse((0, 0), 4, 3) | |
assert e.scale(3, 6) == Ellipse((0, 0), 6, 6) | |
assert e.rotate(pi) == e | |
assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1) | |
raises(NotImplementedError, lambda: e.rotate(pi/3)) | |
# Circle rotation tests (Issue #11743) | |
# Link - https://github.com/sympy/sympy/issues/11743 | |
cir = Circle(Point(1, 0), 1) | |
assert cir.rotate(pi/2) == Circle(Point(0, 1), 1) | |
assert cir.rotate(pi/3) == Circle(Point(S.Half, sqrt(3)/2), 1) | |
assert cir.rotate(pi/3, Point(1, 0)) == Circle(Point(1, 0), 1) | |
assert cir.rotate(pi/3, Point(0, 1)) == Circle(Point(S.Half + sqrt(3)/2, S.Half + sqrt(3)/2), 1) | |
def test_construction(): | |
e1 = Ellipse(hradius=2, vradius=1, eccentricity=None) | |
assert e1.eccentricity == sqrt(3)/2 | |
e2 = Ellipse(hradius=2, vradius=None, eccentricity=sqrt(3)/2) | |
assert e2.vradius == 1 | |
e3 = Ellipse(hradius=None, vradius=1, eccentricity=sqrt(3)/2) | |
assert e3.hradius == 2 | |
# filter(None, iterator) filters out anything falsey, including 0 | |
# eccentricity would be filtered out in this case and the constructor would throw an error | |
e4 = Ellipse(Point(0, 0), hradius=1, eccentricity=0) | |
assert e4.vradius == 1 | |
#tests for eccentricity > 1 | |
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = S(3)/2)) | |
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity=sec(5))) | |
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity=S.Pi-S(2))) | |
#tests for eccentricity = 1 | |
#if vradius is not defined | |
assert Ellipse(None, 1, None, 1).length == 2 | |
#if hradius is not defined | |
raises(GeometryError, lambda: Ellipse(None, None, 1, eccentricity = 1)) | |
#tests for eccentricity < 0 | |
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = -3)) | |
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = -0.5)) | |
def test_ellipse_random_point(): | |
y1 = Symbol('y1', real=True) | |
e3 = Ellipse(Point(0, 0), y1, y1) | |
rx, ry = Symbol('rx'), Symbol('ry') | |
for ind in range(0, 5): | |
r = e3.random_point() | |
# substitution should give zero*y1**2 | |
assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0) | |
# test for the case with seed | |
r = e3.random_point(seed=1) | |
assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0) | |
def test_repr(): | |
assert repr(Circle((0, 1), 2)) == 'Circle(Point2D(0, 1), 2)' | |
def test_transform(): | |
c = Circle((1, 1), 2) | |
assert c.scale(-1) == Circle((-1, 1), 2) | |
assert c.scale(y=-1) == Circle((1, -1), 2) | |
assert c.scale(2) == Ellipse((2, 1), 4, 2) | |
assert Ellipse((0, 0), 2, 3).scale(2, 3, (4, 5)) == \ | |
Ellipse(Point(-4, -10), 4, 9) | |
assert Circle((0, 0), 2).scale(2, 3, (4, 5)) == \ | |
Ellipse(Point(-4, -10), 4, 6) | |
assert Ellipse((0, 0), 2, 3).scale(3, 3, (4, 5)) == \ | |
Ellipse(Point(-8, -10), 6, 9) | |
assert Circle((0, 0), 2).scale(3, 3, (4, 5)) == \ | |
Circle(Point(-8, -10), 6) | |
assert Circle(Point(-8, -10), 6).scale(Rational(1, 3), Rational(1, 3), (4, 5)) == \ | |
Circle((0, 0), 2) | |
assert Circle((0, 0), 2).translate(4, 5) == \ | |
Circle((4, 5), 2) | |
assert Circle((0, 0), 2).scale(3, 3) == \ | |
Circle((0, 0), 6) | |
def test_bounds(): | |
e1 = Ellipse(Point(0, 0), 3, 5) | |
e2 = Ellipse(Point(2, -2), 7, 7) | |
c1 = Circle(Point(2, -2), 7) | |
c2 = Circle(Point(-2, 0), Point(0, 2), Point(2, 0)) | |
assert e1.bounds == (-3, -5, 3, 5) | |
assert e2.bounds == (-5, -9, 9, 5) | |
assert c1.bounds == (-5, -9, 9, 5) | |
assert c2.bounds == (-2, -2, 2, 2) | |
def test_reflect(): | |
b = Symbol('b') | |
m = Symbol('m') | |
l = Line((0, b), slope=m) | |
t1 = Triangle((0, 0), (1, 0), (2, 3)) | |
assert t1.area == -t1.reflect(l).area | |
e = Ellipse((1, 0), 1, 2) | |
assert e.area == -e.reflect(Line((1, 0), slope=0)).area | |
assert e.area == -e.reflect(Line((1, 0), slope=oo)).area | |
raises(NotImplementedError, lambda: e.reflect(Line((1, 0), slope=m))) | |
assert Circle((0, 1), 1).reflect(Line((0, 0), (1, 1))) == Circle(Point2D(1, 0), -1) | |
def test_is_tangent(): | |
e1 = Ellipse(Point(0, 0), 3, 5) | |
c1 = Circle(Point(2, -2), 7) | |
assert e1.is_tangent(Point(0, 0)) is False | |
assert e1.is_tangent(Point(3, 0)) is False | |
assert e1.is_tangent(e1) is True | |
assert e1.is_tangent(Ellipse((0, 0), 1, 2)) is False | |
assert e1.is_tangent(Ellipse((0, 0), 3, 2)) is True | |
assert c1.is_tangent(Ellipse((2, -2), 7, 1)) is True | |
assert c1.is_tangent(Circle((11, -2), 2)) is True | |
assert c1.is_tangent(Circle((7, -2), 2)) is True | |
assert c1.is_tangent(Ray((-5, -2), (-15, -20))) is False | |
assert c1.is_tangent(Ray((-3, -2), (-15, -20))) is False | |
assert c1.is_tangent(Ray((-3, -22), (15, 20))) is False | |
assert c1.is_tangent(Ray((9, 20), (9, -20))) is True | |
assert c1.is_tangent(Ray((2, 5), (9, 5))) is True | |
assert c1.is_tangent(Segment((2, 5), (9, 5))) is True | |
assert e1.is_tangent(Segment((2, 2), (-7, 7))) is False | |
assert e1.is_tangent(Segment((0, 0), (1, 2))) is False | |
assert c1.is_tangent(Segment((0, 0), (-5, -2))) is False | |
assert e1.is_tangent(Segment((3, 0), (12, 12))) is False | |
assert e1.is_tangent(Segment((12, 12), (3, 0))) is False | |
assert e1.is_tangent(Segment((-3, 0), (3, 0))) is False | |
assert e1.is_tangent(Segment((-3, 5), (3, 5))) is True | |
assert e1.is_tangent(Line((10, 0), (10, 10))) is False | |
assert e1.is_tangent(Line((0, 0), (1, 1))) is False | |
assert e1.is_tangent(Line((-3, 0), (-2.99, -0.001))) is False | |
assert e1.is_tangent(Line((-3, 0), (-3, 1))) is True | |
assert e1.is_tangent(Polygon((0, 0), (5, 5), (5, -5))) is False | |
assert e1.is_tangent(Polygon((-100, -50), (-40, -334), (-70, -52))) is False | |
assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 1))) is False | |
assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 5))) is False | |
assert e1.is_tangent(Polygon((-3, 0), (0, -5), (3, 0), (0, 5))) is False | |
assert e1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is True | |
assert c1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is False | |
assert e1.is_tangent(Polygon((0, 0), (3, 0), (7, 7), (0, 5))) is False | |
assert e1.is_tangent(Polygon((3, 12), (3, -12), (6, 5))) is False | |
assert e1.is_tangent(Polygon((3, 12), (3, -12), (0, -5), (0, 5))) is False | |
assert e1.is_tangent(Polygon((3, 0), (5, 7), (6, -5))) is False | |
assert c1.is_tangent(Segment((0, 0), (-5, -2))) is False | |
assert e1.is_tangent(Segment((-3, 0), (3, 0))) is False | |
assert e1.is_tangent(Segment((-3, 5), (3, 5))) is True | |
assert e1.is_tangent(Polygon((0, 0), (5, 5), (5, -5))) is False | |
assert e1.is_tangent(Polygon((-100, -50), (-40, -334), (-70, -52))) is False | |
assert e1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is True | |
assert c1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is False | |
assert e1.is_tangent(Polygon((3, 12), (3, -12), (0, -5), (0, 5))) is False | |
assert e1.is_tangent(Polygon((3, 0), (5, 7), (6, -5))) is False | |
raises(TypeError, lambda: e1.is_tangent(Point(0, 0, 0))) | |
raises(TypeError, lambda: e1.is_tangent(Rational(5))) | |
def test_parameter_value(): | |
t = Symbol('t') | |
e = Ellipse(Point(0, 0), 3, 5) | |
assert e.parameter_value((3, 0), t) == {t: 0} | |
raises(ValueError, lambda: e.parameter_value((4, 0), t)) | |
def test_second_moment_of_area(): | |
x, y = symbols('x, y') | |
e = Ellipse(Point(0, 0), 5, 4) | |
I_yy = 2*4*integrate(sqrt(25 - x**2)*x**2, (x, -5, 5))/5 | |
I_xx = 2*5*integrate(sqrt(16 - y**2)*y**2, (y, -4, 4))/4 | |
Y = 3*sqrt(1 - x**2/5**2) | |
I_xy = integrate(integrate(y, (y, -Y, Y))*x, (x, -5, 5)) | |
assert I_yy == e.second_moment_of_area()[1] | |
assert I_xx == e.second_moment_of_area()[0] | |
assert I_xy == e.second_moment_of_area()[2] | |
#checking for other point | |
t1 = e.second_moment_of_area(Point(6,5)) | |
t2 = (580*pi, 845*pi, 600*pi) | |
assert t1==t2 | |
def test_section_modulus_and_polar_second_moment_of_area(): | |
d = Symbol('d', positive=True) | |
c = Circle((3, 7), 8) | |
assert c.polar_second_moment_of_area() == 2048*pi | |
assert c.section_modulus() == (128*pi, 128*pi) | |
c = Circle((2, 9), d/2) | |
assert c.polar_second_moment_of_area() == pi*d**3*Abs(d)/64 + pi*d*Abs(d)**3/64 | |
assert c.section_modulus() == (pi*d**3/S(32), pi*d**3/S(32)) | |
a, b = symbols('a, b', positive=True) | |
e = Ellipse((4, 6), a, b) | |
assert e.section_modulus() == (pi*a*b**2/S(4), pi*a**2*b/S(4)) | |
assert e.polar_second_moment_of_area() == pi*a**3*b/S(4) + pi*a*b**3/S(4) | |
e = e.rotate(pi/2) # no change in polar and section modulus | |
assert e.section_modulus() == (pi*a**2*b/S(4), pi*a*b**2/S(4)) | |
assert e.polar_second_moment_of_area() == pi*a**3*b/S(4) + pi*a*b**3/S(4) | |
e = Ellipse((a, b), 2, 6) | |
assert e.section_modulus() == (18*pi, 6*pi) | |
assert e.polar_second_moment_of_area() == 120*pi | |
e = Ellipse(Point(0, 0), 2, 2) | |
assert e.section_modulus() == (2*pi, 2*pi) | |
assert e.section_modulus(Point(2, 2)) == (2*pi, 2*pi) | |
assert e.section_modulus((2, 2)) == (2*pi, 2*pi) | |
def test_circumference(): | |
M = Symbol('M') | |
m = Symbol('m') | |
assert Ellipse(Point(0, 0), M, m).circumference == 4 * M * elliptic_e((M ** 2 - m ** 2) / M**2) | |
assert Ellipse(Point(0, 0), 5, 4).circumference == 20 * elliptic_e(S(9) / 25) | |
# circle | |
assert Ellipse(None, 1, None, 0).circumference == 2*pi | |
# test numerically | |
assert abs(Ellipse(None, hradius=5, vradius=3).circumference.evalf(16) - 25.52699886339813) < 1e-10 | |
def test_issue_15259(): | |
assert Circle((1, 2), 0) == Point(1, 2) | |
def test_issue_15797_equals(): | |
Ri = 0.024127189424130748 | |
Ci = (0.0864931002830291, 0.0819863295239654) | |
A = Point(0, 0.0578591400998346) | |
c = Circle(Ci, Ri) # evaluated | |
assert c.is_tangent(c.tangent_lines(A)[0]) == True | |
assert c.center.x.is_Rational | |
assert c.center.y.is_Rational | |
assert c.radius.is_Rational | |
u = Circle(Ci, Ri, evaluate=False) # unevaluated | |
assert u.center.x.is_Float | |
assert u.center.y.is_Float | |
assert u.radius.is_Float | |
def test_auxiliary_circle(): | |
x, y, a, b = symbols('x y a b') | |
e = Ellipse((x, y), a, b) | |
# the general result | |
assert e.auxiliary_circle() == Circle((x, y), Max(a, b)) | |
# a special case where Ellipse is a Circle | |
assert Circle((3, 4), 8).auxiliary_circle() == Circle((3, 4), 8) | |
def test_director_circle(): | |
x, y, a, b = symbols('x y a b') | |
e = Ellipse((x, y), a, b) | |
# the general result | |
assert e.director_circle() == Circle((x, y), sqrt(a**2 + b**2)) | |
# a special case where Ellipse is a Circle | |
assert Circle((3, 4), 8).director_circle() == Circle((3, 4), 8*sqrt(2)) | |
def test_evolute(): | |
#ellipse centered at h,k | |
x, y, h, k = symbols('x y h k',real = True) | |
a, b = symbols('a b') | |
e = Ellipse(Point(h, k), a, b) | |
t1 = (e.hradius*(x - e.center.x))**Rational(2, 3) | |
t2 = (e.vradius*(y - e.center.y))**Rational(2, 3) | |
E = t1 + t2 - (e.hradius**2 - e.vradius**2)**Rational(2, 3) | |
assert e.evolute() == E | |
#Numerical Example | |
e = Ellipse(Point(1, 1), 6, 3) | |
t1 = (6*(x - 1))**Rational(2, 3) | |
t2 = (3*(y - 1))**Rational(2, 3) | |
E = t1 + t2 - (27)**Rational(2, 3) | |
assert e.evolute() == E | |
def test_svg(): | |
e1 = Ellipse(Point(1, 0), 3, 2) | |
assert e1._svg(2, "#FFAAFF") == '<ellipse fill="#FFAAFF" stroke="#555555" stroke-width="4.0" opacity="0.6" cx="1.00000000000000" cy="0" rx="3.00000000000000" ry="2.00000000000000"/>' | |