Spaces:
Sleeping
Sleeping
from typing import Tuple as tTuple, Union as tUnion | |
from sympy.core.add import Add | |
from sympy.core.cache import cacheit | |
from sympy.core.expr import Expr | |
from sympy.core.function import Function, ArgumentIndexError, PoleError, expand_mul | |
from sympy.core.logic import fuzzy_not, fuzzy_or, FuzzyBool, fuzzy_and | |
from sympy.core.mod import Mod | |
from sympy.core.numbers import Rational, pi, Integer, Float, equal_valued | |
from sympy.core.relational import Ne, Eq | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Symbol, Dummy | |
from sympy.core.sympify import sympify | |
from sympy.functions.combinatorial.factorials import factorial, RisingFactorial | |
from sympy.functions.combinatorial.numbers import bernoulli, euler | |
from sympy.functions.elementary.complexes import arg as arg_f, im, re | |
from sympy.functions.elementary.exponential import log, exp | |
from sympy.functions.elementary.integers import floor | |
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.elementary._trigonometric_special import ( | |
cos_table, ipartfrac, fermat_coords) | |
from sympy.logic.boolalg import And | |
from sympy.ntheory import factorint | |
from sympy.polys.specialpolys import symmetric_poly | |
from sympy.utilities.iterables import numbered_symbols | |
############################################################################### | |
########################## UTILITIES ########################################## | |
############################################################################### | |
def _imaginary_unit_as_coefficient(arg): | |
""" Helper to extract symbolic coefficient for imaginary unit """ | |
if isinstance(arg, Float): | |
return None | |
else: | |
return arg.as_coefficient(S.ImaginaryUnit) | |
############################################################################### | |
########################## TRIGONOMETRIC FUNCTIONS ############################ | |
############################################################################### | |
class TrigonometricFunction(Function): | |
"""Base class for trigonometric functions. """ | |
unbranched = True | |
_singularities = (S.ComplexInfinity,) | |
def _eval_is_rational(self): | |
s = self.func(*self.args) | |
if s.func == self.func: | |
if s.args[0].is_rational and fuzzy_not(s.args[0].is_zero): | |
return False | |
else: | |
return s.is_rational | |
def _eval_is_algebraic(self): | |
s = self.func(*self.args) | |
if s.func == self.func: | |
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic: | |
return False | |
pi_coeff = _pi_coeff(self.args[0]) | |
if pi_coeff is not None and pi_coeff.is_rational: | |
return True | |
else: | |
return s.is_algebraic | |
def _eval_expand_complex(self, deep=True, **hints): | |
re_part, im_part = self.as_real_imag(deep=deep, **hints) | |
return re_part + im_part*S.ImaginaryUnit | |
def _as_real_imag(self, deep=True, **hints): | |
if self.args[0].is_extended_real: | |
if deep: | |
hints['complex'] = False | |
return (self.args[0].expand(deep, **hints), S.Zero) | |
else: | |
return (self.args[0], S.Zero) | |
if deep: | |
re, im = self.args[0].expand(deep, **hints).as_real_imag() | |
else: | |
re, im = self.args[0].as_real_imag() | |
return (re, im) | |
def _period(self, general_period, symbol=None): | |
f = expand_mul(self.args[0]) | |
if symbol is None: | |
symbol = tuple(f.free_symbols)[0] | |
if not f.has(symbol): | |
return S.Zero | |
if f == symbol: | |
return general_period | |
if symbol in f.free_symbols: | |
if f.is_Mul: | |
g, h = f.as_independent(symbol) | |
if h == symbol: | |
return general_period/abs(g) | |
if f.is_Add: | |
a, h = f.as_independent(symbol) | |
g, h = h.as_independent(symbol, as_Add=False) | |
if h == symbol: | |
return general_period/abs(g) | |
raise NotImplementedError("Use the periodicity function instead.") | |
def _table2(): | |
# If nested sqrt's are worse than un-evaluation | |
# you can require q to be in (1, 2, 3, 4, 6, 12) | |
# q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return | |
# expressions with 2 or fewer sqrt nestings. | |
return { | |
12: (3, 4), | |
20: (4, 5), | |
30: (5, 6), | |
15: (6, 10), | |
24: (6, 8), | |
40: (8, 10), | |
60: (20, 30), | |
120: (40, 60) | |
} | |
def _peeloff_pi(arg): | |
r""" | |
Split ARG into two parts, a "rest" and a multiple of $\pi$. | |
This assumes ARG to be an Add. | |
The multiple of $\pi$ returned in the second position is always a Rational. | |
Examples | |
======== | |
>>> from sympy.functions.elementary.trigonometric import _peeloff_pi | |
>>> from sympy import pi | |
>>> from sympy.abc import x, y | |
>>> _peeloff_pi(x + pi/2) | |
(x, 1/2) | |
>>> _peeloff_pi(x + 2*pi/3 + pi*y) | |
(x + pi*y + pi/6, 1/2) | |
""" | |
pi_coeff = S.Zero | |
rest_terms = [] | |
for a in Add.make_args(arg): | |
K = a.coeff(pi) | |
if K and K.is_rational: | |
pi_coeff += K | |
else: | |
rest_terms.append(a) | |
if pi_coeff is S.Zero: | |
return arg, S.Zero | |
m1 = (pi_coeff % S.Half) | |
m2 = pi_coeff - m1 | |
if m2.is_integer or ((2*m2).is_integer and m2.is_even is False): | |
return Add(*(rest_terms + [m1*pi])), m2 | |
return arg, S.Zero | |
def _pi_coeff(arg: Expr, cycles: int = 1) -> tUnion[Expr, None]: | |
r""" | |
When arg is a Number times $\pi$ (e.g. $3\pi/2$) then return the Number | |
normalized to be in the range $[0, 2]$, else `None`. | |
When an even multiple of $\pi$ is encountered, if it is multiplying | |
something with known parity then the multiple is returned as 0 otherwise | |
as 2. | |
Examples | |
======== | |
>>> from sympy.functions.elementary.trigonometric import _pi_coeff | |
>>> from sympy import pi, Dummy | |
>>> from sympy.abc import x | |
>>> _pi_coeff(3*x*pi) | |
3*x | |
>>> _pi_coeff(11*pi/7) | |
11/7 | |
>>> _pi_coeff(-11*pi/7) | |
3/7 | |
>>> _pi_coeff(4*pi) | |
0 | |
>>> _pi_coeff(5*pi) | |
1 | |
>>> _pi_coeff(5.0*pi) | |
1 | |
>>> _pi_coeff(5.5*pi) | |
3/2 | |
>>> _pi_coeff(2 + pi) | |
>>> _pi_coeff(2*Dummy(integer=True)*pi) | |
2 | |
>>> _pi_coeff(2*Dummy(even=True)*pi) | |
0 | |
""" | |
if arg is pi: | |
return S.One | |
elif not arg: | |
return S.Zero | |
elif arg.is_Mul: | |
cx = arg.coeff(pi) | |
if cx: | |
c, x = cx.as_coeff_Mul() # pi is not included as coeff | |
if c.is_Float: | |
# recast exact binary fractions to Rationals | |
f = abs(c) % 1 | |
if f != 0: | |
p = -int(round(log(f, 2).evalf())) | |
m = 2**p | |
cm = c*m | |
i = int(cm) | |
if equal_valued(i, cm): | |
c = Rational(i, m) | |
cx = c*x | |
else: | |
c = Rational(int(c)) | |
cx = c*x | |
if x.is_integer: | |
c2 = c % 2 | |
if c2 == 1: | |
return x | |
elif not c2: | |
if x.is_even is not None: # known parity | |
return S.Zero | |
return Integer(2) | |
else: | |
return c2*x | |
return cx | |
elif arg.is_zero: | |
return S.Zero | |
return None | |
class sin(TrigonometricFunction): | |
r""" | |
The sine function. | |
Returns the sine of x (measured in radians). | |
Explanation | |
=========== | |
This function will evaluate automatically in the | |
case $x/\pi$ is some rational number [4]_. For example, | |
if $x$ is a multiple of $\pi$, $\pi/2$, $\pi/3$, $\pi/4$, and $\pi/6$. | |
Examples | |
======== | |
>>> from sympy import sin, pi | |
>>> from sympy.abc import x | |
>>> sin(x**2).diff(x) | |
2*x*cos(x**2) | |
>>> sin(1).diff(x) | |
0 | |
>>> sin(pi) | |
0 | |
>>> sin(pi/2) | |
1 | |
>>> sin(pi/6) | |
1/2 | |
>>> sin(pi/12) | |
-sqrt(2)/4 + sqrt(6)/4 | |
See Also | |
======== | |
csc, cos, sec, tan, cot | |
asin, acsc, acos, asec, atan, acot, atan2 | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions | |
.. [2] https://dlmf.nist.gov/4.14 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/Sin | |
.. [4] https://mathworld.wolfram.com/TrigonometryAngles.html | |
""" | |
def period(self, symbol=None): | |
return self._period(2*pi, symbol) | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return cos(self.args[0]) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, arg): | |
from sympy.calculus.accumulationbounds import AccumBounds | |
from sympy.sets.setexpr import SetExpr | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg.is_zero: | |
return S.Zero | |
elif arg in (S.Infinity, S.NegativeInfinity): | |
return AccumBounds(-1, 1) | |
if arg is S.ComplexInfinity: | |
return S.NaN | |
if isinstance(arg, AccumBounds): | |
from sympy.sets.sets import FiniteSet | |
min, max = arg.min, arg.max | |
d = floor(min/(2*pi)) | |
if min is not S.NegativeInfinity: | |
min = min - d*2*pi | |
if max is not S.Infinity: | |
max = max - d*2*pi | |
if AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(5, 2))) \ | |
is not S.EmptySet and \ | |
AccumBounds(min, max).intersection(FiniteSet(pi*Rational(3, 2), | |
pi*Rational(7, 2))) is not S.EmptySet: | |
return AccumBounds(-1, 1) | |
elif AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(5, 2))) \ | |
is not S.EmptySet: | |
return AccumBounds(Min(sin(min), sin(max)), 1) | |
elif AccumBounds(min, max).intersection(FiniteSet(pi*Rational(3, 2), pi*Rational(8, 2))) \ | |
is not S.EmptySet: | |
return AccumBounds(-1, Max(sin(min), sin(max))) | |
else: | |
return AccumBounds(Min(sin(min), sin(max)), | |
Max(sin(min), sin(max))) | |
elif isinstance(arg, SetExpr): | |
return arg._eval_func(cls) | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
from sympy.functions.elementary.hyperbolic import sinh | |
return S.ImaginaryUnit*sinh(i_coeff) | |
pi_coeff = _pi_coeff(arg) | |
if pi_coeff is not None: | |
if pi_coeff.is_integer: | |
return S.Zero | |
if (2*pi_coeff).is_integer: | |
# is_even-case handled above as then pi_coeff.is_integer, | |
# so check if known to be not even | |
if pi_coeff.is_even is False: | |
return S.NegativeOne**(pi_coeff - S.Half) | |
if not pi_coeff.is_Rational: | |
narg = pi_coeff*pi | |
if narg != arg: | |
return cls(narg) | |
return None | |
# https://github.com/sympy/sympy/issues/6048 | |
# transform a sine to a cosine, to avoid redundant code | |
if pi_coeff.is_Rational: | |
x = pi_coeff % 2 | |
if x > 1: | |
return -cls((x % 1)*pi) | |
if 2*x > 1: | |
return cls((1 - x)*pi) | |
narg = ((pi_coeff + Rational(3, 2)) % 2)*pi | |
result = cos(narg) | |
if not isinstance(result, cos): | |
return result | |
if pi_coeff*pi != arg: | |
return cls(pi_coeff*pi) | |
return None | |
if arg.is_Add: | |
x, m = _peeloff_pi(arg) | |
if m: | |
m = m*pi | |
return sin(m)*cos(x) + cos(m)*sin(x) | |
if arg.is_zero: | |
return S.Zero | |
if isinstance(arg, asin): | |
return arg.args[0] | |
if isinstance(arg, atan): | |
x = arg.args[0] | |
return x/sqrt(1 + x**2) | |
if isinstance(arg, atan2): | |
y, x = arg.args | |
return y/sqrt(x**2 + y**2) | |
if isinstance(arg, acos): | |
x = arg.args[0] | |
return sqrt(1 - x**2) | |
if isinstance(arg, acot): | |
x = arg.args[0] | |
return 1/(sqrt(1 + 1/x**2)*x) | |
if isinstance(arg, acsc): | |
x = arg.args[0] | |
return 1/x | |
if isinstance(arg, asec): | |
x = arg.args[0] | |
return sqrt(1 - 1/x**2) | |
def taylor_term(n, x, *previous_terms): | |
if n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) > 2: | |
p = previous_terms[-2] | |
return -p*x**2/(n*(n - 1)) | |
else: | |
return S.NegativeOne**(n//2)*x**n/factorial(n) | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
arg = self.args[0] | |
if logx is not None: | |
arg = arg.subs(log(x), logx) | |
if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity): | |
raise PoleError("Cannot expand %s around 0" % (self)) | |
return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir) | |
def _eval_rewrite_as_exp(self, arg, **kwargs): | |
from sympy.functions.elementary.hyperbolic import HyperbolicFunction | |
I = S.ImaginaryUnit | |
if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)): | |
arg = arg.func(arg.args[0]).rewrite(exp) | |
return (exp(arg*I) - exp(-arg*I))/(2*I) | |
def _eval_rewrite_as_Pow(self, arg, **kwargs): | |
if isinstance(arg, log): | |
I = S.ImaginaryUnit | |
x = arg.args[0] | |
return I*x**-I/2 - I*x**I /2 | |
def _eval_rewrite_as_cos(self, arg, **kwargs): | |
return cos(arg - pi/2, evaluate=False) | |
def _eval_rewrite_as_tan(self, arg, **kwargs): | |
tan_half = tan(S.Half*arg) | |
return 2*tan_half/(1 + tan_half**2) | |
def _eval_rewrite_as_sincos(self, arg, **kwargs): | |
return sin(arg)*cos(arg)/cos(arg) | |
def _eval_rewrite_as_cot(self, arg, **kwargs): | |
cot_half = cot(S.Half*arg) | |
return Piecewise((0, And(Eq(im(arg), 0), Eq(Mod(arg, pi), 0))), | |
(2*cot_half/(1 + cot_half**2), True)) | |
def _eval_rewrite_as_pow(self, arg, **kwargs): | |
return self.rewrite(cos, **kwargs).rewrite(pow, **kwargs) | |
def _eval_rewrite_as_sqrt(self, arg, **kwargs): | |
return self.rewrite(cos, **kwargs).rewrite(sqrt, **kwargs) | |
def _eval_rewrite_as_csc(self, arg, **kwargs): | |
return 1/csc(arg) | |
def _eval_rewrite_as_sec(self, arg, **kwargs): | |
return 1/sec(arg - pi/2, evaluate=False) | |
def _eval_rewrite_as_sinc(self, arg, **kwargs): | |
return arg*sinc(arg) | |
def _eval_rewrite_as_besselj(self, arg, **kwargs): | |
from sympy.functions.special.bessel import besselj | |
return sqrt(pi*arg/2)*besselj(S.Half, arg) | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def as_real_imag(self, deep=True, **hints): | |
from sympy.functions.elementary.hyperbolic import cosh, sinh | |
re, im = self._as_real_imag(deep=deep, **hints) | |
return (sin(re)*cosh(im), cos(re)*sinh(im)) | |
def _eval_expand_trig(self, **hints): | |
from sympy.functions.special.polynomials import chebyshevt, chebyshevu | |
arg = self.args[0] | |
x = None | |
if arg.is_Add: # TODO, implement more if deep stuff here | |
# TODO: Do this more efficiently for more than two terms | |
x, y = arg.as_two_terms() | |
sx = sin(x, evaluate=False)._eval_expand_trig() | |
sy = sin(y, evaluate=False)._eval_expand_trig() | |
cx = cos(x, evaluate=False)._eval_expand_trig() | |
cy = cos(y, evaluate=False)._eval_expand_trig() | |
return sx*cy + sy*cx | |
elif arg.is_Mul: | |
n, x = arg.as_coeff_Mul(rational=True) | |
if n.is_Integer: # n will be positive because of .eval | |
# canonicalization | |
# See https://mathworld.wolfram.com/Multiple-AngleFormulas.html | |
if n.is_odd: | |
return S.NegativeOne**((n - 1)/2)*chebyshevt(n, sin(x)) | |
else: | |
return expand_mul(S.NegativeOne**(n/2 - 1)*cos(x)* | |
chebyshevu(n - 1, sin(x)), deep=False) | |
return sin(arg) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
from sympy.calculus.accumulationbounds import AccumBounds | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
n = x0/pi | |
if n.is_integer: | |
lt = (arg - n*pi).as_leading_term(x) | |
return (S.NegativeOne**n)*lt | |
if x0 is S.ComplexInfinity: | |
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') | |
if x0 in [S.Infinity, S.NegativeInfinity]: | |
return AccumBounds(-1, 1) | |
return self.func(x0) if x0.is_finite else self | |
def _eval_is_extended_real(self): | |
if self.args[0].is_extended_real: | |
return True | |
def _eval_is_finite(self): | |
arg = self.args[0] | |
if arg.is_extended_real: | |
return True | |
def _eval_is_zero(self): | |
rest, pi_mult = _peeloff_pi(self.args[0]) | |
if rest.is_zero: | |
return pi_mult.is_integer | |
def _eval_is_complex(self): | |
if self.args[0].is_extended_real \ | |
or self.args[0].is_complex: | |
return True | |
class cos(TrigonometricFunction): | |
""" | |
The cosine function. | |
Returns the cosine of x (measured in radians). | |
Explanation | |
=========== | |
See :func:`sin` for notes about automatic evaluation. | |
Examples | |
======== | |
>>> from sympy import cos, pi | |
>>> from sympy.abc import x | |
>>> cos(x**2).diff(x) | |
-2*x*sin(x**2) | |
>>> cos(1).diff(x) | |
0 | |
>>> cos(pi) | |
-1 | |
>>> cos(pi/2) | |
0 | |
>>> cos(2*pi/3) | |
-1/2 | |
>>> cos(pi/12) | |
sqrt(2)/4 + sqrt(6)/4 | |
See Also | |
======== | |
sin, csc, sec, tan, cot | |
asin, acsc, acos, asec, atan, acot, atan2 | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions | |
.. [2] https://dlmf.nist.gov/4.14 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/Cos | |
""" | |
def period(self, symbol=None): | |
return self._period(2*pi, symbol) | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return -sin(self.args[0]) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, arg): | |
from sympy.functions.special.polynomials import chebyshevt | |
from sympy.calculus.accumulationbounds import AccumBounds | |
from sympy.sets.setexpr import SetExpr | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg.is_zero: | |
return S.One | |
elif arg in (S.Infinity, S.NegativeInfinity): | |
# In this case it is better to return AccumBounds(-1, 1) | |
# rather than returning S.NaN, since AccumBounds(-1, 1) | |
# preserves the information that sin(oo) is between | |
# -1 and 1, where S.NaN does not do that. | |
return AccumBounds(-1, 1) | |
if arg is S.ComplexInfinity: | |
return S.NaN | |
if isinstance(arg, AccumBounds): | |
return sin(arg + pi/2) | |
elif isinstance(arg, SetExpr): | |
return arg._eval_func(cls) | |
if arg.is_extended_real and arg.is_finite is False: | |
return AccumBounds(-1, 1) | |
if arg.could_extract_minus_sign(): | |
return cls(-arg) | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
from sympy.functions.elementary.hyperbolic import cosh | |
return cosh(i_coeff) | |
pi_coeff = _pi_coeff(arg) | |
if pi_coeff is not None: | |
if pi_coeff.is_integer: | |
return (S.NegativeOne)**pi_coeff | |
if (2*pi_coeff).is_integer: | |
# is_even-case handled above as then pi_coeff.is_integer, | |
# so check if known to be not even | |
if pi_coeff.is_even is False: | |
return S.Zero | |
if not pi_coeff.is_Rational: | |
narg = pi_coeff*pi | |
if narg != arg: | |
return cls(narg) | |
return None | |
# cosine formula ##################### | |
# https://github.com/sympy/sympy/issues/6048 | |
# explicit calculations are performed for | |
# cos(k pi/n) for n = 8,10,12,15,20,24,30,40,60,120 | |
# Some other exact values like cos(k pi/240) can be | |
# calculated using a partial-fraction decomposition | |
# by calling cos( X ).rewrite(sqrt) | |
if pi_coeff.is_Rational: | |
q = pi_coeff.q | |
p = pi_coeff.p % (2*q) | |
if p > q: | |
narg = (pi_coeff - 1)*pi | |
return -cls(narg) | |
if 2*p > q: | |
narg = (1 - pi_coeff)*pi | |
return -cls(narg) | |
# If nested sqrt's are worse than un-evaluation | |
# you can require q to be in (1, 2, 3, 4, 6, 12) | |
# q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return | |
# expressions with 2 or fewer sqrt nestings. | |
table2 = _table2() | |
if q in table2: | |
a, b = table2[q] | |
a, b = p*pi/a, p*pi/b | |
nvala, nvalb = cls(a), cls(b) | |
if None in (nvala, nvalb): | |
return None | |
return nvala*nvalb + cls(pi/2 - a)*cls(pi/2 - b) | |
if q > 12: | |
return None | |
cst_table_some = { | |
3: S.Half, | |
5: (sqrt(5) + 1) / 4, | |
} | |
if q in cst_table_some: | |
cts = cst_table_some[pi_coeff.q] | |
return chebyshevt(pi_coeff.p, cts).expand() | |
if 0 == q % 2: | |
narg = (pi_coeff*2)*pi | |
nval = cls(narg) | |
if None == nval: | |
return None | |
x = (2*pi_coeff + 1)/2 | |
sign_cos = (-1)**((-1 if x < 0 else 1)*int(abs(x))) | |
return sign_cos*sqrt( (1 + nval)/2 ) | |
return None | |
if arg.is_Add: | |
x, m = _peeloff_pi(arg) | |
if m: | |
m = m*pi | |
return cos(m)*cos(x) - sin(m)*sin(x) | |
if arg.is_zero: | |
return S.One | |
if isinstance(arg, acos): | |
return arg.args[0] | |
if isinstance(arg, atan): | |
x = arg.args[0] | |
return 1/sqrt(1 + x**2) | |
if isinstance(arg, atan2): | |
y, x = arg.args | |
return x/sqrt(x**2 + y**2) | |
if isinstance(arg, asin): | |
x = arg.args[0] | |
return sqrt(1 - x ** 2) | |
if isinstance(arg, acot): | |
x = arg.args[0] | |
return 1/sqrt(1 + 1/x**2) | |
if isinstance(arg, acsc): | |
x = arg.args[0] | |
return sqrt(1 - 1/x**2) | |
if isinstance(arg, asec): | |
x = arg.args[0] | |
return 1/x | |
def taylor_term(n, x, *previous_terms): | |
if n < 0 or n % 2 == 1: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) > 2: | |
p = previous_terms[-2] | |
return -p*x**2/(n*(n - 1)) | |
else: | |
return S.NegativeOne**(n//2)*x**n/factorial(n) | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
arg = self.args[0] | |
if logx is not None: | |
arg = arg.subs(log(x), logx) | |
if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity): | |
raise PoleError("Cannot expand %s around 0" % (self)) | |
return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir) | |
def _eval_rewrite_as_exp(self, arg, **kwargs): | |
I = S.ImaginaryUnit | |
from sympy.functions.elementary.hyperbolic import HyperbolicFunction | |
if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)): | |
arg = arg.func(arg.args[0]).rewrite(exp, **kwargs) | |
return (exp(arg*I) + exp(-arg*I))/2 | |
def _eval_rewrite_as_Pow(self, arg, **kwargs): | |
if isinstance(arg, log): | |
I = S.ImaginaryUnit | |
x = arg.args[0] | |
return x**I/2 + x**-I/2 | |
def _eval_rewrite_as_sin(self, arg, **kwargs): | |
return sin(arg + pi/2, evaluate=False) | |
def _eval_rewrite_as_tan(self, arg, **kwargs): | |
tan_half = tan(S.Half*arg)**2 | |
return (1 - tan_half)/(1 + tan_half) | |
def _eval_rewrite_as_sincos(self, arg, **kwargs): | |
return sin(arg)*cos(arg)/sin(arg) | |
def _eval_rewrite_as_cot(self, arg, **kwargs): | |
cot_half = cot(S.Half*arg)**2 | |
return Piecewise((1, And(Eq(im(arg), 0), Eq(Mod(arg, 2*pi), 0))), | |
((cot_half - 1)/(cot_half + 1), True)) | |
def _eval_rewrite_as_pow(self, arg, **kwargs): | |
return self._eval_rewrite_as_sqrt(arg, **kwargs) | |
def _eval_rewrite_as_sqrt(self, arg: Expr, **kwargs): | |
from sympy.functions.special.polynomials import chebyshevt | |
pi_coeff = _pi_coeff(arg) | |
if pi_coeff is None: | |
return None | |
if isinstance(pi_coeff, Integer): | |
return None | |
if not isinstance(pi_coeff, Rational): | |
return None | |
cst_table_some = cos_table() | |
if pi_coeff.q in cst_table_some: | |
rv = chebyshevt(pi_coeff.p, cst_table_some[pi_coeff.q]()) | |
if pi_coeff.q < 257: | |
rv = rv.expand() | |
return rv | |
if not pi_coeff.q % 2: # recursively remove factors of 2 | |
pico2 = pi_coeff * 2 | |
nval = cos(pico2 * pi).rewrite(sqrt, **kwargs) | |
x = (pico2 + 1) / 2 | |
sign_cos = -1 if int(x) % 2 else 1 | |
return sign_cos * sqrt((1 + nval) / 2) | |
FC = fermat_coords(pi_coeff.q) | |
if FC: | |
denoms = FC | |
else: | |
denoms = [b**e for b, e in factorint(pi_coeff.q).items()] | |
apart = ipartfrac(*denoms) | |
decomp = (pi_coeff.p * Rational(n, d) for n, d in zip(apart, denoms)) | |
X = [(x[1], x[0]*pi) for x in zip(decomp, numbered_symbols('z'))] | |
pcls = cos(sum(x[0] for x in X))._eval_expand_trig().subs(X) | |
if not FC or len(FC) == 1: | |
return pcls | |
return pcls.rewrite(sqrt, **kwargs) | |
def _eval_rewrite_as_sec(self, arg, **kwargs): | |
return 1/sec(arg) | |
def _eval_rewrite_as_csc(self, arg, **kwargs): | |
return 1/sec(arg).rewrite(csc, **kwargs) | |
def _eval_rewrite_as_besselj(self, arg, **kwargs): | |
from sympy.functions.special.bessel import besselj | |
return Piecewise( | |
(sqrt(pi*arg/2)*besselj(-S.Half, arg), Ne(arg, 0)), | |
(1, True) | |
) | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def as_real_imag(self, deep=True, **hints): | |
from sympy.functions.elementary.hyperbolic import cosh, sinh | |
re, im = self._as_real_imag(deep=deep, **hints) | |
return (cos(re)*cosh(im), -sin(re)*sinh(im)) | |
def _eval_expand_trig(self, **hints): | |
from sympy.functions.special.polynomials import chebyshevt | |
arg = self.args[0] | |
x = None | |
if arg.is_Add: # TODO: Do this more efficiently for more than two terms | |
x, y = arg.as_two_terms() | |
sx = sin(x, evaluate=False)._eval_expand_trig() | |
sy = sin(y, evaluate=False)._eval_expand_trig() | |
cx = cos(x, evaluate=False)._eval_expand_trig() | |
cy = cos(y, evaluate=False)._eval_expand_trig() | |
return cx*cy - sx*sy | |
elif arg.is_Mul: | |
coeff, terms = arg.as_coeff_Mul(rational=True) | |
if coeff.is_Integer: | |
return chebyshevt(coeff, cos(terms)) | |
return cos(arg) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
from sympy.calculus.accumulationbounds import AccumBounds | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
n = (x0 + pi/2)/pi | |
if n.is_integer: | |
lt = (arg - n*pi + pi/2).as_leading_term(x) | |
return (S.NegativeOne**n)*lt | |
if x0 is S.ComplexInfinity: | |
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') | |
if x0 in [S.Infinity, S.NegativeInfinity]: | |
return AccumBounds(-1, 1) | |
return self.func(x0) if x0.is_finite else self | |
def _eval_is_extended_real(self): | |
if self.args[0].is_extended_real: | |
return True | |
def _eval_is_finite(self): | |
arg = self.args[0] | |
if arg.is_extended_real: | |
return True | |
def _eval_is_complex(self): | |
if self.args[0].is_extended_real \ | |
or self.args[0].is_complex: | |
return True | |
def _eval_is_zero(self): | |
rest, pi_mult = _peeloff_pi(self.args[0]) | |
if rest.is_zero and pi_mult: | |
return (pi_mult - S.Half).is_integer | |
class tan(TrigonometricFunction): | |
""" | |
The tangent function. | |
Returns the tangent of x (measured in radians). | |
Explanation | |
=========== | |
See :class:`sin` for notes about automatic evaluation. | |
Examples | |
======== | |
>>> from sympy import tan, pi | |
>>> from sympy.abc import x | |
>>> tan(x**2).diff(x) | |
2*x*(tan(x**2)**2 + 1) | |
>>> tan(1).diff(x) | |
0 | |
>>> tan(pi/8).expand() | |
-1 + sqrt(2) | |
See Also | |
======== | |
sin, csc, cos, sec, cot | |
asin, acsc, acos, asec, atan, acot, atan2 | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions | |
.. [2] https://dlmf.nist.gov/4.14 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/Tan | |
""" | |
def period(self, symbol=None): | |
return self._period(pi, symbol) | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return S.One + self**2 | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return atan | |
def eval(cls, arg): | |
from sympy.calculus.accumulationbounds import AccumBounds | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg.is_zero: | |
return S.Zero | |
elif arg in (S.Infinity, S.NegativeInfinity): | |
return AccumBounds(S.NegativeInfinity, S.Infinity) | |
if arg is S.ComplexInfinity: | |
return S.NaN | |
if isinstance(arg, AccumBounds): | |
min, max = arg.min, arg.max | |
d = floor(min/pi) | |
if min is not S.NegativeInfinity: | |
min = min - d*pi | |
if max is not S.Infinity: | |
max = max - d*pi | |
from sympy.sets.sets import FiniteSet | |
if AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(3, 2))): | |
return AccumBounds(S.NegativeInfinity, S.Infinity) | |
else: | |
return AccumBounds(tan(min), tan(max)) | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
from sympy.functions.elementary.hyperbolic import tanh | |
return S.ImaginaryUnit*tanh(i_coeff) | |
pi_coeff = _pi_coeff(arg, 2) | |
if pi_coeff is not None: | |
if pi_coeff.is_integer: | |
return S.Zero | |
if not pi_coeff.is_Rational: | |
narg = pi_coeff*pi | |
if narg != arg: | |
return cls(narg) | |
return None | |
if pi_coeff.is_Rational: | |
q = pi_coeff.q | |
p = pi_coeff.p % q | |
# ensure simplified results are returned for n*pi/5, n*pi/10 | |
table10 = { | |
1: sqrt(1 - 2*sqrt(5)/5), | |
2: sqrt(5 - 2*sqrt(5)), | |
3: sqrt(1 + 2*sqrt(5)/5), | |
4: sqrt(5 + 2*sqrt(5)) | |
} | |
if q in (5, 10): | |
n = 10*p/q | |
if n > 5: | |
n = 10 - n | |
return -table10[n] | |
else: | |
return table10[n] | |
if not pi_coeff.q % 2: | |
narg = pi_coeff*pi*2 | |
cresult, sresult = cos(narg), cos(narg - pi/2) | |
if not isinstance(cresult, cos) \ | |
and not isinstance(sresult, cos): | |
if sresult == 0: | |
return S.ComplexInfinity | |
return 1/sresult - cresult/sresult | |
table2 = _table2() | |
if q in table2: | |
a, b = table2[q] | |
nvala, nvalb = cls(p*pi/a), cls(p*pi/b) | |
if None in (nvala, nvalb): | |
return None | |
return (nvala - nvalb)/(1 + nvala*nvalb) | |
narg = ((pi_coeff + S.Half) % 1 - S.Half)*pi | |
# see cos() to specify which expressions should be | |
# expanded automatically in terms of radicals | |
cresult, sresult = cos(narg), cos(narg - pi/2) | |
if not isinstance(cresult, cos) \ | |
and not isinstance(sresult, cos): | |
if cresult == 0: | |
return S.ComplexInfinity | |
return (sresult/cresult) | |
if narg != arg: | |
return cls(narg) | |
if arg.is_Add: | |
x, m = _peeloff_pi(arg) | |
if m: | |
tanm = tan(m*pi) | |
if tanm is S.ComplexInfinity: | |
return -cot(x) | |
else: # tanm == 0 | |
return tan(x) | |
if arg.is_zero: | |
return S.Zero | |
if isinstance(arg, atan): | |
return arg.args[0] | |
if isinstance(arg, atan2): | |
y, x = arg.args | |
return y/x | |
if isinstance(arg, asin): | |
x = arg.args[0] | |
return x/sqrt(1 - x**2) | |
if isinstance(arg, acos): | |
x = arg.args[0] | |
return sqrt(1 - x**2)/x | |
if isinstance(arg, acot): | |
x = arg.args[0] | |
return 1/x | |
if isinstance(arg, acsc): | |
x = arg.args[0] | |
return 1/(sqrt(1 - 1/x**2)*x) | |
if isinstance(arg, asec): | |
x = arg.args[0] | |
return sqrt(1 - 1/x**2)*x | |
def taylor_term(n, x, *previous_terms): | |
if n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
a, b = ((n - 1)//2), 2**(n + 1) | |
B = bernoulli(n + 1) | |
F = factorial(n + 1) | |
return S.NegativeOne**a*b*(b - 1)*B/F*x**n | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
i = self.args[0].limit(x, 0)*2/pi | |
if i and i.is_Integer: | |
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx) | |
return Function._eval_nseries(self, x, n=n, logx=logx) | |
def _eval_rewrite_as_Pow(self, arg, **kwargs): | |
if isinstance(arg, log): | |
I = S.ImaginaryUnit | |
x = arg.args[0] | |
return I*(x**-I - x**I)/(x**-I + x**I) | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def as_real_imag(self, deep=True, **hints): | |
re, im = self._as_real_imag(deep=deep, **hints) | |
if im: | |
from sympy.functions.elementary.hyperbolic import cosh, sinh | |
denom = cos(2*re) + cosh(2*im) | |
return (sin(2*re)/denom, sinh(2*im)/denom) | |
else: | |
return (self.func(re), S.Zero) | |
def _eval_expand_trig(self, **hints): | |
arg = self.args[0] | |
x = None | |
if arg.is_Add: | |
n = len(arg.args) | |
TX = [] | |
for x in arg.args: | |
tx = tan(x, evaluate=False)._eval_expand_trig() | |
TX.append(tx) | |
Yg = numbered_symbols('Y') | |
Y = [ next(Yg) for i in range(n) ] | |
p = [0, 0] | |
for i in range(n + 1): | |
p[1 - i % 2] += symmetric_poly(i, Y)*(-1)**((i % 4)//2) | |
return (p[0]/p[1]).subs(list(zip(Y, TX))) | |
elif arg.is_Mul: | |
coeff, terms = arg.as_coeff_Mul(rational=True) | |
if coeff.is_Integer and coeff > 1: | |
I = S.ImaginaryUnit | |
z = Symbol('dummy', real=True) | |
P = ((1 + I*z)**coeff).expand() | |
return (im(P)/re(P)).subs([(z, tan(terms))]) | |
return tan(arg) | |
def _eval_rewrite_as_exp(self, arg, **kwargs): | |
I = S.ImaginaryUnit | |
from sympy.functions.elementary.hyperbolic import HyperbolicFunction | |
if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)): | |
arg = arg.func(arg.args[0]).rewrite(exp) | |
neg_exp, pos_exp = exp(-arg*I), exp(arg*I) | |
return I*(neg_exp - pos_exp)/(neg_exp + pos_exp) | |
def _eval_rewrite_as_sin(self, x, **kwargs): | |
return 2*sin(x)**2/sin(2*x) | |
def _eval_rewrite_as_cos(self, x, **kwargs): | |
return cos(x - pi/2, evaluate=False)/cos(x) | |
def _eval_rewrite_as_sincos(self, arg, **kwargs): | |
return sin(arg)/cos(arg) | |
def _eval_rewrite_as_cot(self, arg, **kwargs): | |
return 1/cot(arg) | |
def _eval_rewrite_as_sec(self, arg, **kwargs): | |
sin_in_sec_form = sin(arg).rewrite(sec, **kwargs) | |
cos_in_sec_form = cos(arg).rewrite(sec, **kwargs) | |
return sin_in_sec_form/cos_in_sec_form | |
def _eval_rewrite_as_csc(self, arg, **kwargs): | |
sin_in_csc_form = sin(arg).rewrite(csc, **kwargs) | |
cos_in_csc_form = cos(arg).rewrite(csc, **kwargs) | |
return sin_in_csc_form/cos_in_csc_form | |
def _eval_rewrite_as_pow(self, arg, **kwargs): | |
y = self.rewrite(cos, **kwargs).rewrite(pow, **kwargs) | |
if y.has(cos): | |
return None | |
return y | |
def _eval_rewrite_as_sqrt(self, arg, **kwargs): | |
y = self.rewrite(cos, **kwargs).rewrite(sqrt, **kwargs) | |
if y.has(cos): | |
return None | |
return y | |
def _eval_rewrite_as_besselj(self, arg, **kwargs): | |
from sympy.functions.special.bessel import besselj | |
return besselj(S.Half, arg)/besselj(-S.Half, arg) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
from sympy.calculus.accumulationbounds import AccumBounds | |
from sympy.functions.elementary.complexes import re | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
n = 2*x0/pi | |
if n.is_integer: | |
lt = (arg - n*pi/2).as_leading_term(x) | |
return lt if n.is_even else -1/lt | |
if x0 is S.ComplexInfinity: | |
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') | |
if x0 in (S.Infinity, S.NegativeInfinity): | |
return AccumBounds(S.NegativeInfinity, S.Infinity) | |
return self.func(x0) if x0.is_finite else self | |
def _eval_is_extended_real(self): | |
# FIXME: currently tan(pi/2) return zoo | |
return self.args[0].is_extended_real | |
def _eval_is_real(self): | |
arg = self.args[0] | |
if arg.is_real and (arg/pi - S.Half).is_integer is False: | |
return True | |
def _eval_is_finite(self): | |
arg = self.args[0] | |
if arg.is_real and (arg/pi - S.Half).is_integer is False: | |
return True | |
if arg.is_imaginary: | |
return True | |
def _eval_is_zero(self): | |
rest, pi_mult = _peeloff_pi(self.args[0]) | |
if rest.is_zero: | |
return pi_mult.is_integer | |
def _eval_is_complex(self): | |
arg = self.args[0] | |
if arg.is_real and (arg/pi - S.Half).is_integer is False: | |
return True | |
class cot(TrigonometricFunction): | |
""" | |
The cotangent function. | |
Returns the cotangent of x (measured in radians). | |
Explanation | |
=========== | |
See :class:`sin` for notes about automatic evaluation. | |
Examples | |
======== | |
>>> from sympy import cot, pi | |
>>> from sympy.abc import x | |
>>> cot(x**2).diff(x) | |
2*x*(-cot(x**2)**2 - 1) | |
>>> cot(1).diff(x) | |
0 | |
>>> cot(pi/12) | |
sqrt(3) + 2 | |
See Also | |
======== | |
sin, csc, cos, sec, tan | |
asin, acsc, acos, asec, atan, acot, atan2 | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions | |
.. [2] https://dlmf.nist.gov/4.14 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/Cot | |
""" | |
def period(self, symbol=None): | |
return self._period(pi, symbol) | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return S.NegativeOne - self**2 | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return acot | |
def eval(cls, arg): | |
from sympy.calculus.accumulationbounds import AccumBounds | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
if arg.is_zero: | |
return S.ComplexInfinity | |
elif arg in (S.Infinity, S.NegativeInfinity): | |
return AccumBounds(S.NegativeInfinity, S.Infinity) | |
if arg is S.ComplexInfinity: | |
return S.NaN | |
if isinstance(arg, AccumBounds): | |
return -tan(arg + pi/2) | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
from sympy.functions.elementary.hyperbolic import coth | |
return -S.ImaginaryUnit*coth(i_coeff) | |
pi_coeff = _pi_coeff(arg, 2) | |
if pi_coeff is not None: | |
if pi_coeff.is_integer: | |
return S.ComplexInfinity | |
if not pi_coeff.is_Rational: | |
narg = pi_coeff*pi | |
if narg != arg: | |
return cls(narg) | |
return None | |
if pi_coeff.is_Rational: | |
if pi_coeff.q in (5, 10): | |
return tan(pi/2 - arg) | |
if pi_coeff.q > 2 and not pi_coeff.q % 2: | |
narg = pi_coeff*pi*2 | |
cresult, sresult = cos(narg), cos(narg - pi/2) | |
if not isinstance(cresult, cos) \ | |
and not isinstance(sresult, cos): | |
return 1/sresult + cresult/sresult | |
q = pi_coeff.q | |
p = pi_coeff.p % q | |
table2 = _table2() | |
if q in table2: | |
a, b = table2[q] | |
nvala, nvalb = cls(p*pi/a), cls(p*pi/b) | |
if None in (nvala, nvalb): | |
return None | |
return (1 + nvala*nvalb)/(nvalb - nvala) | |
narg = (((pi_coeff + S.Half) % 1) - S.Half)*pi | |
# see cos() to specify which expressions should be | |
# expanded automatically in terms of radicals | |
cresult, sresult = cos(narg), cos(narg - pi/2) | |
if not isinstance(cresult, cos) \ | |
and not isinstance(sresult, cos): | |
if sresult == 0: | |
return S.ComplexInfinity | |
return cresult/sresult | |
if narg != arg: | |
return cls(narg) | |
if arg.is_Add: | |
x, m = _peeloff_pi(arg) | |
if m: | |
cotm = cot(m*pi) | |
if cotm is S.ComplexInfinity: | |
return cot(x) | |
else: # cotm == 0 | |
return -tan(x) | |
if arg.is_zero: | |
return S.ComplexInfinity | |
if isinstance(arg, acot): | |
return arg.args[0] | |
if isinstance(arg, atan): | |
x = arg.args[0] | |
return 1/x | |
if isinstance(arg, atan2): | |
y, x = arg.args | |
return x/y | |
if isinstance(arg, asin): | |
x = arg.args[0] | |
return sqrt(1 - x**2)/x | |
if isinstance(arg, acos): | |
x = arg.args[0] | |
return x/sqrt(1 - x**2) | |
if isinstance(arg, acsc): | |
x = arg.args[0] | |
return sqrt(1 - 1/x**2)*x | |
if isinstance(arg, asec): | |
x = arg.args[0] | |
return 1/(sqrt(1 - 1/x**2)*x) | |
def taylor_term(n, x, *previous_terms): | |
if n == 0: | |
return 1/sympify(x) | |
elif n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
B = bernoulli(n + 1) | |
F = factorial(n + 1) | |
return S.NegativeOne**((n + 1)//2)*2**(n + 1)*B/F*x**n | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
i = self.args[0].limit(x, 0)/pi | |
if i and i.is_Integer: | |
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx) | |
return self.rewrite(tan)._eval_nseries(x, n=n, logx=logx) | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def as_real_imag(self, deep=True, **hints): | |
re, im = self._as_real_imag(deep=deep, **hints) | |
if im: | |
from sympy.functions.elementary.hyperbolic import cosh, sinh | |
denom = cos(2*re) - cosh(2*im) | |
return (-sin(2*re)/denom, sinh(2*im)/denom) | |
else: | |
return (self.func(re), S.Zero) | |
def _eval_rewrite_as_exp(self, arg, **kwargs): | |
from sympy.functions.elementary.hyperbolic import HyperbolicFunction | |
I = S.ImaginaryUnit | |
if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)): | |
arg = arg.func(arg.args[0]).rewrite(exp, **kwargs) | |
neg_exp, pos_exp = exp(-arg*I), exp(arg*I) | |
return I*(pos_exp + neg_exp)/(pos_exp - neg_exp) | |
def _eval_rewrite_as_Pow(self, arg, **kwargs): | |
if isinstance(arg, log): | |
I = S.ImaginaryUnit | |
x = arg.args[0] | |
return -I*(x**-I + x**I)/(x**-I - x**I) | |
def _eval_rewrite_as_sin(self, x, **kwargs): | |
return sin(2*x)/(2*(sin(x)**2)) | |
def _eval_rewrite_as_cos(self, x, **kwargs): | |
return cos(x)/cos(x - pi/2, evaluate=False) | |
def _eval_rewrite_as_sincos(self, arg, **kwargs): | |
return cos(arg)/sin(arg) | |
def _eval_rewrite_as_tan(self, arg, **kwargs): | |
return 1/tan(arg) | |
def _eval_rewrite_as_sec(self, arg, **kwargs): | |
cos_in_sec_form = cos(arg).rewrite(sec, **kwargs) | |
sin_in_sec_form = sin(arg).rewrite(sec, **kwargs) | |
return cos_in_sec_form/sin_in_sec_form | |
def _eval_rewrite_as_csc(self, arg, **kwargs): | |
cos_in_csc_form = cos(arg).rewrite(csc, **kwargs) | |
sin_in_csc_form = sin(arg).rewrite(csc, **kwargs) | |
return cos_in_csc_form/sin_in_csc_form | |
def _eval_rewrite_as_pow(self, arg, **kwargs): | |
y = self.rewrite(cos, **kwargs).rewrite(pow, **kwargs) | |
if y.has(cos): | |
return None | |
return y | |
def _eval_rewrite_as_sqrt(self, arg, **kwargs): | |
y = self.rewrite(cos, **kwargs).rewrite(sqrt, **kwargs) | |
if y.has(cos): | |
return None | |
return y | |
def _eval_rewrite_as_besselj(self, arg, **kwargs): | |
from sympy.functions.special.bessel import besselj | |
return besselj(-S.Half, arg)/besselj(S.Half, arg) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
from sympy.calculus.accumulationbounds import AccumBounds | |
from sympy.functions.elementary.complexes import re | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
n = 2*x0/pi | |
if n.is_integer: | |
lt = (arg - n*pi/2).as_leading_term(x) | |
return 1/lt if n.is_even else -lt | |
if x0 is S.ComplexInfinity: | |
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') | |
if x0 in (S.Infinity, S.NegativeInfinity): | |
return AccumBounds(S.NegativeInfinity, S.Infinity) | |
return self.func(x0) if x0.is_finite else self | |
def _eval_is_extended_real(self): | |
return self.args[0].is_extended_real | |
def _eval_expand_trig(self, **hints): | |
arg = self.args[0] | |
x = None | |
if arg.is_Add: | |
n = len(arg.args) | |
CX = [] | |
for x in arg.args: | |
cx = cot(x, evaluate=False)._eval_expand_trig() | |
CX.append(cx) | |
Yg = numbered_symbols('Y') | |
Y = [ next(Yg) for i in range(n) ] | |
p = [0, 0] | |
for i in range(n, -1, -1): | |
p[(n - i) % 2] += symmetric_poly(i, Y)*(-1)**(((n - i) % 4)//2) | |
return (p[0]/p[1]).subs(list(zip(Y, CX))) | |
elif arg.is_Mul: | |
coeff, terms = arg.as_coeff_Mul(rational=True) | |
if coeff.is_Integer and coeff > 1: | |
I = S.ImaginaryUnit | |
z = Symbol('dummy', real=True) | |
P = ((z + I)**coeff).expand() | |
return (re(P)/im(P)).subs([(z, cot(terms))]) | |
return cot(arg) # XXX sec and csc return 1/cos and 1/sin | |
def _eval_is_finite(self): | |
arg = self.args[0] | |
if arg.is_real and (arg/pi).is_integer is False: | |
return True | |
if arg.is_imaginary: | |
return True | |
def _eval_is_real(self): | |
arg = self.args[0] | |
if arg.is_real and (arg/pi).is_integer is False: | |
return True | |
def _eval_is_complex(self): | |
arg = self.args[0] | |
if arg.is_real and (arg/pi).is_integer is False: | |
return True | |
def _eval_is_zero(self): | |
rest, pimult = _peeloff_pi(self.args[0]) | |
if pimult and rest.is_zero: | |
return (pimult - S.Half).is_integer | |
def _eval_subs(self, old, new): | |
arg = self.args[0] | |
argnew = arg.subs(old, new) | |
if arg != argnew and (argnew/pi).is_integer: | |
return S.ComplexInfinity | |
return cot(argnew) | |
class ReciprocalTrigonometricFunction(TrigonometricFunction): | |
"""Base class for reciprocal functions of trigonometric functions. """ | |
_reciprocal_of = None # mandatory, to be defined in subclass | |
_singularities = (S.ComplexInfinity,) | |
# _is_even and _is_odd are used for correct evaluation of csc(-x), sec(-x) | |
# TODO refactor into TrigonometricFunction common parts of | |
# trigonometric functions eval() like even/odd, func(x+2*k*pi), etc. | |
# optional, to be defined in subclasses: | |
_is_even: FuzzyBool = None | |
_is_odd: FuzzyBool = None | |
def eval(cls, arg): | |
if arg.could_extract_minus_sign(): | |
if cls._is_even: | |
return cls(-arg) | |
if cls._is_odd: | |
return -cls(-arg) | |
pi_coeff = _pi_coeff(arg) | |
if (pi_coeff is not None | |
and not (2*pi_coeff).is_integer | |
and pi_coeff.is_Rational): | |
q = pi_coeff.q | |
p = pi_coeff.p % (2*q) | |
if p > q: | |
narg = (pi_coeff - 1)*pi | |
return -cls(narg) | |
if 2*p > q: | |
narg = (1 - pi_coeff)*pi | |
if cls._is_odd: | |
return cls(narg) | |
elif cls._is_even: | |
return -cls(narg) | |
if hasattr(arg, 'inverse') and arg.inverse() == cls: | |
return arg.args[0] | |
t = cls._reciprocal_of.eval(arg) | |
if t is None: | |
return t | |
elif any(isinstance(i, cos) for i in (t, -t)): | |
return (1/t).rewrite(sec) | |
elif any(isinstance(i, sin) for i in (t, -t)): | |
return (1/t).rewrite(csc) | |
else: | |
return 1/t | |
def _call_reciprocal(self, method_name, *args, **kwargs): | |
# Calls method_name on _reciprocal_of | |
o = self._reciprocal_of(self.args[0]) | |
return getattr(o, method_name)(*args, **kwargs) | |
def _calculate_reciprocal(self, method_name, *args, **kwargs): | |
# If calling method_name on _reciprocal_of returns a value != None | |
# then return the reciprocal of that value | |
t = self._call_reciprocal(method_name, *args, **kwargs) | |
return 1/t if t is not None else t | |
def _rewrite_reciprocal(self, method_name, arg): | |
# Special handling for rewrite functions. If reciprocal rewrite returns | |
# unmodified expression, then return None | |
t = self._call_reciprocal(method_name, arg) | |
if t is not None and t != self._reciprocal_of(arg): | |
return 1/t | |
def _period(self, symbol): | |
f = expand_mul(self.args[0]) | |
return self._reciprocal_of(f).period(symbol) | |
def fdiff(self, argindex=1): | |
return -self._calculate_reciprocal("fdiff", argindex)/self**2 | |
def _eval_rewrite_as_exp(self, arg, **kwargs): | |
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg) | |
def _eval_rewrite_as_Pow(self, arg, **kwargs): | |
return self._rewrite_reciprocal("_eval_rewrite_as_Pow", arg) | |
def _eval_rewrite_as_sin(self, arg, **kwargs): | |
return self._rewrite_reciprocal("_eval_rewrite_as_sin", arg) | |
def _eval_rewrite_as_cos(self, arg, **kwargs): | |
return self._rewrite_reciprocal("_eval_rewrite_as_cos", arg) | |
def _eval_rewrite_as_tan(self, arg, **kwargs): | |
return self._rewrite_reciprocal("_eval_rewrite_as_tan", arg) | |
def _eval_rewrite_as_pow(self, arg, **kwargs): | |
return self._rewrite_reciprocal("_eval_rewrite_as_pow", arg) | |
def _eval_rewrite_as_sqrt(self, arg, **kwargs): | |
return self._rewrite_reciprocal("_eval_rewrite_as_sqrt", arg) | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate()) | |
def as_real_imag(self, deep=True, **hints): | |
return (1/self._reciprocal_of(self.args[0])).as_real_imag(deep, | |
**hints) | |
def _eval_expand_trig(self, **hints): | |
return self._calculate_reciprocal("_eval_expand_trig", **hints) | |
def _eval_is_extended_real(self): | |
return self._reciprocal_of(self.args[0])._eval_is_extended_real() | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x) | |
def _eval_is_finite(self): | |
return (1/self._reciprocal_of(self.args[0])).is_finite | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
return (1/self._reciprocal_of(self.args[0]))._eval_nseries(x, n, logx) | |
class sec(ReciprocalTrigonometricFunction): | |
""" | |
The secant function. | |
Returns the secant of x (measured in radians). | |
Explanation | |
=========== | |
See :class:`sin` for notes about automatic evaluation. | |
Examples | |
======== | |
>>> from sympy import sec | |
>>> from sympy.abc import x | |
>>> sec(x**2).diff(x) | |
2*x*tan(x**2)*sec(x**2) | |
>>> sec(1).diff(x) | |
0 | |
See Also | |
======== | |
sin, csc, cos, tan, cot | |
asin, acsc, acos, asec, atan, acot, atan2 | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions | |
.. [2] https://dlmf.nist.gov/4.14 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/Sec | |
""" | |
_reciprocal_of = cos | |
_is_even = True | |
def period(self, symbol=None): | |
return self._period(symbol) | |
def _eval_rewrite_as_cot(self, arg, **kwargs): | |
cot_half_sq = cot(arg/2)**2 | |
return (cot_half_sq + 1)/(cot_half_sq - 1) | |
def _eval_rewrite_as_cos(self, arg, **kwargs): | |
return (1/cos(arg)) | |
def _eval_rewrite_as_sincos(self, arg, **kwargs): | |
return sin(arg)/(cos(arg)*sin(arg)) | |
def _eval_rewrite_as_sin(self, arg, **kwargs): | |
return (1/cos(arg).rewrite(sin, **kwargs)) | |
def _eval_rewrite_as_tan(self, arg, **kwargs): | |
return (1/cos(arg).rewrite(tan, **kwargs)) | |
def _eval_rewrite_as_csc(self, arg, **kwargs): | |
return csc(pi/2 - arg, evaluate=False) | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return tan(self.args[0])*sec(self.args[0]) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_rewrite_as_besselj(self, arg, **kwargs): | |
from sympy.functions.special.bessel import besselj | |
return Piecewise( | |
(1/(sqrt(pi*arg)/(sqrt(2))*besselj(-S.Half, arg)), Ne(arg, 0)), | |
(1, True) | |
) | |
def _eval_is_complex(self): | |
arg = self.args[0] | |
if arg.is_complex and (arg/pi - S.Half).is_integer is False: | |
return True | |
def taylor_term(n, x, *previous_terms): | |
# Reference Formula: | |
# https://functions.wolfram.com/ElementaryFunctions/Sec/06/01/02/01/ | |
if n < 0 or n % 2 == 1: | |
return S.Zero | |
else: | |
x = sympify(x) | |
k = n//2 | |
return S.NegativeOne**k*euler(2*k)/factorial(2*k)*x**(2*k) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
from sympy.calculus.accumulationbounds import AccumBounds | |
from sympy.functions.elementary.complexes import re | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
n = (x0 + pi/2)/pi | |
if n.is_integer: | |
lt = (arg - n*pi + pi/2).as_leading_term(x) | |
return (S.NegativeOne**n)/lt | |
if x0 is S.ComplexInfinity: | |
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') | |
if x0 in (S.Infinity, S.NegativeInfinity): | |
return AccumBounds(S.NegativeInfinity, S.Infinity) | |
return self.func(x0) if x0.is_finite else self | |
class csc(ReciprocalTrigonometricFunction): | |
""" | |
The cosecant function. | |
Returns the cosecant of x (measured in radians). | |
Explanation | |
=========== | |
See :func:`sin` for notes about automatic evaluation. | |
Examples | |
======== | |
>>> from sympy import csc | |
>>> from sympy.abc import x | |
>>> csc(x**2).diff(x) | |
-2*x*cot(x**2)*csc(x**2) | |
>>> csc(1).diff(x) | |
0 | |
See Also | |
======== | |
sin, cos, sec, tan, cot | |
asin, acsc, acos, asec, atan, acot, atan2 | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions | |
.. [2] https://dlmf.nist.gov/4.14 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/Csc | |
""" | |
_reciprocal_of = sin | |
_is_odd = True | |
def period(self, symbol=None): | |
return self._period(symbol) | |
def _eval_rewrite_as_sin(self, arg, **kwargs): | |
return (1/sin(arg)) | |
def _eval_rewrite_as_sincos(self, arg, **kwargs): | |
return cos(arg)/(sin(arg)*cos(arg)) | |
def _eval_rewrite_as_cot(self, arg, **kwargs): | |
cot_half = cot(arg/2) | |
return (1 + cot_half**2)/(2*cot_half) | |
def _eval_rewrite_as_cos(self, arg, **kwargs): | |
return 1/sin(arg).rewrite(cos, **kwargs) | |
def _eval_rewrite_as_sec(self, arg, **kwargs): | |
return sec(pi/2 - arg, evaluate=False) | |
def _eval_rewrite_as_tan(self, arg, **kwargs): | |
return (1/sin(arg).rewrite(tan, **kwargs)) | |
def _eval_rewrite_as_besselj(self, arg, **kwargs): | |
from sympy.functions.special.bessel import besselj | |
return sqrt(2/pi)*(1/(sqrt(arg)*besselj(S.Half, arg))) | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return -cot(self.args[0])*csc(self.args[0]) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_is_complex(self): | |
arg = self.args[0] | |
if arg.is_real and (arg/pi).is_integer is False: | |
return True | |
def taylor_term(n, x, *previous_terms): | |
if n == 0: | |
return 1/sympify(x) | |
elif n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
k = n//2 + 1 | |
return (S.NegativeOne**(k - 1)*2*(2**(2*k - 1) - 1)* | |
bernoulli(2*k)*x**(2*k - 1)/factorial(2*k)) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
from sympy.calculus.accumulationbounds import AccumBounds | |
from sympy.functions.elementary.complexes import re | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
n = x0/pi | |
if n.is_integer: | |
lt = (arg - n*pi).as_leading_term(x) | |
return (S.NegativeOne**n)/lt | |
if x0 is S.ComplexInfinity: | |
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+') | |
if x0 in (S.Infinity, S.NegativeInfinity): | |
return AccumBounds(S.NegativeInfinity, S.Infinity) | |
return self.func(x0) if x0.is_finite else self | |
class sinc(Function): | |
r""" | |
Represents an unnormalized sinc function: | |
.. math:: | |
\operatorname{sinc}(x) = | |
\begin{cases} | |
\frac{\sin x}{x} & \qquad x \neq 0 \\ | |
1 & \qquad x = 0 | |
\end{cases} | |
Examples | |
======== | |
>>> from sympy import sinc, oo, jn | |
>>> from sympy.abc import x | |
>>> sinc(x) | |
sinc(x) | |
* Automated Evaluation | |
>>> sinc(0) | |
1 | |
>>> sinc(oo) | |
0 | |
* Differentiation | |
>>> sinc(x).diff() | |
cos(x)/x - sin(x)/x**2 | |
* Series Expansion | |
>>> sinc(x).series() | |
1 - x**2/6 + x**4/120 + O(x**6) | |
* As zero'th order spherical Bessel Function | |
>>> sinc(x).rewrite(jn) | |
jn(0, x) | |
See also | |
======== | |
sin | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Sinc_function | |
""" | |
_singularities = (S.ComplexInfinity,) | |
def fdiff(self, argindex=1): | |
x = self.args[0] | |
if argindex == 1: | |
# We would like to return the Piecewise here, but Piecewise.diff | |
# currently can't handle removable singularities, meaning things | |
# like sinc(x).diff(x, 2) give the wrong answer at x = 0. See | |
# https://github.com/sympy/sympy/issues/11402. | |
# | |
# return Piecewise(((x*cos(x) - sin(x))/x**2, Ne(x, S.Zero)), (S.Zero, S.true)) | |
return cos(x)/x - sin(x)/x**2 | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, arg): | |
if arg.is_zero: | |
return S.One | |
if arg.is_Number: | |
if arg in [S.Infinity, S.NegativeInfinity]: | |
return S.Zero | |
elif arg is S.NaN: | |
return S.NaN | |
if arg is S.ComplexInfinity: | |
return S.NaN | |
if arg.could_extract_minus_sign(): | |
return cls(-arg) | |
pi_coeff = _pi_coeff(arg) | |
if pi_coeff is not None: | |
if pi_coeff.is_integer: | |
if fuzzy_not(arg.is_zero): | |
return S.Zero | |
elif (2*pi_coeff).is_integer: | |
return S.NegativeOne**(pi_coeff - S.Half)/arg | |
def _eval_nseries(self, x, n, logx, cdir=0): | |
x = self.args[0] | |
return (sin(x)/x)._eval_nseries(x, n, logx) | |
def _eval_rewrite_as_jn(self, arg, **kwargs): | |
from sympy.functions.special.bessel import jn | |
return jn(0, arg) | |
def _eval_rewrite_as_sin(self, arg, **kwargs): | |
return Piecewise((sin(arg)/arg, Ne(arg, S.Zero)), (S.One, S.true)) | |
def _eval_is_zero(self): | |
if self.args[0].is_infinite: | |
return True | |
rest, pi_mult = _peeloff_pi(self.args[0]) | |
if rest.is_zero: | |
return fuzzy_and([pi_mult.is_integer, pi_mult.is_nonzero]) | |
if rest.is_Number and pi_mult.is_integer: | |
return False | |
def _eval_is_real(self): | |
if self.args[0].is_extended_real or self.args[0].is_imaginary: | |
return True | |
_eval_is_finite = _eval_is_real | |
############################################################################### | |
########################### TRIGONOMETRIC INVERSES ############################ | |
############################################################################### | |
class InverseTrigonometricFunction(Function): | |
"""Base class for inverse trigonometric functions.""" | |
_singularities = (S.One, S.NegativeOne, S.Zero, S.ComplexInfinity) # type: tTuple[Expr, ...] | |
def _asin_table(): | |
# Only keys with could_extract_minus_sign() == False | |
# are actually needed. | |
return { | |
sqrt(3)/2: pi/3, | |
sqrt(2)/2: pi/4, | |
1/sqrt(2): pi/4, | |
sqrt((5 - sqrt(5))/8): pi/5, | |
sqrt(2)*sqrt(5 - sqrt(5))/4: pi/5, | |
sqrt((5 + sqrt(5))/8): pi*Rational(2, 5), | |
sqrt(2)*sqrt(5 + sqrt(5))/4: pi*Rational(2, 5), | |
S.Half: pi/6, | |
sqrt(2 - sqrt(2))/2: pi/8, | |
sqrt(S.Half - sqrt(2)/4): pi/8, | |
sqrt(2 + sqrt(2))/2: pi*Rational(3, 8), | |
sqrt(S.Half + sqrt(2)/4): pi*Rational(3, 8), | |
(sqrt(5) - 1)/4: pi/10, | |
(1 - sqrt(5))/4: -pi/10, | |
(sqrt(5) + 1)/4: pi*Rational(3, 10), | |
sqrt(6)/4 - sqrt(2)/4: pi/12, | |
-sqrt(6)/4 + sqrt(2)/4: -pi/12, | |
(sqrt(3) - 1)/sqrt(8): pi/12, | |
(1 - sqrt(3))/sqrt(8): -pi/12, | |
sqrt(6)/4 + sqrt(2)/4: pi*Rational(5, 12), | |
(1 + sqrt(3))/sqrt(8): pi*Rational(5, 12) | |
} | |
def _atan_table(): | |
# Only keys with could_extract_minus_sign() == False | |
# are actually needed. | |
return { | |
sqrt(3)/3: pi/6, | |
1/sqrt(3): pi/6, | |
sqrt(3): pi/3, | |
sqrt(2) - 1: pi/8, | |
1 - sqrt(2): -pi/8, | |
1 + sqrt(2): pi*Rational(3, 8), | |
sqrt(5 - 2*sqrt(5)): pi/5, | |
sqrt(5 + 2*sqrt(5)): pi*Rational(2, 5), | |
sqrt(1 - 2*sqrt(5)/5): pi/10, | |
sqrt(1 + 2*sqrt(5)/5): pi*Rational(3, 10), | |
2 - sqrt(3): pi/12, | |
-2 + sqrt(3): -pi/12, | |
2 + sqrt(3): pi*Rational(5, 12) | |
} | |
def _acsc_table(): | |
# Keys for which could_extract_minus_sign() | |
# will obviously return True are omitted. | |
return { | |
2*sqrt(3)/3: pi/3, | |
sqrt(2): pi/4, | |
sqrt(2 + 2*sqrt(5)/5): pi/5, | |
1/sqrt(Rational(5, 8) - sqrt(5)/8): pi/5, | |
sqrt(2 - 2*sqrt(5)/5): pi*Rational(2, 5), | |
1/sqrt(Rational(5, 8) + sqrt(5)/8): pi*Rational(2, 5), | |
2: pi/6, | |
sqrt(4 + 2*sqrt(2)): pi/8, | |
2/sqrt(2 - sqrt(2)): pi/8, | |
sqrt(4 - 2*sqrt(2)): pi*Rational(3, 8), | |
2/sqrt(2 + sqrt(2)): pi*Rational(3, 8), | |
1 + sqrt(5): pi/10, | |
sqrt(5) - 1: pi*Rational(3, 10), | |
-(sqrt(5) - 1): pi*Rational(-3, 10), | |
sqrt(6) + sqrt(2): pi/12, | |
sqrt(6) - sqrt(2): pi*Rational(5, 12), | |
-(sqrt(6) - sqrt(2)): pi*Rational(-5, 12) | |
} | |
class asin(InverseTrigonometricFunction): | |
r""" | |
The inverse sine function. | |
Returns the arcsine of x in radians. | |
Explanation | |
=========== | |
``asin(x)`` will evaluate automatically in the cases | |
$x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the | |
result is a rational multiple of $\pi$ (see the ``eval`` class method). | |
A purely imaginary argument will lead to an asinh expression. | |
Examples | |
======== | |
>>> from sympy import asin, oo | |
>>> asin(1) | |
pi/2 | |
>>> asin(-1) | |
-pi/2 | |
>>> asin(-oo) | |
oo*I | |
>>> asin(oo) | |
-oo*I | |
See Also | |
======== | |
sin, csc, cos, sec, tan, cot | |
acsc, acos, asec, atan, acot, atan2 | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions | |
.. [2] https://dlmf.nist.gov/4.23 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/ArcSin | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return 1/sqrt(1 - self.args[0]**2) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_is_rational(self): | |
s = self.func(*self.args) | |
if s.func == self.func: | |
if s.args[0].is_rational: | |
return False | |
else: | |
return s.is_rational | |
def _eval_is_positive(self): | |
return self._eval_is_extended_real() and self.args[0].is_positive | |
def _eval_is_negative(self): | |
return self._eval_is_extended_real() and self.args[0].is_negative | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.NegativeInfinity*S.ImaginaryUnit | |
elif arg is S.NegativeInfinity: | |
return S.Infinity*S.ImaginaryUnit | |
elif arg.is_zero: | |
return S.Zero | |
elif arg is S.One: | |
return pi/2 | |
elif arg is S.NegativeOne: | |
return -pi/2 | |
if arg is S.ComplexInfinity: | |
return S.ComplexInfinity | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
if arg.is_number: | |
asin_table = cls._asin_table() | |
if arg in asin_table: | |
return asin_table[arg] | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
from sympy.functions.elementary.hyperbolic import asinh | |
return S.ImaginaryUnit*asinh(i_coeff) | |
if arg.is_zero: | |
return S.Zero | |
if isinstance(arg, sin): | |
ang = arg.args[0] | |
if ang.is_comparable: | |
ang %= 2*pi # restrict to [0,2*pi) | |
if ang > pi: # restrict to (-pi,pi] | |
ang = pi - ang | |
# restrict to [-pi/2,pi/2] | |
if ang > pi/2: | |
ang = pi - ang | |
if ang < -pi/2: | |
ang = -pi - ang | |
return ang | |
if isinstance(arg, cos): # acos(x) + asin(x) = pi/2 | |
ang = arg.args[0] | |
if ang.is_comparable: | |
return pi/2 - acos(arg) | |
def taylor_term(n, x, *previous_terms): | |
if n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) >= 2 and n > 2: | |
p = previous_terms[-2] | |
return p*(n - 2)**2/(n*(n - 1))*x**2 | |
else: | |
k = (n - 1) // 2 | |
R = RisingFactorial(S.Half, k) | |
F = factorial(k) | |
return R/F*x**n/n | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asin | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
if x0 is S.NaN: | |
return self.func(arg.as_leading_term(x)) | |
if x0.is_zero: | |
return arg.as_leading_term(x) | |
# Handling branch points | |
if x0 in (-S.One, S.One, S.ComplexInfinity): | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() | |
# Handling points lying on branch cuts (-oo, -1) U (1, oo) | |
if (1 - x0**2).is_negative: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if x0.is_negative: | |
return -pi - self.func(x0) | |
elif im(ndir).is_positive: | |
if x0.is_positive: | |
return pi - self.func(x0) | |
else: | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() | |
return self.func(x0) | |
def _eval_nseries(self, x, n, logx, cdir=0): # asin | |
from sympy.series.order import O | |
arg0 = self.args[0].subs(x, 0) | |
# Handling branch points | |
if arg0 is S.One: | |
t = Dummy('t', positive=True) | |
ser = asin(S.One - t**2).rewrite(log).nseries(t, 0, 2*n) | |
arg1 = S.One - self.args[0] | |
f = arg1.as_leading_term(x) | |
g = (arg1 - f)/ f | |
if not g.is_meromorphic(x, 0): # cannot be expanded | |
return O(1) if n == 0 else pi/2 + O(sqrt(x)) | |
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) | |
res = (res1.removeO()*sqrt(f)).expand() | |
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) | |
if arg0 is S.NegativeOne: | |
t = Dummy('t', positive=True) | |
ser = asin(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n) | |
arg1 = S.One + self.args[0] | |
f = arg1.as_leading_term(x) | |
g = (arg1 - f)/ f | |
if not g.is_meromorphic(x, 0): # cannot be expanded | |
return O(1) if n == 0 else -pi/2 + O(sqrt(x)) | |
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) | |
res = (res1.removeO()*sqrt(f)).expand() | |
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) | |
res = Function._eval_nseries(self, x, n=n, logx=logx) | |
if arg0 is S.ComplexInfinity: | |
return res | |
# Handling points lying on branch cuts (-oo, -1) U (1, oo) | |
if (1 - arg0**2).is_negative: | |
ndir = self.args[0].dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if arg0.is_negative: | |
return -pi - res | |
elif im(ndir).is_positive: | |
if arg0.is_positive: | |
return pi - res | |
else: | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return res | |
def _eval_rewrite_as_acos(self, x, **kwargs): | |
return pi/2 - acos(x) | |
def _eval_rewrite_as_atan(self, x, **kwargs): | |
return 2*atan(x/(1 + sqrt(1 - x**2))) | |
def _eval_rewrite_as_log(self, x, **kwargs): | |
return -S.ImaginaryUnit*log(S.ImaginaryUnit*x + sqrt(1 - x**2)) | |
_eval_rewrite_as_tractable = _eval_rewrite_as_log | |
def _eval_rewrite_as_acot(self, arg, **kwargs): | |
return 2*acot((1 + sqrt(1 - arg**2))/arg) | |
def _eval_rewrite_as_asec(self, arg, **kwargs): | |
return pi/2 - asec(1/arg) | |
def _eval_rewrite_as_acsc(self, arg, **kwargs): | |
return acsc(1/arg) | |
def _eval_is_extended_real(self): | |
x = self.args[0] | |
return x.is_extended_real and (1 - abs(x)).is_nonnegative | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return sin | |
class acos(InverseTrigonometricFunction): | |
r""" | |
The inverse cosine function. | |
Explanation | |
=========== | |
Returns the arc cosine of x (measured in radians). | |
``acos(x)`` will evaluate automatically in the cases | |
$x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when | |
the result is a rational multiple of $\pi$ (see the eval class method). | |
``acos(zoo)`` evaluates to ``zoo`` | |
(see note in :class:`sympy.functions.elementary.trigonometric.asec`) | |
A purely imaginary argument will be rewritten to asinh. | |
Examples | |
======== | |
>>> from sympy import acos, oo | |
>>> acos(1) | |
0 | |
>>> acos(0) | |
pi/2 | |
>>> acos(oo) | |
oo*I | |
See Also | |
======== | |
sin, csc, cos, sec, tan, cot | |
asin, acsc, asec, atan, acot, atan2 | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions | |
.. [2] https://dlmf.nist.gov/4.23 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/ArcCos | |
""" | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return -1/sqrt(1 - self.args[0]**2) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_is_rational(self): | |
s = self.func(*self.args) | |
if s.func == self.func: | |
if s.args[0].is_rational: | |
return False | |
else: | |
return s.is_rational | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.Infinity*S.ImaginaryUnit | |
elif arg is S.NegativeInfinity: | |
return S.NegativeInfinity*S.ImaginaryUnit | |
elif arg.is_zero: | |
return pi/2 | |
elif arg is S.One: | |
return S.Zero | |
elif arg is S.NegativeOne: | |
return pi | |
if arg is S.ComplexInfinity: | |
return S.ComplexInfinity | |
if arg.is_number: | |
asin_table = cls._asin_table() | |
if arg in asin_table: | |
return pi/2 - asin_table[arg] | |
elif -arg in asin_table: | |
return pi/2 + asin_table[-arg] | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
return pi/2 - asin(arg) | |
if isinstance(arg, cos): | |
ang = arg.args[0] | |
if ang.is_comparable: | |
ang %= 2*pi # restrict to [0,2*pi) | |
if ang > pi: # restrict to [0,pi] | |
ang = 2*pi - ang | |
return ang | |
if isinstance(arg, sin): # acos(x) + asin(x) = pi/2 | |
ang = arg.args[0] | |
if ang.is_comparable: | |
return pi/2 - asin(arg) | |
def taylor_term(n, x, *previous_terms): | |
if n == 0: | |
return pi/2 | |
elif n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) >= 2 and n > 2: | |
p = previous_terms[-2] | |
return p*(n - 2)**2/(n*(n - 1))*x**2 | |
else: | |
k = (n - 1) // 2 | |
R = RisingFactorial(S.Half, k) | |
F = factorial(k) | |
return -R/F*x**n/n | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acos | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
if x0 is S.NaN: | |
return self.func(arg.as_leading_term(x)) | |
# Handling branch points | |
if x0 == 1: | |
return sqrt(2)*sqrt((S.One - arg).as_leading_term(x)) | |
if x0 in (-S.One, S.ComplexInfinity): | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
# Handling points lying on branch cuts (-oo, -1) U (1, oo) | |
if (1 - x0**2).is_negative: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if x0.is_negative: | |
return 2*pi - self.func(x0) | |
elif im(ndir).is_positive: | |
if x0.is_positive: | |
return -self.func(x0) | |
else: | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() | |
return self.func(x0) | |
def _eval_is_extended_real(self): | |
x = self.args[0] | |
return x.is_extended_real and (1 - abs(x)).is_nonnegative | |
def _eval_is_nonnegative(self): | |
return self._eval_is_extended_real() | |
def _eval_nseries(self, x, n, logx, cdir=0): # acos | |
from sympy.series.order import O | |
arg0 = self.args[0].subs(x, 0) | |
# Handling branch points | |
if arg0 is S.One: | |
t = Dummy('t', positive=True) | |
ser = acos(S.One - t**2).rewrite(log).nseries(t, 0, 2*n) | |
arg1 = S.One - self.args[0] | |
f = arg1.as_leading_term(x) | |
g = (arg1 - f)/ f | |
if not g.is_meromorphic(x, 0): # cannot be expanded | |
return O(1) if n == 0 else O(sqrt(x)) | |
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) | |
res = (res1.removeO()*sqrt(f)).expand() | |
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) | |
if arg0 is S.NegativeOne: | |
t = Dummy('t', positive=True) | |
ser = acos(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n) | |
arg1 = S.One + self.args[0] | |
f = arg1.as_leading_term(x) | |
g = (arg1 - f)/ f | |
if not g.is_meromorphic(x, 0): # cannot be expanded | |
return O(1) if n == 0 else pi + O(sqrt(x)) | |
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) | |
res = (res1.removeO()*sqrt(f)).expand() | |
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) | |
res = Function._eval_nseries(self, x, n=n, logx=logx) | |
if arg0 is S.ComplexInfinity: | |
return res | |
# Handling points lying on branch cuts (-oo, -1) U (1, oo) | |
if (1 - arg0**2).is_negative: | |
ndir = self.args[0].dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if arg0.is_negative: | |
return 2*pi - res | |
elif im(ndir).is_positive: | |
if arg0.is_positive: | |
return -res | |
else: | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return res | |
def _eval_rewrite_as_log(self, x, **kwargs): | |
return pi/2 + S.ImaginaryUnit*\ | |
log(S.ImaginaryUnit*x + sqrt(1 - x**2)) | |
_eval_rewrite_as_tractable = _eval_rewrite_as_log | |
def _eval_rewrite_as_asin(self, x, **kwargs): | |
return pi/2 - asin(x) | |
def _eval_rewrite_as_atan(self, x, **kwargs): | |
return atan(sqrt(1 - x**2)/x) + (pi/2)*(1 - x*sqrt(1/x**2)) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return cos | |
def _eval_rewrite_as_acot(self, arg, **kwargs): | |
return pi/2 - 2*acot((1 + sqrt(1 - arg**2))/arg) | |
def _eval_rewrite_as_asec(self, arg, **kwargs): | |
return asec(1/arg) | |
def _eval_rewrite_as_acsc(self, arg, **kwargs): | |
return pi/2 - acsc(1/arg) | |
def _eval_conjugate(self): | |
z = self.args[0] | |
r = self.func(self.args[0].conjugate()) | |
if z.is_extended_real is False: | |
return r | |
elif z.is_extended_real and (z + 1).is_nonnegative and (z - 1).is_nonpositive: | |
return r | |
class atan(InverseTrigonometricFunction): | |
r""" | |
The inverse tangent function. | |
Returns the arc tangent of x (measured in radians). | |
Explanation | |
=========== | |
``atan(x)`` will evaluate automatically in the cases | |
$x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the | |
result is a rational multiple of $\pi$ (see the eval class method). | |
Examples | |
======== | |
>>> from sympy import atan, oo | |
>>> atan(0) | |
0 | |
>>> atan(1) | |
pi/4 | |
>>> atan(oo) | |
pi/2 | |
See Also | |
======== | |
sin, csc, cos, sec, tan, cot | |
asin, acsc, acos, asec, acot, atan2 | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions | |
.. [2] https://dlmf.nist.gov/4.23 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/ArcTan | |
""" | |
args: tTuple[Expr] | |
_singularities = (S.ImaginaryUnit, -S.ImaginaryUnit) | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return 1/(1 + self.args[0]**2) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_is_rational(self): | |
s = self.func(*self.args) | |
if s.func == self.func: | |
if s.args[0].is_rational: | |
return False | |
else: | |
return s.is_rational | |
def _eval_is_positive(self): | |
return self.args[0].is_extended_positive | |
def _eval_is_nonnegative(self): | |
return self.args[0].is_extended_nonnegative | |
def _eval_is_zero(self): | |
return self.args[0].is_zero | |
def _eval_is_real(self): | |
return self.args[0].is_extended_real | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return pi/2 | |
elif arg is S.NegativeInfinity: | |
return -pi/2 | |
elif arg.is_zero: | |
return S.Zero | |
elif arg is S.One: | |
return pi/4 | |
elif arg is S.NegativeOne: | |
return -pi/4 | |
if arg is S.ComplexInfinity: | |
from sympy.calculus.accumulationbounds import AccumBounds | |
return AccumBounds(-pi/2, pi/2) | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
if arg.is_number: | |
atan_table = cls._atan_table() | |
if arg in atan_table: | |
return atan_table[arg] | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
from sympy.functions.elementary.hyperbolic import atanh | |
return S.ImaginaryUnit*atanh(i_coeff) | |
if arg.is_zero: | |
return S.Zero | |
if isinstance(arg, tan): | |
ang = arg.args[0] | |
if ang.is_comparable: | |
ang %= pi # restrict to [0,pi) | |
if ang > pi/2: # restrict to [-pi/2,pi/2] | |
ang -= pi | |
return ang | |
if isinstance(arg, cot): # atan(x) + acot(x) = pi/2 | |
ang = arg.args[0] | |
if ang.is_comparable: | |
ang = pi/2 - acot(arg) | |
if ang > pi/2: # restrict to [-pi/2,pi/2] | |
ang -= pi | |
return ang | |
def taylor_term(n, x, *previous_terms): | |
if n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
return S.NegativeOne**((n - 1)//2)*x**n/n | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): # atan | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
if x0 is S.NaN: | |
return self.func(arg.as_leading_term(x)) | |
if x0.is_zero: | |
return arg.as_leading_term(x) | |
# Handling branch points | |
if x0 in (-S.ImaginaryUnit, S.ImaginaryUnit, S.ComplexInfinity): | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() | |
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo) | |
if (1 + x0**2).is_negative: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if re(ndir).is_negative: | |
if im(x0).is_positive: | |
return self.func(x0) - pi | |
elif re(ndir).is_positive: | |
if im(x0).is_negative: | |
return self.func(x0) + pi | |
else: | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() | |
return self.func(x0) | |
def _eval_nseries(self, x, n, logx, cdir=0): # atan | |
arg0 = self.args[0].subs(x, 0) | |
# Handling branch points | |
if arg0 in (S.ImaginaryUnit, S.NegativeOne*S.ImaginaryUnit): | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
res = Function._eval_nseries(self, x, n=n, logx=logx) | |
ndir = self.args[0].dir(x, cdir if cdir else 1) | |
if arg0 is S.ComplexInfinity: | |
if re(ndir) > 0: | |
return res - pi | |
return res | |
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo) | |
if (1 + arg0**2).is_negative: | |
if re(ndir).is_negative: | |
if im(arg0).is_positive: | |
return res - pi | |
elif re(ndir).is_positive: | |
if im(arg0).is_negative: | |
return res + pi | |
else: | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return res | |
def _eval_rewrite_as_log(self, x, **kwargs): | |
return S.ImaginaryUnit/2*(log(S.One - S.ImaginaryUnit*x) | |
- log(S.One + S.ImaginaryUnit*x)) | |
_eval_rewrite_as_tractable = _eval_rewrite_as_log | |
def _eval_aseries(self, n, args0, x, logx): | |
if args0[0] in [S.Infinity, S.NegativeInfinity]: | |
return (pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx) | |
else: | |
return super()._eval_aseries(n, args0, x, logx) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return tan | |
def _eval_rewrite_as_asin(self, arg, **kwargs): | |
return sqrt(arg**2)/arg*(pi/2 - asin(1/sqrt(1 + arg**2))) | |
def _eval_rewrite_as_acos(self, arg, **kwargs): | |
return sqrt(arg**2)/arg*acos(1/sqrt(1 + arg**2)) | |
def _eval_rewrite_as_acot(self, arg, **kwargs): | |
return acot(1/arg) | |
def _eval_rewrite_as_asec(self, arg, **kwargs): | |
return sqrt(arg**2)/arg*asec(sqrt(1 + arg**2)) | |
def _eval_rewrite_as_acsc(self, arg, **kwargs): | |
return sqrt(arg**2)/arg*(pi/2 - acsc(sqrt(1 + arg**2))) | |
class acot(InverseTrigonometricFunction): | |
r""" | |
The inverse cotangent function. | |
Returns the arc cotangent of x (measured in radians). | |
Explanation | |
=========== | |
``acot(x)`` will evaluate automatically in the cases | |
$x \in \{\infty, -\infty, \tilde{\infty}, 0, 1, -1\}$ | |
and for some instances when the result is a rational multiple of $\pi$ | |
(see the eval class method). | |
A purely imaginary argument will lead to an ``acoth`` expression. | |
``acot(x)`` has a branch cut along $(-i, i)$, hence it is discontinuous | |
at 0. Its range for real $x$ is $(-\frac{\pi}{2}, \frac{\pi}{2}]$. | |
Examples | |
======== | |
>>> from sympy import acot, sqrt | |
>>> acot(0) | |
pi/2 | |
>>> acot(1) | |
pi/4 | |
>>> acot(sqrt(3) - 2) | |
-5*pi/12 | |
See Also | |
======== | |
sin, csc, cos, sec, tan, cot | |
asin, acsc, acos, asec, atan, atan2 | |
References | |
========== | |
.. [1] https://dlmf.nist.gov/4.23 | |
.. [2] https://functions.wolfram.com/ElementaryFunctions/ArcCot | |
""" | |
_singularities = (S.ImaginaryUnit, -S.ImaginaryUnit) | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return -1/(1 + self.args[0]**2) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_is_rational(self): | |
s = self.func(*self.args) | |
if s.func == self.func: | |
if s.args[0].is_rational: | |
return False | |
else: | |
return s.is_rational | |
def _eval_is_positive(self): | |
return self.args[0].is_nonnegative | |
def _eval_is_negative(self): | |
return self.args[0].is_negative | |
def _eval_is_extended_real(self): | |
return self.args[0].is_extended_real | |
def eval(cls, arg): | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.Infinity: | |
return S.Zero | |
elif arg is S.NegativeInfinity: | |
return S.Zero | |
elif arg.is_zero: | |
return pi/ 2 | |
elif arg is S.One: | |
return pi/4 | |
elif arg is S.NegativeOne: | |
return -pi/4 | |
if arg is S.ComplexInfinity: | |
return S.Zero | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
if arg.is_number: | |
atan_table = cls._atan_table() | |
if arg in atan_table: | |
ang = pi/2 - atan_table[arg] | |
if ang > pi/2: # restrict to (-pi/2,pi/2] | |
ang -= pi | |
return ang | |
i_coeff = _imaginary_unit_as_coefficient(arg) | |
if i_coeff is not None: | |
from sympy.functions.elementary.hyperbolic import acoth | |
return -S.ImaginaryUnit*acoth(i_coeff) | |
if arg.is_zero: | |
return pi*S.Half | |
if isinstance(arg, cot): | |
ang = arg.args[0] | |
if ang.is_comparable: | |
ang %= pi # restrict to [0,pi) | |
if ang > pi/2: # restrict to (-pi/2,pi/2] | |
ang -= pi; | |
return ang | |
if isinstance(arg, tan): # atan(x) + acot(x) = pi/2 | |
ang = arg.args[0] | |
if ang.is_comparable: | |
ang = pi/2 - atan(arg) | |
if ang > pi/2: # restrict to (-pi/2,pi/2] | |
ang -= pi | |
return ang | |
def taylor_term(n, x, *previous_terms): | |
if n == 0: | |
return pi/2 # FIX THIS | |
elif n < 0 or n % 2 == 0: | |
return S.Zero | |
else: | |
x = sympify(x) | |
return S.NegativeOne**((n + 1)//2)*x**n/n | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acot | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
if x0 is S.NaN: | |
return self.func(arg.as_leading_term(x)) | |
if x0 is S.ComplexInfinity: | |
return (1/arg).as_leading_term(x) | |
# Handling branch points | |
if x0 in (-S.ImaginaryUnit, S.ImaginaryUnit, S.Zero): | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() | |
# Handling points lying on branch cuts [-I, I] | |
if x0.is_imaginary and (1 + x0**2).is_positive: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if re(ndir).is_positive: | |
if im(x0).is_positive: | |
return self.func(x0) + pi | |
elif re(ndir).is_negative: | |
if im(x0).is_negative: | |
return self.func(x0) - pi | |
else: | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() | |
return self.func(x0) | |
def _eval_nseries(self, x, n, logx, cdir=0): # acot | |
arg0 = self.args[0].subs(x, 0) | |
# Handling branch points | |
if arg0 in (S.ImaginaryUnit, S.NegativeOne*S.ImaginaryUnit): | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
res = Function._eval_nseries(self, x, n=n, logx=logx) | |
if arg0 is S.ComplexInfinity: | |
return res | |
ndir = self.args[0].dir(x, cdir if cdir else 1) | |
if arg0.is_zero: | |
if re(ndir) < 0: | |
return res - pi | |
return res | |
# Handling points lying on branch cuts [-I, I] | |
if arg0.is_imaginary and (1 + arg0**2).is_positive: | |
if re(ndir).is_positive: | |
if im(arg0).is_positive: | |
return res + pi | |
elif re(ndir).is_negative: | |
if im(arg0).is_negative: | |
return res - pi | |
else: | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return res | |
def _eval_aseries(self, n, args0, x, logx): | |
if args0[0] in [S.Infinity, S.NegativeInfinity]: | |
return atan(1/self.args[0])._eval_nseries(x, n, logx) | |
else: | |
return super()._eval_aseries(n, args0, x, logx) | |
def _eval_rewrite_as_log(self, x, **kwargs): | |
return S.ImaginaryUnit/2*(log(1 - S.ImaginaryUnit/x) | |
- log(1 + S.ImaginaryUnit/x)) | |
_eval_rewrite_as_tractable = _eval_rewrite_as_log | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return cot | |
def _eval_rewrite_as_asin(self, arg, **kwargs): | |
return (arg*sqrt(1/arg**2)* | |
(pi/2 - asin(sqrt(-arg**2)/sqrt(-arg**2 - 1)))) | |
def _eval_rewrite_as_acos(self, arg, **kwargs): | |
return arg*sqrt(1/arg**2)*acos(sqrt(-arg**2)/sqrt(-arg**2 - 1)) | |
def _eval_rewrite_as_atan(self, arg, **kwargs): | |
return atan(1/arg) | |
def _eval_rewrite_as_asec(self, arg, **kwargs): | |
return arg*sqrt(1/arg**2)*asec(sqrt((1 + arg**2)/arg**2)) | |
def _eval_rewrite_as_acsc(self, arg, **kwargs): | |
return arg*sqrt(1/arg**2)*(pi/2 - acsc(sqrt((1 + arg**2)/arg**2))) | |
class asec(InverseTrigonometricFunction): | |
r""" | |
The inverse secant function. | |
Returns the arc secant of x (measured in radians). | |
Explanation | |
=========== | |
``asec(x)`` will evaluate automatically in the cases | |
$x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the | |
result is a rational multiple of $\pi$ (see the eval class method). | |
``asec(x)`` has branch cut in the interval $[-1, 1]$. For complex arguments, | |
it can be defined [4]_ as | |
.. math:: | |
\operatorname{sec^{-1}}(z) = -i\frac{\log\left(\sqrt{1 - z^2} + 1\right)}{z} | |
At ``x = 0``, for positive branch cut, the limit evaluates to ``zoo``. For | |
negative branch cut, the limit | |
.. math:: | |
\lim_{z \to 0}-i\frac{\log\left(-\sqrt{1 - z^2} + 1\right)}{z} | |
simplifies to :math:`-i\log\left(z/2 + O\left(z^3\right)\right)` which | |
ultimately evaluates to ``zoo``. | |
As ``acos(x) = asec(1/x)``, a similar argument can be given for | |
``acos(x)``. | |
Examples | |
======== | |
>>> from sympy import asec, oo | |
>>> asec(1) | |
0 | |
>>> asec(-1) | |
pi | |
>>> asec(0) | |
zoo | |
>>> asec(-oo) | |
pi/2 | |
See Also | |
======== | |
sin, csc, cos, sec, tan, cot | |
asin, acsc, acos, atan, acot, atan2 | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions | |
.. [2] https://dlmf.nist.gov/4.23 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/ArcSec | |
.. [4] https://reference.wolfram.com/language/ref/ArcSec.html | |
""" | |
def eval(cls, arg): | |
if arg.is_zero: | |
return S.ComplexInfinity | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.One: | |
return S.Zero | |
elif arg is S.NegativeOne: | |
return pi | |
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: | |
return pi/2 | |
if arg.is_number: | |
acsc_table = cls._acsc_table() | |
if arg in acsc_table: | |
return pi/2 - acsc_table[arg] | |
elif -arg in acsc_table: | |
return pi/2 + acsc_table[-arg] | |
if arg.is_infinite: | |
return pi/2 | |
if isinstance(arg, sec): | |
ang = arg.args[0] | |
if ang.is_comparable: | |
ang %= 2*pi # restrict to [0,2*pi) | |
if ang > pi: # restrict to [0,pi] | |
ang = 2*pi - ang | |
return ang | |
if isinstance(arg, csc): # asec(x) + acsc(x) = pi/2 | |
ang = arg.args[0] | |
if ang.is_comparable: | |
return pi/2 - acsc(arg) | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return 1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2)) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return sec | |
def taylor_term(n, x, *previous_terms): | |
if n == 0: | |
return S.ImaginaryUnit*log(2 / x) | |
elif n < 0 or n % 2 == 1: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) > 2 and n > 2: | |
p = previous_terms[-2] | |
return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2) | |
else: | |
k = n // 2 | |
R = RisingFactorial(S.Half, k) * n | |
F = factorial(k) * n // 2 * n // 2 | |
return -S.ImaginaryUnit * R / F * x**n / 4 | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asec | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
if x0 is S.NaN: | |
return self.func(arg.as_leading_term(x)) | |
# Handling branch points | |
if x0 == 1: | |
return sqrt(2)*sqrt((arg - S.One).as_leading_term(x)) | |
if x0 in (-S.One, S.Zero): | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir) | |
# Handling points lying on branch cuts (-1, 1) | |
if x0.is_real and (1 - x0**2).is_positive: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if x0.is_positive: | |
return -self.func(x0) | |
elif im(ndir).is_positive: | |
if x0.is_negative: | |
return 2*pi - self.func(x0) | |
else: | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() | |
return self.func(x0) | |
def _eval_nseries(self, x, n, logx, cdir=0): # asec | |
from sympy.series.order import O | |
arg0 = self.args[0].subs(x, 0) | |
# Handling branch points | |
if arg0 is S.One: | |
t = Dummy('t', positive=True) | |
ser = asec(S.One + t**2).rewrite(log).nseries(t, 0, 2*n) | |
arg1 = S.NegativeOne + self.args[0] | |
f = arg1.as_leading_term(x) | |
g = (arg1 - f)/ f | |
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) | |
res = (res1.removeO()*sqrt(f)).expand() | |
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) | |
if arg0 is S.NegativeOne: | |
t = Dummy('t', positive=True) | |
ser = asec(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n) | |
arg1 = S.NegativeOne - self.args[0] | |
f = arg1.as_leading_term(x) | |
g = (arg1 - f)/ f | |
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) | |
res = (res1.removeO()*sqrt(f)).expand() | |
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) | |
res = Function._eval_nseries(self, x, n=n, logx=logx) | |
if arg0 is S.ComplexInfinity: | |
return res | |
# Handling points lying on branch cuts (-1, 1) | |
if arg0.is_real and (1 - arg0**2).is_positive: | |
ndir = self.args[0].dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if arg0.is_positive: | |
return -res | |
elif im(ndir).is_positive: | |
if arg0.is_negative: | |
return 2*pi - res | |
else: | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return res | |
def _eval_is_extended_real(self): | |
x = self.args[0] | |
if x.is_extended_real is False: | |
return False | |
return fuzzy_or(((x - 1).is_nonnegative, (-x - 1).is_nonnegative)) | |
def _eval_rewrite_as_log(self, arg, **kwargs): | |
return pi/2 + S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2)) | |
_eval_rewrite_as_tractable = _eval_rewrite_as_log | |
def _eval_rewrite_as_asin(self, arg, **kwargs): | |
return pi/2 - asin(1/arg) | |
def _eval_rewrite_as_acos(self, arg, **kwargs): | |
return acos(1/arg) | |
def _eval_rewrite_as_atan(self, x, **kwargs): | |
sx2x = sqrt(x**2)/x | |
return pi/2*(1 - sx2x) + sx2x*atan(sqrt(x**2 - 1)) | |
def _eval_rewrite_as_acot(self, x, **kwargs): | |
sx2x = sqrt(x**2)/x | |
return pi/2*(1 - sx2x) + sx2x*acot(1/sqrt(x**2 - 1)) | |
def _eval_rewrite_as_acsc(self, arg, **kwargs): | |
return pi/2 - acsc(arg) | |
class acsc(InverseTrigonometricFunction): | |
r""" | |
The inverse cosecant function. | |
Returns the arc cosecant of x (measured in radians). | |
Explanation | |
=========== | |
``acsc(x)`` will evaluate automatically in the cases | |
$x \in \{\infty, -\infty, 0, 1, -1\}$` and for some instances when the | |
result is a rational multiple of $\pi$ (see the ``eval`` class method). | |
Examples | |
======== | |
>>> from sympy import acsc, oo | |
>>> acsc(1) | |
pi/2 | |
>>> acsc(-1) | |
-pi/2 | |
>>> acsc(oo) | |
0 | |
>>> acsc(-oo) == acsc(oo) | |
True | |
>>> acsc(0) | |
zoo | |
See Also | |
======== | |
sin, csc, cos, sec, tan, cot | |
asin, acos, asec, atan, acot, atan2 | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions | |
.. [2] https://dlmf.nist.gov/4.23 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/ArcCsc | |
""" | |
def eval(cls, arg): | |
if arg.is_zero: | |
return S.ComplexInfinity | |
if arg.is_Number: | |
if arg is S.NaN: | |
return S.NaN | |
elif arg is S.One: | |
return pi/2 | |
elif arg is S.NegativeOne: | |
return -pi/2 | |
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: | |
return S.Zero | |
if arg.could_extract_minus_sign(): | |
return -cls(-arg) | |
if arg.is_infinite: | |
return S.Zero | |
if arg.is_number: | |
acsc_table = cls._acsc_table() | |
if arg in acsc_table: | |
return acsc_table[arg] | |
if isinstance(arg, csc): | |
ang = arg.args[0] | |
if ang.is_comparable: | |
ang %= 2*pi # restrict to [0,2*pi) | |
if ang > pi: # restrict to (-pi,pi] | |
ang = pi - ang | |
# restrict to [-pi/2,pi/2] | |
if ang > pi/2: | |
ang = pi - ang | |
if ang < -pi/2: | |
ang = -pi - ang | |
return ang | |
if isinstance(arg, sec): # asec(x) + acsc(x) = pi/2 | |
ang = arg.args[0] | |
if ang.is_comparable: | |
return pi/2 - asec(arg) | |
def fdiff(self, argindex=1): | |
if argindex == 1: | |
return -1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2)) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def inverse(self, argindex=1): | |
""" | |
Returns the inverse of this function. | |
""" | |
return csc | |
def taylor_term(n, x, *previous_terms): | |
if n == 0: | |
return pi/2 - S.ImaginaryUnit*log(2) + S.ImaginaryUnit*log(x) | |
elif n < 0 or n % 2 == 1: | |
return S.Zero | |
else: | |
x = sympify(x) | |
if len(previous_terms) > 2 and n > 2: | |
p = previous_terms[-2] | |
return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2) | |
else: | |
k = n // 2 | |
R = RisingFactorial(S.Half, k) * n | |
F = factorial(k) * n // 2 * n // 2 | |
return S.ImaginaryUnit * R / F * x**n / 4 | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acsc | |
arg = self.args[0] | |
x0 = arg.subs(x, 0).cancel() | |
if x0 is S.NaN: | |
return self.func(arg.as_leading_term(x)) | |
# Handling branch points | |
if x0 in (-S.One, S.One, S.Zero): | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() | |
if x0 is S.ComplexInfinity: | |
return (1/arg).as_leading_term(x) | |
# Handling points lying on branch cuts (-1, 1) | |
if x0.is_real and (1 - x0**2).is_positive: | |
ndir = arg.dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if x0.is_positive: | |
return pi - self.func(x0) | |
elif im(ndir).is_positive: | |
if x0.is_negative: | |
return -pi - self.func(x0) | |
else: | |
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand() | |
return self.func(x0) | |
def _eval_nseries(self, x, n, logx, cdir=0): # acsc | |
from sympy.series.order import O | |
arg0 = self.args[0].subs(x, 0) | |
# Handling branch points | |
if arg0 is S.One: | |
t = Dummy('t', positive=True) | |
ser = acsc(S.One + t**2).rewrite(log).nseries(t, 0, 2*n) | |
arg1 = S.NegativeOne + self.args[0] | |
f = arg1.as_leading_term(x) | |
g = (arg1 - f)/ f | |
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) | |
res = (res1.removeO()*sqrt(f)).expand() | |
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) | |
if arg0 is S.NegativeOne: | |
t = Dummy('t', positive=True) | |
ser = acsc(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n) | |
arg1 = S.NegativeOne - self.args[0] | |
f = arg1.as_leading_term(x) | |
g = (arg1 - f)/ f | |
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) | |
res = (res1.removeO()*sqrt(f)).expand() | |
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) | |
res = Function._eval_nseries(self, x, n=n, logx=logx) | |
if arg0 is S.ComplexInfinity: | |
return res | |
# Handling points lying on branch cuts (-1, 1) | |
if arg0.is_real and (1 - arg0**2).is_positive: | |
ndir = self.args[0].dir(x, cdir if cdir else 1) | |
if im(ndir).is_negative: | |
if arg0.is_positive: | |
return pi - res | |
elif im(ndir).is_positive: | |
if arg0.is_negative: | |
return -pi - res | |
else: | |
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return res | |
def _eval_rewrite_as_log(self, arg, **kwargs): | |
return -S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2)) | |
_eval_rewrite_as_tractable = _eval_rewrite_as_log | |
def _eval_rewrite_as_asin(self, arg, **kwargs): | |
return asin(1/arg) | |
def _eval_rewrite_as_acos(self, arg, **kwargs): | |
return pi/2 - acos(1/arg) | |
def _eval_rewrite_as_atan(self, x, **kwargs): | |
return sqrt(x**2)/x*(pi/2 - atan(sqrt(x**2 - 1))) | |
def _eval_rewrite_as_acot(self, arg, **kwargs): | |
return sqrt(arg**2)/arg*(pi/2 - acot(1/sqrt(arg**2 - 1))) | |
def _eval_rewrite_as_asec(self, arg, **kwargs): | |
return pi/2 - asec(arg) | |
class atan2(InverseTrigonometricFunction): | |
r""" | |
The function ``atan2(y, x)`` computes `\operatorname{atan}(y/x)` taking | |
two arguments `y` and `x`. Signs of both `y` and `x` are considered to | |
determine the appropriate quadrant of `\operatorname{atan}(y/x)`. | |
The range is `(-\pi, \pi]`. The complete definition reads as follows: | |
.. math:: | |
\operatorname{atan2}(y, x) = | |
\begin{cases} | |
\arctan\left(\frac y x\right) & \qquad x > 0 \\ | |
\arctan\left(\frac y x\right) + \pi& \qquad y \ge 0, x < 0 \\ | |
\arctan\left(\frac y x\right) - \pi& \qquad y < 0, x < 0 \\ | |
+\frac{\pi}{2} & \qquad y > 0, x = 0 \\ | |
-\frac{\pi}{2} & \qquad y < 0, x = 0 \\ | |
\text{undefined} & \qquad y = 0, x = 0 | |
\end{cases} | |
Attention: Note the role reversal of both arguments. The `y`-coordinate | |
is the first argument and the `x`-coordinate the second. | |
If either `x` or `y` is complex: | |
.. math:: | |
\operatorname{atan2}(y, x) = | |
-i\log\left(\frac{x + iy}{\sqrt{x^2 + y^2}}\right) | |
Examples | |
======== | |
Going counter-clock wise around the origin we find the | |
following angles: | |
>>> from sympy import atan2 | |
>>> atan2(0, 1) | |
0 | |
>>> atan2(1, 1) | |
pi/4 | |
>>> atan2(1, 0) | |
pi/2 | |
>>> atan2(1, -1) | |
3*pi/4 | |
>>> atan2(0, -1) | |
pi | |
>>> atan2(-1, -1) | |
-3*pi/4 | |
>>> atan2(-1, 0) | |
-pi/2 | |
>>> atan2(-1, 1) | |
-pi/4 | |
which are all correct. Compare this to the results of the ordinary | |
`\operatorname{atan}` function for the point `(x, y) = (-1, 1)` | |
>>> from sympy import atan, S | |
>>> atan(S(1)/-1) | |
-pi/4 | |
>>> atan2(1, -1) | |
3*pi/4 | |
where only the `\operatorname{atan2}` function reurns what we expect. | |
We can differentiate the function with respect to both arguments: | |
>>> from sympy import diff | |
>>> from sympy.abc import x, y | |
>>> diff(atan2(y, x), x) | |
-y/(x**2 + y**2) | |
>>> diff(atan2(y, x), y) | |
x/(x**2 + y**2) | |
We can express the `\operatorname{atan2}` function in terms of | |
complex logarithms: | |
>>> from sympy import log | |
>>> atan2(y, x).rewrite(log) | |
-I*log((x + I*y)/sqrt(x**2 + y**2)) | |
and in terms of `\operatorname(atan)`: | |
>>> from sympy import atan | |
>>> atan2(y, x).rewrite(atan) | |
Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (nan, True)) | |
but note that this form is undefined on the negative real axis. | |
See Also | |
======== | |
sin, csc, cos, sec, tan, cot | |
asin, acsc, acos, asec, atan, acot | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions | |
.. [2] https://en.wikipedia.org/wiki/Atan2 | |
.. [3] https://functions.wolfram.com/ElementaryFunctions/ArcTan2 | |
""" | |
def eval(cls, y, x): | |
from sympy.functions.special.delta_functions import Heaviside | |
if x is S.NegativeInfinity: | |
if y.is_zero: | |
# Special case y = 0 because we define Heaviside(0) = 1/2 | |
return pi | |
return 2*pi*(Heaviside(re(y))) - pi | |
elif x is S.Infinity: | |
return S.Zero | |
elif x.is_imaginary and y.is_imaginary and x.is_number and y.is_number: | |
x = im(x) | |
y = im(y) | |
if x.is_extended_real and y.is_extended_real: | |
if x.is_positive: | |
return atan(y/x) | |
elif x.is_negative: | |
if y.is_negative: | |
return atan(y/x) - pi | |
elif y.is_nonnegative: | |
return atan(y/x) + pi | |
elif x.is_zero: | |
if y.is_positive: | |
return pi/2 | |
elif y.is_negative: | |
return -pi/2 | |
elif y.is_zero: | |
return S.NaN | |
if y.is_zero: | |
if x.is_extended_nonzero: | |
return pi*(S.One - Heaviside(x)) | |
if x.is_number: | |
return Piecewise((pi, re(x) < 0), | |
(0, Ne(x, 0)), | |
(S.NaN, True)) | |
if x.is_number and y.is_number: | |
return -S.ImaginaryUnit*log( | |
(x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2)) | |
def _eval_rewrite_as_log(self, y, x, **kwargs): | |
return -S.ImaginaryUnit*log((x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2)) | |
def _eval_rewrite_as_atan(self, y, x, **kwargs): | |
return Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), | |
(pi, re(x) < 0), | |
(0, Ne(x, 0)), | |
(S.NaN, True)) | |
def _eval_rewrite_as_arg(self, y, x, **kwargs): | |
if x.is_extended_real and y.is_extended_real: | |
return arg_f(x + y*S.ImaginaryUnit) | |
n = x + S.ImaginaryUnit*y | |
d = x**2 + y**2 | |
return arg_f(n/sqrt(d)) - S.ImaginaryUnit*log(abs(n)/sqrt(abs(d))) | |
def _eval_is_extended_real(self): | |
return self.args[0].is_extended_real and self.args[1].is_extended_real | |
def _eval_conjugate(self): | |
return self.func(self.args[0].conjugate(), self.args[1].conjugate()) | |
def fdiff(self, argindex): | |
y, x = self.args | |
if argindex == 1: | |
# Diff wrt y | |
return x/(x**2 + y**2) | |
elif argindex == 2: | |
# Diff wrt x | |
return -y/(x**2 + y**2) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def _eval_evalf(self, prec): | |
y, x = self.args | |
if x.is_extended_real and y.is_extended_real: | |
return super()._eval_evalf(prec) | |