Spaces:
Sleeping
Sleeping
""" | |
Recurrences | |
""" | |
from sympy.core import S, sympify | |
from sympy.utilities.iterables import iterable | |
from sympy.utilities.misc import as_int | |
def linrec(coeffs, init, n): | |
r""" | |
Evaluation of univariate linear recurrences of homogeneous type | |
having coefficients independent of the recurrence variable. | |
Parameters | |
========== | |
coeffs : iterable | |
Coefficients of the recurrence | |
init : iterable | |
Initial values of the recurrence | |
n : Integer | |
Point of evaluation for the recurrence | |
Notes | |
===== | |
Let `y(n)` be the recurrence of given type, ``c`` be the sequence | |
of coefficients, ``b`` be the sequence of initial/base values of the | |
recurrence and ``k`` (equal to ``len(c)``) be the order of recurrence. | |
Then, | |
.. math :: y(n) = \begin{cases} b_n & 0 \le n < k \\ | |
c_0 y(n-1) + c_1 y(n-2) + \cdots + c_{k-1} y(n-k) & n \ge k | |
\end{cases} | |
Let `x_0, x_1, \ldots, x_n` be a sequence and consider the transformation | |
that maps each polynomial `f(x)` to `T(f(x))` where each power `x^i` is | |
replaced by the corresponding value `x_i`. The sequence is then a solution | |
of the recurrence if and only if `T(x^i p(x)) = 0` for each `i \ge 0` where | |
`p(x) = x^k - c_0 x^(k-1) - \cdots - c_{k-1}` is the characteristic | |
polynomial. | |
Then `T(f(x)p(x)) = 0` for each polynomial `f(x)` (as it is a linear | |
combination of powers `x^i`). Now, if `x^n` is congruent to | |
`g(x) = a_0 x^0 + a_1 x^1 + \cdots + a_{k-1} x^{k-1}` modulo `p(x)`, then | |
`T(x^n) = x_n` is equal to | |
`T(g(x)) = a_0 x_0 + a_1 x_1 + \cdots + a_{k-1} x_{k-1}`. | |
Computation of `x^n`, | |
given `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}` | |
is performed using exponentiation by squaring (refer to [1_]) with | |
an additional reduction step performed to retain only first `k` powers | |
of `x` in the representation of `x^n`. | |
Examples | |
======== | |
>>> from sympy.discrete.recurrences import linrec | |
>>> from sympy.abc import x, y, z | |
>>> linrec(coeffs=[1, 1], init=[0, 1], n=10) | |
55 | |
>>> linrec(coeffs=[1, 1], init=[x, y], n=10) | |
34*x + 55*y | |
>>> linrec(coeffs=[x, y], init=[0, 1], n=5) | |
x**2*y + x*(x**3 + 2*x*y) + y**2 | |
>>> linrec(coeffs=[1, 2, 3, 0, 0, 4], init=[x, y, z], n=16) | |
13576*x + 5676*y + 2356*z | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Exponentiation_by_squaring | |
.. [2] https://en.wikipedia.org/w/index.php?title=Modular_exponentiation§ion=6#Matrices | |
See Also | |
======== | |
sympy.polys.agca.extensions.ExtensionElement.__pow__ | |
""" | |
if not coeffs: | |
return S.Zero | |
if not iterable(coeffs): | |
raise TypeError("Expected a sequence of coefficients for" | |
" the recurrence") | |
if not iterable(init): | |
raise TypeError("Expected a sequence of values for the initialization" | |
" of the recurrence") | |
n = as_int(n) | |
if n < 0: | |
raise ValueError("Point of evaluation of recurrence must be a " | |
"non-negative integer") | |
c = [sympify(arg) for arg in coeffs] | |
b = [sympify(arg) for arg in init] | |
k = len(c) | |
if len(b) > k: | |
raise TypeError("Count of initial values should not exceed the " | |
"order of the recurrence") | |
else: | |
b += [S.Zero]*(k - len(b)) # remaining initial values default to zero | |
if n < k: | |
return b[n] | |
terms = [u*v for u, v in zip(linrec_coeffs(c, n), b)] | |
return sum(terms[:-1], terms[-1]) | |
def linrec_coeffs(c, n): | |
r""" | |
Compute the coefficients of n'th term in linear recursion | |
sequence defined by c. | |
`x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}`. | |
It computes the coefficients by using binary exponentiation. | |
This function is used by `linrec` and `_eval_pow_by_cayley`. | |
Parameters | |
========== | |
c = coefficients of the divisor polynomial | |
n = exponent of x, so dividend is x^n | |
""" | |
k = len(c) | |
def _square_and_reduce(u, offset): | |
# squares `(u_0 + u_1 x + u_2 x^2 + \cdots + u_{k-1} x^k)` (and | |
# multiplies by `x` if offset is 1) and reduces the above result of | |
# length upto `2k` to `k` using the characteristic equation of the | |
# recurrence given by, `x^k = c_0 x^{k-1} + c_1 x^{k-2} + \cdots + c_{k-1}` | |
w = [S.Zero]*(2*len(u) - 1 + offset) | |
for i, p in enumerate(u): | |
for j, q in enumerate(u): | |
w[offset + i + j] += p*q | |
for j in range(len(w) - 1, k - 1, -1): | |
for i in range(k): | |
w[j - i - 1] += w[j]*c[i] | |
return w[:k] | |
def _final_coeffs(n): | |
# computes the final coefficient list - `cf` corresponding to the | |
# point at which recurrence is to be evalauted - `n`, such that, | |
# `y(n) = cf_0 y(k-1) + cf_1 y(k-2) + \cdots + cf_{k-1} y(0)` | |
if n < k: | |
return [S.Zero]*n + [S.One] + [S.Zero]*(k - n - 1) | |
else: | |
return _square_and_reduce(_final_coeffs(n // 2), n % 2) | |
return _final_coeffs(n) | |