Spaces:
Sleeping
Sleeping
"""Gosper's algorithm for hypergeometric summation. """ | |
from sympy.core import S, Dummy, symbols | |
from sympy.polys import Poly, parallel_poly_from_expr, factor | |
from sympy.utilities.iterables import is_sequence | |
def gosper_normal(f, g, n, polys=True): | |
r""" | |
Compute the Gosper's normal form of ``f`` and ``g``. | |
Explanation | |
=========== | |
Given relatively prime univariate polynomials ``f`` and ``g``, | |
rewrite their quotient to a normal form defined as follows: | |
.. math:: | |
\frac{f(n)}{g(n)} = Z \cdot \frac{A(n) C(n+1)}{B(n) C(n)} | |
where ``Z`` is an arbitrary constant and ``A``, ``B``, ``C`` are | |
monic polynomials in ``n`` with the following properties: | |
1. `\gcd(A(n), B(n+h)) = 1 \forall h \in \mathbb{N}` | |
2. `\gcd(B(n), C(n+1)) = 1` | |
3. `\gcd(A(n), C(n)) = 1` | |
This normal form, or rational factorization in other words, is a | |
crucial step in Gosper's algorithm and in solving of difference | |
equations. It can be also used to decide if two hypergeometric | |
terms are similar or not. | |
This procedure will return a tuple containing elements of this | |
factorization in the form ``(Z*A, B, C)``. | |
Examples | |
======== | |
>>> from sympy.concrete.gosper import gosper_normal | |
>>> from sympy.abc import n | |
>>> gosper_normal(4*n+5, 2*(4*n+1)*(2*n+3), n, polys=False) | |
(1/4, n + 3/2, n + 1/4) | |
""" | |
(p, q), opt = parallel_poly_from_expr( | |
(f, g), n, field=True, extension=True) | |
a, A = p.LC(), p.monic() | |
b, B = q.LC(), q.monic() | |
C, Z = A.one, a/b | |
h = Dummy('h') | |
D = Poly(n + h, n, h, domain=opt.domain) | |
R = A.resultant(B.compose(D)) | |
roots = set(R.ground_roots().keys()) | |
for r in set(roots): | |
if not r.is_Integer or r < 0: | |
roots.remove(r) | |
for i in sorted(roots): | |
d = A.gcd(B.shift(+i)) | |
A = A.quo(d) | |
B = B.quo(d.shift(-i)) | |
for j in range(1, i + 1): | |
C *= d.shift(-j) | |
A = A.mul_ground(Z) | |
if not polys: | |
A = A.as_expr() | |
B = B.as_expr() | |
C = C.as_expr() | |
return A, B, C | |
def gosper_term(f, n): | |
r""" | |
Compute Gosper's hypergeometric term for ``f``. | |
Explanation | |
=========== | |
Suppose ``f`` is a hypergeometric term such that: | |
.. math:: | |
s_n = \sum_{k=0}^{n-1} f_k | |
and `f_k` does not depend on `n`. Returns a hypergeometric | |
term `g_n` such that `g_{n+1} - g_n = f_n`. | |
Examples | |
======== | |
>>> from sympy.concrete.gosper import gosper_term | |
>>> from sympy import factorial | |
>>> from sympy.abc import n | |
>>> gosper_term((4*n + 1)*factorial(n)/factorial(2*n + 1), n) | |
(-n - 1/2)/(n + 1/4) | |
""" | |
from sympy.simplify import hypersimp | |
r = hypersimp(f, n) | |
if r is None: | |
return None # 'f' is *not* a hypergeometric term | |
p, q = r.as_numer_denom() | |
A, B, C = gosper_normal(p, q, n) | |
B = B.shift(-1) | |
N = S(A.degree()) | |
M = S(B.degree()) | |
K = S(C.degree()) | |
if (N != M) or (A.LC() != B.LC()): | |
D = {K - max(N, M)} | |
elif not N: | |
D = {K - N + 1, S.Zero} | |
else: | |
D = {K - N + 1, (B.nth(N - 1) - A.nth(N - 1))/A.LC()} | |
for d in set(D): | |
if not d.is_Integer or d < 0: | |
D.remove(d) | |
if not D: | |
return None # 'f(n)' is *not* Gosper-summable | |
d = max(D) | |
coeffs = symbols('c:%s' % (d + 1), cls=Dummy) | |
domain = A.get_domain().inject(*coeffs) | |
x = Poly(coeffs, n, domain=domain) | |
H = A*x.shift(1) - B*x - C | |
from sympy.solvers.solvers import solve | |
solution = solve(H.coeffs(), coeffs) | |
if solution is None: | |
return None # 'f(n)' is *not* Gosper-summable | |
x = x.as_expr().subs(solution) | |
for coeff in coeffs: | |
if coeff not in solution: | |
x = x.subs(coeff, 0) | |
if x.is_zero: | |
return None # 'f(n)' is *not* Gosper-summable | |
else: | |
return B.as_expr()*x/C.as_expr() | |
def gosper_sum(f, k): | |
r""" | |
Gosper's hypergeometric summation algorithm. | |
Explanation | |
=========== | |
Given a hypergeometric term ``f`` such that: | |
.. math :: | |
s_n = \sum_{k=0}^{n-1} f_k | |
and `f(n)` does not depend on `n`, returns `g_{n} - g(0)` where | |
`g_{n+1} - g_n = f_n`, or ``None`` if `s_n` cannot be expressed | |
in closed form as a sum of hypergeometric terms. | |
Examples | |
======== | |
>>> from sympy.concrete.gosper import gosper_sum | |
>>> from sympy import factorial | |
>>> from sympy.abc import n, k | |
>>> f = (4*k + 1)*factorial(k)/factorial(2*k + 1) | |
>>> gosper_sum(f, (k, 0, n)) | |
(-factorial(n) + 2*factorial(2*n + 1))/factorial(2*n + 1) | |
>>> _.subs(n, 2) == sum(f.subs(k, i) for i in [0, 1, 2]) | |
True | |
>>> gosper_sum(f, (k, 3, n)) | |
(-60*factorial(n) + factorial(2*n + 1))/(60*factorial(2*n + 1)) | |
>>> _.subs(n, 5) == sum(f.subs(k, i) for i in [3, 4, 5]) | |
True | |
References | |
========== | |
.. [1] Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B, | |
AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73--100 | |
""" | |
indefinite = False | |
if is_sequence(k): | |
k, a, b = k | |
else: | |
indefinite = True | |
g = gosper_term(f, k) | |
if g is None: | |
return None | |
if indefinite: | |
result = f*g | |
else: | |
result = (f*(g + 1)).subs(k, b) - (f*g).subs(k, a) | |
if result is S.NaN: | |
try: | |
result = (f*(g + 1)).limit(k, b) - (f*g).limit(k, a) | |
except NotImplementedError: | |
result = None | |
return factor(result) | |