Spaces:
Sleeping
Sleeping
from math import factorial as _factorial, log, prod | |
from itertools import chain, product | |
from sympy.combinatorics import Permutation | |
from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert, | |
_af_rmul, _af_rmuln, _af_pow, Cycle) | |
from sympy.combinatorics.util import (_check_cycles_alt_sym, | |
_distribute_gens_by_base, _orbits_transversals_from_bsgs, | |
_handle_precomputed_bsgs, _base_ordering, _strong_gens_from_distr, | |
_strip, _strip_af) | |
from sympy.core import Basic | |
from sympy.core.random import _randrange, randrange, choice | |
from sympy.core.symbol import Symbol | |
from sympy.core.sympify import _sympify | |
from sympy.functions.combinatorial.factorials import factorial | |
from sympy.ntheory import primefactors, sieve | |
from sympy.ntheory.factor_ import (factorint, multiplicity) | |
from sympy.ntheory.primetest import isprime | |
from sympy.utilities.iterables import has_variety, is_sequence, uniq | |
rmul = Permutation.rmul_with_af | |
_af_new = Permutation._af_new | |
class PermutationGroup(Basic): | |
r"""The class defining a Permutation group. | |
Explanation | |
=========== | |
``PermutationGroup([p1, p2, ..., pn])`` returns the permutation group | |
generated by the list of permutations. This group can be supplied | |
to Polyhedron if one desires to decorate the elements to which the | |
indices of the permutation refer. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> from sympy.combinatorics import Polyhedron | |
The permutations corresponding to motion of the front, right and | |
bottom face of a $2 \times 2$ Rubik's cube are defined: | |
>>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5) | |
>>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9) | |
>>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21) | |
These are passed as permutations to PermutationGroup: | |
>>> G = PermutationGroup(F, R, D) | |
>>> G.order() | |
3674160 | |
The group can be supplied to a Polyhedron in order to track the | |
objects being moved. An example involving the $2 \times 2$ Rubik's cube is | |
given there, but here is a simple demonstration: | |
>>> a = Permutation(2, 1) | |
>>> b = Permutation(1, 0) | |
>>> G = PermutationGroup(a, b) | |
>>> P = Polyhedron(list('ABC'), pgroup=G) | |
>>> P.corners | |
(A, B, C) | |
>>> P.rotate(0) # apply permutation 0 | |
>>> P.corners | |
(A, C, B) | |
>>> P.reset() | |
>>> P.corners | |
(A, B, C) | |
Or one can make a permutation as a product of selected permutations | |
and apply them to an iterable directly: | |
>>> P10 = G.make_perm([0, 1]) | |
>>> P10('ABC') | |
['C', 'A', 'B'] | |
See Also | |
======== | |
sympy.combinatorics.polyhedron.Polyhedron, | |
sympy.combinatorics.permutations.Permutation | |
References | |
========== | |
.. [1] Holt, D., Eick, B., O'Brien, E. | |
"Handbook of Computational Group Theory" | |
.. [2] Seress, A. | |
"Permutation Group Algorithms" | |
.. [3] https://en.wikipedia.org/wiki/Schreier_vector | |
.. [4] https://en.wikipedia.org/wiki/Nielsen_transformation#Product_replacement_algorithm | |
.. [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray, | |
Alice C.Niemeyer, and E.A.O'Brien. "Generating Random | |
Elements of a Finite Group" | |
.. [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29 | |
.. [7] https://algorithmist.com/wiki/Union_find | |
.. [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups | |
.. [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29 | |
.. [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer | |
.. [11] https://groupprops.subwiki.org/wiki/Derived_subgroup | |
.. [12] https://en.wikipedia.org/wiki/Nilpotent_group | |
.. [13] https://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf | |
.. [14] https://docs.gap-system.org/doc/ref/manual.pdf | |
""" | |
is_group = True | |
def __new__(cls, *args, dups=True, **kwargs): | |
"""The default constructor. Accepts Cycle and Permutation forms. | |
Removes duplicates unless ``dups`` keyword is ``False``. | |
""" | |
if not args: | |
args = [Permutation()] | |
else: | |
args = list(args[0] if is_sequence(args[0]) else args) | |
if not args: | |
args = [Permutation()] | |
if any(isinstance(a, Cycle) for a in args): | |
args = [Permutation(a) for a in args] | |
if has_variety(a.size for a in args): | |
degree = kwargs.pop('degree', None) | |
if degree is None: | |
degree = max(a.size for a in args) | |
for i in range(len(args)): | |
if args[i].size != degree: | |
args[i] = Permutation(args[i], size=degree) | |
if dups: | |
args = list(uniq([_af_new(list(a)) for a in args])) | |
if len(args) > 1: | |
args = [g for g in args if not g.is_identity] | |
return Basic.__new__(cls, *args, **kwargs) | |
def __init__(self, *args, **kwargs): | |
self._generators = list(self.args) | |
self._order = None | |
self._elements = [] | |
self._center = None | |
self._is_abelian = None | |
self._is_transitive = None | |
self._is_sym = None | |
self._is_alt = None | |
self._is_primitive = None | |
self._is_nilpotent = None | |
self._is_solvable = None | |
self._is_trivial = None | |
self._transitivity_degree = None | |
self._max_div = None | |
self._is_perfect = None | |
self._is_cyclic = None | |
self._is_dihedral = None | |
self._r = len(self._generators) | |
self._degree = self._generators[0].size | |
# these attributes are assigned after running schreier_sims | |
self._base = [] | |
self._strong_gens = [] | |
self._strong_gens_slp = [] | |
self._basic_orbits = [] | |
self._transversals = [] | |
self._transversal_slp = [] | |
# these attributes are assigned after running _random_pr_init | |
self._random_gens = [] | |
# finite presentation of the group as an instance of `FpGroup` | |
self._fp_presentation = None | |
def __getitem__(self, i): | |
return self._generators[i] | |
def __contains__(self, i): | |
"""Return ``True`` if *i* is contained in PermutationGroup. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> p = Permutation(1, 2, 3) | |
>>> Permutation(3) in PermutationGroup(p) | |
True | |
""" | |
if not isinstance(i, Permutation): | |
raise TypeError("A PermutationGroup contains only Permutations as " | |
"elements, not elements of type %s" % type(i)) | |
return self.contains(i) | |
def __len__(self): | |
return len(self._generators) | |
def equals(self, other): | |
"""Return ``True`` if PermutationGroup generated by elements in the | |
group are same i.e they represent the same PermutationGroup. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> p = Permutation(0, 1, 2, 3, 4, 5) | |
>>> G = PermutationGroup([p, p**2]) | |
>>> H = PermutationGroup([p**2, p]) | |
>>> G.generators == H.generators | |
False | |
>>> G.equals(H) | |
True | |
""" | |
if not isinstance(other, PermutationGroup): | |
return False | |
set_self_gens = set(self.generators) | |
set_other_gens = set(other.generators) | |
# before reaching the general case there are also certain | |
# optimisation and obvious cases requiring less or no actual | |
# computation. | |
if set_self_gens == set_other_gens: | |
return True | |
# in the most general case it will check that each generator of | |
# one group belongs to the other PermutationGroup and vice-versa | |
for gen1 in set_self_gens: | |
if not other.contains(gen1): | |
return False | |
for gen2 in set_other_gens: | |
if not self.contains(gen2): | |
return False | |
return True | |
def __mul__(self, other): | |
""" | |
Return the direct product of two permutation groups as a permutation | |
group. | |
Explanation | |
=========== | |
This implementation realizes the direct product by shifting the index | |
set for the generators of the second group: so if we have ``G`` acting | |
on ``n1`` points and ``H`` acting on ``n2`` points, ``G*H`` acts on | |
``n1 + n2`` points. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import CyclicGroup | |
>>> G = CyclicGroup(5) | |
>>> H = G*G | |
>>> H | |
PermutationGroup([ | |
(9)(0 1 2 3 4), | |
(5 6 7 8 9)]) | |
>>> H.order() | |
25 | |
""" | |
if isinstance(other, Permutation): | |
return Coset(other, self, dir='+') | |
gens1 = [perm._array_form for perm in self.generators] | |
gens2 = [perm._array_form for perm in other.generators] | |
n1 = self._degree | |
n2 = other._degree | |
start = list(range(n1)) | |
end = list(range(n1, n1 + n2)) | |
for i in range(len(gens2)): | |
gens2[i] = [x + n1 for x in gens2[i]] | |
gens2 = [start + gen for gen in gens2] | |
gens1 = [gen + end for gen in gens1] | |
together = gens1 + gens2 | |
gens = [_af_new(x) for x in together] | |
return PermutationGroup(gens) | |
def _random_pr_init(self, r, n, _random_prec_n=None): | |
r"""Initialize random generators for the product replacement algorithm. | |
Explanation | |
=========== | |
The implementation uses a modification of the original product | |
replacement algorithm due to Leedham-Green, as described in [1], | |
pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical | |
analysis of the original product replacement algorithm, and [4]. | |
The product replacement algorithm is used for producing random, | |
uniformly distributed elements of a group `G` with a set of generators | |
`S`. For the initialization ``_random_pr_init``, a list ``R`` of | |
`\max\{r, |S|\}` group generators is created as the attribute | |
``G._random_gens``, repeating elements of `S` if necessary, and the | |
identity element of `G` is appended to ``R`` - we shall refer to this | |
last element as the accumulator. Then the function ``random_pr()`` | |
is called ``n`` times, randomizing the list ``R`` while preserving | |
the generation of `G` by ``R``. The function ``random_pr()`` itself | |
takes two random elements ``g, h`` among all elements of ``R`` but | |
the accumulator and replaces ``g`` with a randomly chosen element | |
from `\{gh, g(~h), hg, (~h)g\}`. Then the accumulator is multiplied | |
by whatever ``g`` was replaced by. The new value of the accumulator is | |
then returned by ``random_pr()``. | |
The elements returned will eventually (for ``n`` large enough) become | |
uniformly distributed across `G` ([5]). For practical purposes however, | |
the values ``n = 50, r = 11`` are suggested in [1]. | |
Notes | |
===== | |
THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute | |
self._random_gens | |
See Also | |
======== | |
random_pr | |
""" | |
deg = self.degree | |
random_gens = [x._array_form for x in self.generators] | |
k = len(random_gens) | |
if k < r: | |
for i in range(k, r): | |
random_gens.append(random_gens[i - k]) | |
acc = list(range(deg)) | |
random_gens.append(acc) | |
self._random_gens = random_gens | |
# handle randomized input for testing purposes | |
if _random_prec_n is None: | |
for i in range(n): | |
self.random_pr() | |
else: | |
for i in range(n): | |
self.random_pr(_random_prec=_random_prec_n[i]) | |
def _union_find_merge(self, first, second, ranks, parents, not_rep): | |
"""Merges two classes in a union-find data structure. | |
Explanation | |
=========== | |
Used in the implementation of Atkinson's algorithm as suggested in [1], | |
pp. 83-87. The class merging process uses union by rank as an | |
optimization. ([7]) | |
Notes | |
===== | |
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, | |
``parents``, the list of class sizes, ``ranks``, and the list of | |
elements that are not representatives, ``not_rep``, are changed due to | |
class merging. | |
See Also | |
======== | |
minimal_block, _union_find_rep | |
References | |
========== | |
.. [1] Holt, D., Eick, B., O'Brien, E. | |
"Handbook of computational group theory" | |
.. [7] https://algorithmist.com/wiki/Union_find | |
""" | |
rep_first = self._union_find_rep(first, parents) | |
rep_second = self._union_find_rep(second, parents) | |
if rep_first != rep_second: | |
# union by rank | |
if ranks[rep_first] >= ranks[rep_second]: | |
new_1, new_2 = rep_first, rep_second | |
else: | |
new_1, new_2 = rep_second, rep_first | |
total_rank = ranks[new_1] + ranks[new_2] | |
if total_rank > self.max_div: | |
return -1 | |
parents[new_2] = new_1 | |
ranks[new_1] = total_rank | |
not_rep.append(new_2) | |
return 1 | |
return 0 | |
def _union_find_rep(self, num, parents): | |
"""Find representative of a class in a union-find data structure. | |
Explanation | |
=========== | |
Used in the implementation of Atkinson's algorithm as suggested in [1], | |
pp. 83-87. After the representative of the class to which ``num`` | |
belongs is found, path compression is performed as an optimization | |
([7]). | |
Notes | |
===== | |
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, | |
``parents``, is altered due to path compression. | |
See Also | |
======== | |
minimal_block, _union_find_merge | |
References | |
========== | |
.. [1] Holt, D., Eick, B., O'Brien, E. | |
"Handbook of computational group theory" | |
.. [7] https://algorithmist.com/wiki/Union_find | |
""" | |
rep, parent = num, parents[num] | |
while parent != rep: | |
rep = parent | |
parent = parents[rep] | |
# path compression | |
temp, parent = num, parents[num] | |
while parent != rep: | |
parents[temp] = rep | |
temp = parent | |
parent = parents[temp] | |
return rep | |
def base(self): | |
r"""Return a base from the Schreier-Sims algorithm. | |
Explanation | |
=========== | |
For a permutation group `G`, a base is a sequence of points | |
`B = (b_1, b_2, \dots, b_k)` such that no element of `G` apart | |
from the identity fixes all the points in `B`. The concepts of | |
a base and strong generating set and their applications are | |
discussed in depth in [1], pp. 87-89 and [2], pp. 55-57. | |
An alternative way to think of `B` is that it gives the | |
indices of the stabilizer cosets that contain more than the | |
identity permutation. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)]) | |
>>> G.base | |
[0, 2] | |
See Also | |
======== | |
strong_gens, basic_transversals, basic_orbits, basic_stabilizers | |
""" | |
if self._base == []: | |
self.schreier_sims() | |
return self._base | |
def baseswap(self, base, strong_gens, pos, randomized=False, | |
transversals=None, basic_orbits=None, strong_gens_distr=None): | |
r"""Swap two consecutive base points in base and strong generating set. | |
Explanation | |
=========== | |
If a base for a group `G` is given by `(b_1, b_2, \dots, b_k)`, this | |
function returns a base `(b_1, b_2, \dots, b_{i+1}, b_i, \dots, b_k)`, | |
where `i` is given by ``pos``, and a strong generating set relative | |
to that base. The original base and strong generating set are not | |
modified. | |
The randomized version (default) is of Las Vegas type. | |
Parameters | |
========== | |
base, strong_gens | |
The base and strong generating set. | |
pos | |
The position at which swapping is performed. | |
randomized | |
A switch between randomized and deterministic version. | |
transversals | |
The transversals for the basic orbits, if known. | |
basic_orbits | |
The basic orbits, if known. | |
strong_gens_distr | |
The strong generators distributed by basic stabilizers, if known. | |
Returns | |
======= | |
(base, strong_gens) | |
``base`` is the new base, and ``strong_gens`` is a generating set | |
relative to it. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import SymmetricGroup | |
>>> from sympy.combinatorics.testutil import _verify_bsgs | |
>>> from sympy.combinatorics.perm_groups import PermutationGroup | |
>>> S = SymmetricGroup(4) | |
>>> S.schreier_sims() | |
>>> S.base | |
[0, 1, 2] | |
>>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False) | |
>>> base, gens | |
([0, 2, 1], | |
[(0 1 2 3), (3)(0 1), (1 3 2), | |
(2 3), (1 3)]) | |
check that base, gens is a BSGS | |
>>> S1 = PermutationGroup(gens) | |
>>> _verify_bsgs(S1, base, gens) | |
True | |
See Also | |
======== | |
schreier_sims | |
Notes | |
===== | |
The deterministic version of the algorithm is discussed in | |
[1], pp. 102-103; the randomized version is discussed in [1], p.103, and | |
[2], p.98. It is of Las Vegas type. | |
Notice that [1] contains a mistake in the pseudocode and | |
discussion of BASESWAP: on line 3 of the pseudocode, | |
`|\beta_{i+1}^{\left\langle T\right\rangle}|` should be replaced by | |
`|\beta_{i}^{\left\langle T\right\rangle}|`, and the same for the | |
discussion of the algorithm. | |
""" | |
# construct the basic orbits, generators for the stabilizer chain | |
# and transversal elements from whatever was provided | |
transversals, basic_orbits, strong_gens_distr = \ | |
_handle_precomputed_bsgs(base, strong_gens, transversals, | |
basic_orbits, strong_gens_distr) | |
base_len = len(base) | |
degree = self.degree | |
# size of orbit of base[pos] under the stabilizer we seek to insert | |
# in the stabilizer chain at position pos + 1 | |
size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \ | |
//len(_orbit(degree, strong_gens_distr[pos], base[pos + 1])) | |
# initialize the wanted stabilizer by a subgroup | |
if pos + 2 > base_len - 1: | |
T = [] | |
else: | |
T = strong_gens_distr[pos + 2][:] | |
# randomized version | |
if randomized is True: | |
stab_pos = PermutationGroup(strong_gens_distr[pos]) | |
schreier_vector = stab_pos.schreier_vector(base[pos + 1]) | |
# add random elements of the stabilizer until they generate it | |
while len(_orbit(degree, T, base[pos])) != size: | |
new = stab_pos.random_stab(base[pos + 1], | |
schreier_vector=schreier_vector) | |
T.append(new) | |
# deterministic version | |
else: | |
Gamma = set(basic_orbits[pos]) | |
Gamma.remove(base[pos]) | |
if base[pos + 1] in Gamma: | |
Gamma.remove(base[pos + 1]) | |
# add elements of the stabilizer until they generate it by | |
# ruling out member of the basic orbit of base[pos] along the way | |
while len(_orbit(degree, T, base[pos])) != size: | |
gamma = next(iter(Gamma)) | |
x = transversals[pos][gamma] | |
temp = x._array_form.index(base[pos + 1]) # (~x)(base[pos + 1]) | |
if temp not in basic_orbits[pos + 1]: | |
Gamma = Gamma - _orbit(degree, T, gamma) | |
else: | |
y = transversals[pos + 1][temp] | |
el = rmul(x, y) | |
if el(base[pos]) not in _orbit(degree, T, base[pos]): | |
T.append(el) | |
Gamma = Gamma - _orbit(degree, T, base[pos]) | |
# build the new base and strong generating set | |
strong_gens_new_distr = strong_gens_distr[:] | |
strong_gens_new_distr[pos + 1] = T | |
base_new = base[:] | |
base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos] | |
strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr) | |
for gen in T: | |
if gen not in strong_gens_new: | |
strong_gens_new.append(gen) | |
return base_new, strong_gens_new | |
def basic_orbits(self): | |
r""" | |
Return the basic orbits relative to a base and strong generating set. | |
Explanation | |
=========== | |
If `(b_1, b_2, \dots, b_k)` is a base for a group `G`, and | |
`G^{(i)} = G_{b_1, b_2, \dots, b_{i-1}}` is the ``i``-th basic stabilizer | |
(so that `G^{(1)} = G`), the ``i``-th basic orbit relative to this base | |
is the orbit of `b_i` under `G^{(i)}`. See [1], pp. 87-89 for more | |
information. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import SymmetricGroup | |
>>> S = SymmetricGroup(4) | |
>>> S.basic_orbits | |
[[0, 1, 2, 3], [1, 2, 3], [2, 3]] | |
See Also | |
======== | |
base, strong_gens, basic_transversals, basic_stabilizers | |
""" | |
if self._basic_orbits == []: | |
self.schreier_sims() | |
return self._basic_orbits | |
def basic_stabilizers(self): | |
r""" | |
Return a chain of stabilizers relative to a base and strong generating | |
set. | |
Explanation | |
=========== | |
The ``i``-th basic stabilizer `G^{(i)}` relative to a base | |
`(b_1, b_2, \dots, b_k)` is `G_{b_1, b_2, \dots, b_{i-1}}`. For more | |
information, see [1], pp. 87-89. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import AlternatingGroup | |
>>> A = AlternatingGroup(4) | |
>>> A.schreier_sims() | |
>>> A.base | |
[0, 1] | |
>>> for g in A.basic_stabilizers: | |
... print(g) | |
... | |
PermutationGroup([ | |
(3)(0 1 2), | |
(1 2 3)]) | |
PermutationGroup([ | |
(1 2 3)]) | |
See Also | |
======== | |
base, strong_gens, basic_orbits, basic_transversals | |
""" | |
if self._transversals == []: | |
self.schreier_sims() | |
strong_gens = self._strong_gens | |
base = self._base | |
if not base: # e.g. if self is trivial | |
return [] | |
strong_gens_distr = _distribute_gens_by_base(base, strong_gens) | |
basic_stabilizers = [] | |
for gens in strong_gens_distr: | |
basic_stabilizers.append(PermutationGroup(gens)) | |
return basic_stabilizers | |
def basic_transversals(self): | |
""" | |
Return basic transversals relative to a base and strong generating set. | |
Explanation | |
=========== | |
The basic transversals are transversals of the basic orbits. They | |
are provided as a list of dictionaries, each dictionary having | |
keys - the elements of one of the basic orbits, and values - the | |
corresponding transversal elements. See [1], pp. 87-89 for more | |
information. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import AlternatingGroup | |
>>> A = AlternatingGroup(4) | |
>>> A.basic_transversals | |
[{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 3), 3: (1 3 2)}] | |
See Also | |
======== | |
strong_gens, base, basic_orbits, basic_stabilizers | |
""" | |
if self._transversals == []: | |
self.schreier_sims() | |
return self._transversals | |
def composition_series(self): | |
r""" | |
Return the composition series for a group as a list | |
of permutation groups. | |
Explanation | |
=========== | |
The composition series for a group `G` is defined as a | |
subnormal series `G = H_0 > H_1 > H_2 \ldots` A composition | |
series is a subnormal series such that each factor group | |
`H(i+1) / H(i)` is simple. | |
A subnormal series is a composition series only if it is of | |
maximum length. | |
The algorithm works as follows: | |
Starting with the derived series the idea is to fill | |
the gap between `G = der[i]` and `H = der[i+1]` for each | |
`i` independently. Since, all subgroups of the abelian group | |
`G/H` are normal so, first step is to take the generators | |
`g` of `G` and add them to generators of `H` one by one. | |
The factor groups formed are not simple in general. Each | |
group is obtained from the previous one by adding one | |
generator `g`, if the previous group is denoted by `H` | |
then the next group `K` is generated by `g` and `H`. | |
The factor group `K/H` is cyclic and it's order is | |
`K.order()//G.order()`. The series is then extended between | |
`K` and `H` by groups generated by powers of `g` and `H`. | |
The series formed is then prepended to the already existing | |
series. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import SymmetricGroup | |
>>> from sympy.combinatorics.named_groups import CyclicGroup | |
>>> S = SymmetricGroup(12) | |
>>> G = S.sylow_subgroup(2) | |
>>> C = G.composition_series() | |
>>> [H.order() for H in C] | |
[1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1] | |
>>> G = S.sylow_subgroup(3) | |
>>> C = G.composition_series() | |
>>> [H.order() for H in C] | |
[243, 81, 27, 9, 3, 1] | |
>>> G = CyclicGroup(12) | |
>>> C = G.composition_series() | |
>>> [H.order() for H in C] | |
[12, 6, 3, 1] | |
""" | |
der = self.derived_series() | |
if not all(g.is_identity for g in der[-1].generators): | |
raise NotImplementedError('Group should be solvable') | |
series = [] | |
for i in range(len(der)-1): | |
H = der[i+1] | |
up_seg = [] | |
for g in der[i].generators: | |
K = PermutationGroup([g] + H.generators) | |
order = K.order() // H.order() | |
down_seg = [] | |
for p, e in factorint(order).items(): | |
for _ in range(e): | |
down_seg.append(PermutationGroup([g] + H.generators)) | |
g = g**p | |
up_seg = down_seg + up_seg | |
H = K | |
up_seg[0] = der[i] | |
series.extend(up_seg) | |
series.append(der[-1]) | |
return series | |
def coset_transversal(self, H): | |
"""Return a transversal of the right cosets of self by its subgroup H | |
using the second method described in [1], Subsection 4.6.7 | |
""" | |
if not H.is_subgroup(self): | |
raise ValueError("The argument must be a subgroup") | |
if H.order() == 1: | |
return self.elements | |
self._schreier_sims(base=H.base) # make G.base an extension of H.base | |
base = self.base | |
base_ordering = _base_ordering(base, self.degree) | |
identity = Permutation(self.degree - 1) | |
transversals = self.basic_transversals[:] | |
# transversals is a list of dictionaries. Get rid of the keys | |
# so that it is a list of lists and sort each list in | |
# the increasing order of base[l]^x | |
for l, t in enumerate(transversals): | |
transversals[l] = sorted(t.values(), | |
key = lambda x: base_ordering[base[l]^x]) | |
orbits = H.basic_orbits | |
h_stabs = H.basic_stabilizers | |
g_stabs = self.basic_stabilizers | |
indices = [x.order()//y.order() for x, y in zip(g_stabs, h_stabs)] | |
# T^(l) should be a right transversal of H^(l) in G^(l) for | |
# 1<=l<=len(base). While H^(l) is the trivial group, T^(l) | |
# contains all the elements of G^(l) so we might just as well | |
# start with l = len(h_stabs)-1 | |
if len(g_stabs) > len(h_stabs): | |
T = g_stabs[len(h_stabs)].elements | |
else: | |
T = [identity] | |
l = len(h_stabs)-1 | |
t_len = len(T) | |
while l > -1: | |
T_next = [] | |
for u in transversals[l]: | |
if u == identity: | |
continue | |
b = base_ordering[base[l]^u] | |
for t in T: | |
p = t*u | |
if all(base_ordering[h^p] >= b for h in orbits[l]): | |
T_next.append(p) | |
if t_len + len(T_next) == indices[l]: | |
break | |
if t_len + len(T_next) == indices[l]: | |
break | |
T += T_next | |
t_len += len(T_next) | |
l -= 1 | |
T.remove(identity) | |
T = [identity] + T | |
return T | |
def _coset_representative(self, g, H): | |
"""Return the representative of Hg from the transversal that | |
would be computed by ``self.coset_transversal(H)``. | |
""" | |
if H.order() == 1: | |
return g | |
# The base of self must be an extension of H.base. | |
if not(self.base[:len(H.base)] == H.base): | |
self._schreier_sims(base=H.base) | |
orbits = H.basic_orbits[:] | |
h_transversals = [list(_.values()) for _ in H.basic_transversals] | |
transversals = [list(_.values()) for _ in self.basic_transversals] | |
base = self.base | |
base_ordering = _base_ordering(base, self.degree) | |
def step(l, x): | |
gamma = min(orbits[l], key = lambda y: base_ordering[y^x]) | |
i = [base[l]^h for h in h_transversals[l]].index(gamma) | |
x = h_transversals[l][i]*x | |
if l < len(orbits)-1: | |
for u in transversals[l]: | |
if base[l]^u == base[l]^x: | |
break | |
x = step(l+1, x*u**-1)*u | |
return x | |
return step(0, g) | |
def coset_table(self, H): | |
"""Return the standardised (right) coset table of self in H as | |
a list of lists. | |
""" | |
# Maybe this should be made to return an instance of CosetTable | |
# from fp_groups.py but the class would need to be changed first | |
# to be compatible with PermutationGroups | |
if not H.is_subgroup(self): | |
raise ValueError("The argument must be a subgroup") | |
T = self.coset_transversal(H) | |
n = len(T) | |
A = list(chain.from_iterable((gen, gen**-1) | |
for gen in self.generators)) | |
table = [] | |
for i in range(n): | |
row = [self._coset_representative(T[i]*x, H) for x in A] | |
row = [T.index(r) for r in row] | |
table.append(row) | |
# standardize (this is the same as the algorithm used in coset_table) | |
# If CosetTable is made compatible with PermutationGroups, this | |
# should be replaced by table.standardize() | |
A = range(len(A)) | |
gamma = 1 | |
for alpha, a in product(range(n), A): | |
beta = table[alpha][a] | |
if beta >= gamma: | |
if beta > gamma: | |
for x in A: | |
z = table[gamma][x] | |
table[gamma][x] = table[beta][x] | |
table[beta][x] = z | |
for i in range(n): | |
if table[i][x] == beta: | |
table[i][x] = gamma | |
elif table[i][x] == gamma: | |
table[i][x] = beta | |
gamma += 1 | |
if gamma >= n-1: | |
return table | |
def center(self): | |
r""" | |
Return the center of a permutation group. | |
Explanation | |
=========== | |
The center for a group `G` is defined as | |
`Z(G) = \{z\in G | \forall g\in G, zg = gz \}`, | |
the set of elements of `G` that commute with all elements of `G`. | |
It is equal to the centralizer of `G` inside `G`, and is naturally a | |
subgroup of `G` ([9]). | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import DihedralGroup | |
>>> D = DihedralGroup(4) | |
>>> G = D.center() | |
>>> G.order() | |
2 | |
See Also | |
======== | |
centralizer | |
Notes | |
===== | |
This is a naive implementation that is a straightforward application | |
of ``.centralizer()`` | |
""" | |
if not self._center: | |
self._center = self.centralizer(self) | |
return self._center | |
def centralizer(self, other): | |
r""" | |
Return the centralizer of a group/set/element. | |
Explanation | |
=========== | |
The centralizer of a set of permutations ``S`` inside | |
a group ``G`` is the set of elements of ``G`` that commute with all | |
elements of ``S``:: | |
`C_G(S) = \{ g \in G | gs = sg \forall s \in S\}` ([10]) | |
Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of | |
the full symmetric group, we allow for ``S`` to have elements outside | |
``G``. | |
It is naturally a subgroup of ``G``; the centralizer of a permutation | |
group is equal to the centralizer of any set of generators for that | |
group, since any element commuting with the generators commutes with | |
any product of the generators. | |
Parameters | |
========== | |
other | |
a permutation group/list of permutations/single permutation | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, | |
... CyclicGroup) | |
>>> S = SymmetricGroup(6) | |
>>> C = CyclicGroup(6) | |
>>> H = S.centralizer(C) | |
>>> H.is_subgroup(C) | |
True | |
See Also | |
======== | |
subgroup_search | |
Notes | |
===== | |
The implementation is an application of ``.subgroup_search()`` with | |
tests using a specific base for the group ``G``. | |
""" | |
if hasattr(other, 'generators'): | |
if other.is_trivial or self.is_trivial: | |
return self | |
degree = self.degree | |
identity = _af_new(list(range(degree))) | |
orbits = other.orbits() | |
num_orbits = len(orbits) | |
orbits.sort(key=lambda x: -len(x)) | |
long_base = [] | |
orbit_reps = [None]*num_orbits | |
orbit_reps_indices = [None]*num_orbits | |
orbit_descr = [None]*degree | |
for i in range(num_orbits): | |
orbit = list(orbits[i]) | |
orbit_reps[i] = orbit[0] | |
orbit_reps_indices[i] = len(long_base) | |
for point in orbit: | |
orbit_descr[point] = i | |
long_base = long_base + orbit | |
base, strong_gens = self.schreier_sims_incremental(base=long_base) | |
strong_gens_distr = _distribute_gens_by_base(base, strong_gens) | |
i = 0 | |
for i in range(len(base)): | |
if strong_gens_distr[i] == [identity]: | |
break | |
base = base[:i] | |
base_len = i | |
for j in range(num_orbits): | |
if base[base_len - 1] in orbits[j]: | |
break | |
rel_orbits = orbits[: j + 1] | |
num_rel_orbits = len(rel_orbits) | |
transversals = [None]*num_rel_orbits | |
for j in range(num_rel_orbits): | |
rep = orbit_reps[j] | |
transversals[j] = dict( | |
other.orbit_transversal(rep, pairs=True)) | |
trivial_test = lambda x: True | |
tests = [None]*base_len | |
for l in range(base_len): | |
if base[l] in orbit_reps: | |
tests[l] = trivial_test | |
else: | |
def test(computed_words, l=l): | |
g = computed_words[l] | |
rep_orb_index = orbit_descr[base[l]] | |
rep = orbit_reps[rep_orb_index] | |
im = g._array_form[base[l]] | |
im_rep = g._array_form[rep] | |
tr_el = transversals[rep_orb_index][base[l]] | |
# using the definition of transversal, | |
# base[l]^g = rep^(tr_el*g); | |
# if g belongs to the centralizer, then | |
# base[l]^g = (rep^g)^tr_el | |
return im == tr_el._array_form[im_rep] | |
tests[l] = test | |
def prop(g): | |
return [rmul(g, gen) for gen in other.generators] == \ | |
[rmul(gen, g) for gen in other.generators] | |
return self.subgroup_search(prop, base=base, | |
strong_gens=strong_gens, tests=tests) | |
elif hasattr(other, '__getitem__'): | |
gens = list(other) | |
return self.centralizer(PermutationGroup(gens)) | |
elif hasattr(other, 'array_form'): | |
return self.centralizer(PermutationGroup([other])) | |
def commutator(self, G, H): | |
""" | |
Return the commutator of two subgroups. | |
Explanation | |
=========== | |
For a permutation group ``K`` and subgroups ``G``, ``H``, the | |
commutator of ``G`` and ``H`` is defined as the group generated | |
by all the commutators `[g, h] = hgh^{-1}g^{-1}` for ``g`` in ``G`` and | |
``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27). | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, | |
... AlternatingGroup) | |
>>> S = SymmetricGroup(5) | |
>>> A = AlternatingGroup(5) | |
>>> G = S.commutator(S, A) | |
>>> G.is_subgroup(A) | |
True | |
See Also | |
======== | |
derived_subgroup | |
Notes | |
===== | |
The commutator of two subgroups `H, G` is equal to the normal closure | |
of the commutators of all the generators, i.e. `hgh^{-1}g^{-1}` for `h` | |
a generator of `H` and `g` a generator of `G` ([1], p.28) | |
""" | |
ggens = G.generators | |
hgens = H.generators | |
commutators = [] | |
for ggen in ggens: | |
for hgen in hgens: | |
commutator = rmul(hgen, ggen, ~hgen, ~ggen) | |
if commutator not in commutators: | |
commutators.append(commutator) | |
res = self.normal_closure(commutators) | |
return res | |
def coset_factor(self, g, factor_index=False): | |
"""Return ``G``'s (self's) coset factorization of ``g`` | |
Explanation | |
=========== | |
If ``g`` is an element of ``G`` then it can be written as the product | |
of permutations drawn from the Schreier-Sims coset decomposition, | |
The permutations returned in ``f`` are those for which | |
the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)`` | |
and ``B = G.base``. f[i] is one of the permutations in | |
``self._basic_orbits[i]``. | |
If factor_index==True, | |
returns a tuple ``[b[0],..,b[n]]``, where ``b[i]`` | |
belongs to ``self._basic_orbits[i]`` | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) | |
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) | |
>>> G = PermutationGroup([a, b]) | |
Define g: | |
>>> g = Permutation(7)(1, 2, 4)(3, 6, 5) | |
Confirm that it is an element of G: | |
>>> G.contains(g) | |
True | |
Thus, it can be written as a product of factors (up to | |
3) drawn from u. See below that a factor from u1 and u2 | |
and the Identity permutation have been used: | |
>>> f = G.coset_factor(g) | |
>>> f[2]*f[1]*f[0] == g | |
True | |
>>> f1 = G.coset_factor(g, True); f1 | |
[0, 4, 4] | |
>>> tr = G.basic_transversals | |
>>> f[0] == tr[0][f1[0]] | |
True | |
If g is not an element of G then [] is returned: | |
>>> c = Permutation(5, 6, 7) | |
>>> G.coset_factor(c) | |
[] | |
See Also | |
======== | |
sympy.combinatorics.util._strip | |
""" | |
if isinstance(g, (Cycle, Permutation)): | |
g = g.list() | |
if len(g) != self._degree: | |
# this could either adjust the size or return [] immediately | |
# but we don't choose between the two and just signal a possible | |
# error | |
raise ValueError('g should be the same size as permutations of G') | |
I = list(range(self._degree)) | |
basic_orbits = self.basic_orbits | |
transversals = self._transversals | |
factors = [] | |
base = self.base | |
h = g | |
for i in range(len(base)): | |
beta = h[base[i]] | |
if beta == base[i]: | |
factors.append(beta) | |
continue | |
if beta not in basic_orbits[i]: | |
return [] | |
u = transversals[i][beta]._array_form | |
h = _af_rmul(_af_invert(u), h) | |
factors.append(beta) | |
if h != I: | |
return [] | |
if factor_index: | |
return factors | |
tr = self.basic_transversals | |
factors = [tr[i][factors[i]] for i in range(len(base))] | |
return factors | |
def generator_product(self, g, original=False): | |
r''' | |
Return a list of strong generators `[s1, \dots, sn]` | |
s.t `g = sn \times \dots \times s1`. If ``original=True``, make the | |
list contain only the original group generators | |
''' | |
product = [] | |
if g.is_identity: | |
return [] | |
if g in self.strong_gens: | |
if not original or g in self.generators: | |
return [g] | |
else: | |
slp = self._strong_gens_slp[g] | |
for s in slp: | |
product.extend(self.generator_product(s, original=True)) | |
return product | |
elif g**-1 in self.strong_gens: | |
g = g**-1 | |
if not original or g in self.generators: | |
return [g**-1] | |
else: | |
slp = self._strong_gens_slp[g] | |
for s in slp: | |
product.extend(self.generator_product(s, original=True)) | |
l = len(product) | |
product = [product[l-i-1]**-1 for i in range(l)] | |
return product | |
f = self.coset_factor(g, True) | |
for i, j in enumerate(f): | |
slp = self._transversal_slp[i][j] | |
for s in slp: | |
if not original: | |
product.append(self.strong_gens[s]) | |
else: | |
s = self.strong_gens[s] | |
product.extend(self.generator_product(s, original=True)) | |
return product | |
def coset_rank(self, g): | |
"""rank using Schreier-Sims representation. | |
Explanation | |
=========== | |
The coset rank of ``g`` is the ordering number in which | |
it appears in the lexicographic listing according to the | |
coset decomposition | |
The ordering is the same as in G.generate(method='coset'). | |
If ``g`` does not belong to the group it returns None. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) | |
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) | |
>>> G = PermutationGroup([a, b]) | |
>>> c = Permutation(7)(2, 4)(3, 5) | |
>>> G.coset_rank(c) | |
16 | |
>>> G.coset_unrank(16) | |
(7)(2 4)(3 5) | |
See Also | |
======== | |
coset_factor | |
""" | |
factors = self.coset_factor(g, True) | |
if not factors: | |
return None | |
rank = 0 | |
b = 1 | |
transversals = self._transversals | |
base = self._base | |
basic_orbits = self._basic_orbits | |
for i in range(len(base)): | |
k = factors[i] | |
j = basic_orbits[i].index(k) | |
rank += b*j | |
b = b*len(transversals[i]) | |
return rank | |
def coset_unrank(self, rank, af=False): | |
"""unrank using Schreier-Sims representation | |
coset_unrank is the inverse operation of coset_rank | |
if 0 <= rank < order; otherwise it returns None. | |
""" | |
if rank < 0 or rank >= self.order(): | |
return None | |
base = self.base | |
transversals = self.basic_transversals | |
basic_orbits = self.basic_orbits | |
m = len(base) | |
v = [0]*m | |
for i in range(m): | |
rank, c = divmod(rank, len(transversals[i])) | |
v[i] = basic_orbits[i][c] | |
a = [transversals[i][v[i]]._array_form for i in range(m)] | |
h = _af_rmuln(*a) | |
if af: | |
return h | |
else: | |
return _af_new(h) | |
def degree(self): | |
"""Returns the size of the permutations in the group. | |
Explanation | |
=========== | |
The number of permutations comprising the group is given by | |
``len(group)``; the number of permutations that can be generated | |
by the group is given by ``group.order()``. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([1, 0, 2]) | |
>>> G = PermutationGroup([a]) | |
>>> G.degree | |
3 | |
>>> len(G) | |
1 | |
>>> G.order() | |
2 | |
>>> list(G.generate()) | |
[(2), (2)(0 1)] | |
See Also | |
======== | |
order | |
""" | |
return self._degree | |
def identity(self): | |
''' | |
Return the identity element of the permutation group. | |
''' | |
return _af_new(list(range(self.degree))) | |
def elements(self): | |
"""Returns all the elements of the permutation group as a list | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2)) | |
>>> p.elements | |
[(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)] | |
""" | |
if not self._elements: | |
self._elements = list(self.generate()) | |
return self._elements | |
def derived_series(self): | |
r"""Return the derived series for the group. | |
Explanation | |
=========== | |
The derived series for a group `G` is defined as | |
`G = G_0 > G_1 > G_2 > \ldots` where `G_i = [G_{i-1}, G_{i-1}]`, | |
i.e. `G_i` is the derived subgroup of `G_{i-1}`, for | |
`i\in\mathbb{N}`. When we have `G_k = G_{k-1}` for some | |
`k\in\mathbb{N}`, the series terminates. | |
Returns | |
======= | |
A list of permutation groups containing the members of the derived | |
series in the order `G = G_0, G_1, G_2, \ldots`. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, | |
... AlternatingGroup, DihedralGroup) | |
>>> A = AlternatingGroup(5) | |
>>> len(A.derived_series()) | |
1 | |
>>> S = SymmetricGroup(4) | |
>>> len(S.derived_series()) | |
4 | |
>>> S.derived_series()[1].is_subgroup(AlternatingGroup(4)) | |
True | |
>>> S.derived_series()[2].is_subgroup(DihedralGroup(2)) | |
True | |
See Also | |
======== | |
derived_subgroup | |
""" | |
res = [self] | |
current = self | |
nxt = self.derived_subgroup() | |
while not current.is_subgroup(nxt): | |
res.append(nxt) | |
current = nxt | |
nxt = nxt.derived_subgroup() | |
return res | |
def derived_subgroup(self): | |
r"""Compute the derived subgroup. | |
Explanation | |
=========== | |
The derived subgroup, or commutator subgroup is the subgroup generated | |
by all commutators `[g, h] = hgh^{-1}g^{-1}` for `g, h\in G` ; it is | |
equal to the normal closure of the set of commutators of the generators | |
([1], p.28, [11]). | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([1, 0, 2, 4, 3]) | |
>>> b = Permutation([0, 1, 3, 2, 4]) | |
>>> G = PermutationGroup([a, b]) | |
>>> C = G.derived_subgroup() | |
>>> list(C.generate(af=True)) | |
[[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]] | |
See Also | |
======== | |
derived_series | |
""" | |
r = self._r | |
gens = [p._array_form for p in self.generators] | |
set_commutators = set() | |
degree = self._degree | |
rng = list(range(degree)) | |
for i in range(r): | |
for j in range(r): | |
p1 = gens[i] | |
p2 = gens[j] | |
c = list(range(degree)) | |
for k in rng: | |
c[p2[p1[k]]] = p1[p2[k]] | |
ct = tuple(c) | |
if ct not in set_commutators: | |
set_commutators.add(ct) | |
cms = [_af_new(p) for p in set_commutators] | |
G2 = self.normal_closure(cms) | |
return G2 | |
def generate(self, method="coset", af=False): | |
"""Return iterator to generate the elements of the group. | |
Explanation | |
=========== | |
Iteration is done with one of these methods:: | |
method='coset' using the Schreier-Sims coset representation | |
method='dimino' using the Dimino method | |
If ``af = True`` it yields the array form of the permutations | |
Examples | |
======== | |
>>> from sympy.combinatorics import PermutationGroup | |
>>> from sympy.combinatorics.polyhedron import tetrahedron | |
The permutation group given in the tetrahedron object is also | |
true groups: | |
>>> G = tetrahedron.pgroup | |
>>> G.is_group | |
True | |
Also the group generated by the permutations in the tetrahedron | |
pgroup -- even the first two -- is a proper group: | |
>>> H = PermutationGroup(G[0], G[1]) | |
>>> J = PermutationGroup(list(H.generate())); J | |
PermutationGroup([ | |
(0 1)(2 3), | |
(1 2 3), | |
(1 3 2), | |
(0 3 1), | |
(0 2 3), | |
(0 3)(1 2), | |
(0 1 3), | |
(3)(0 2 1), | |
(0 3 2), | |
(3)(0 1 2), | |
(0 2)(1 3)]) | |
>>> _.is_group | |
True | |
""" | |
if method == "coset": | |
return self.generate_schreier_sims(af) | |
elif method == "dimino": | |
return self.generate_dimino(af) | |
else: | |
raise NotImplementedError('No generation defined for %s' % method) | |
def generate_dimino(self, af=False): | |
"""Yield group elements using Dimino's algorithm. | |
If ``af == True`` it yields the array form of the permutations. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([0, 2, 1, 3]) | |
>>> b = Permutation([0, 2, 3, 1]) | |
>>> g = PermutationGroup([a, b]) | |
>>> list(g.generate_dimino(af=True)) | |
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1], | |
[0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]] | |
References | |
========== | |
.. [1] The Implementation of Various Algorithms for Permutation Groups in | |
the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis | |
""" | |
idn = list(range(self.degree)) | |
order = 0 | |
element_list = [idn] | |
set_element_list = {tuple(idn)} | |
if af: | |
yield idn | |
else: | |
yield _af_new(idn) | |
gens = [p._array_form for p in self.generators] | |
for i in range(len(gens)): | |
# D elements of the subgroup G_i generated by gens[:i] | |
D = element_list[:] | |
N = [idn] | |
while N: | |
A = N | |
N = [] | |
for a in A: | |
for g in gens[:i + 1]: | |
ag = _af_rmul(a, g) | |
if tuple(ag) not in set_element_list: | |
# produce G_i*g | |
for d in D: | |
order += 1 | |
ap = _af_rmul(d, ag) | |
if af: | |
yield ap | |
else: | |
p = _af_new(ap) | |
yield p | |
element_list.append(ap) | |
set_element_list.add(tuple(ap)) | |
N.append(ap) | |
self._order = len(element_list) | |
def generate_schreier_sims(self, af=False): | |
"""Yield group elements using the Schreier-Sims representation | |
in coset_rank order | |
If ``af = True`` it yields the array form of the permutations | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([0, 2, 1, 3]) | |
>>> b = Permutation([0, 2, 3, 1]) | |
>>> g = PermutationGroup([a, b]) | |
>>> list(g.generate_schreier_sims(af=True)) | |
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1], | |
[0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]] | |
""" | |
n = self._degree | |
u = self.basic_transversals | |
basic_orbits = self._basic_orbits | |
if len(u) == 0: | |
for x in self.generators: | |
if af: | |
yield x._array_form | |
else: | |
yield x | |
return | |
if len(u) == 1: | |
for i in basic_orbits[0]: | |
if af: | |
yield u[0][i]._array_form | |
else: | |
yield u[0][i] | |
return | |
u = list(reversed(u)) | |
basic_orbits = basic_orbits[::-1] | |
# stg stack of group elements | |
stg = [list(range(n))] | |
posmax = [len(x) for x in u] | |
n1 = len(posmax) - 1 | |
pos = [0]*n1 | |
h = 0 | |
while 1: | |
# backtrack when finished iterating over coset | |
if pos[h] >= posmax[h]: | |
if h == 0: | |
return | |
pos[h] = 0 | |
h -= 1 | |
stg.pop() | |
continue | |
p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1]) | |
pos[h] += 1 | |
stg.append(p) | |
h += 1 | |
if h == n1: | |
if af: | |
for i in basic_orbits[-1]: | |
p = _af_rmul(u[-1][i]._array_form, stg[-1]) | |
yield p | |
else: | |
for i in basic_orbits[-1]: | |
p = _af_rmul(u[-1][i]._array_form, stg[-1]) | |
p1 = _af_new(p) | |
yield p1 | |
stg.pop() | |
h -= 1 | |
def generators(self): | |
"""Returns the generators of the group. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([0, 2, 1]) | |
>>> b = Permutation([1, 0, 2]) | |
>>> G = PermutationGroup([a, b]) | |
>>> G.generators | |
[(1 2), (2)(0 1)] | |
""" | |
return self._generators | |
def contains(self, g, strict=True): | |
"""Test if permutation ``g`` belong to self, ``G``. | |
Explanation | |
=========== | |
If ``g`` is an element of ``G`` it can be written as a product | |
of factors drawn from the cosets of ``G``'s stabilizers. To see | |
if ``g`` is one of the actual generators defining the group use | |
``G.has(g)``. | |
If ``strict`` is not ``True``, ``g`` will be resized, if necessary, | |
to match the size of permutations in ``self``. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation(1, 2) | |
>>> b = Permutation(2, 3, 1) | |
>>> G = PermutationGroup(a, b, degree=5) | |
>>> G.contains(G[0]) # trivial check | |
True | |
>>> elem = Permutation([[2, 3]], size=5) | |
>>> G.contains(elem) | |
True | |
>>> G.contains(Permutation(4)(0, 1, 2, 3)) | |
False | |
If strict is False, a permutation will be resized, if | |
necessary: | |
>>> H = PermutationGroup(Permutation(5)) | |
>>> H.contains(Permutation(3)) | |
False | |
>>> H.contains(Permutation(3), strict=False) | |
True | |
To test if a given permutation is present in the group: | |
>>> elem in G.generators | |
False | |
>>> G.has(elem) | |
False | |
See Also | |
======== | |
coset_factor, sympy.core.basic.Basic.has, __contains__ | |
""" | |
if not isinstance(g, Permutation): | |
return False | |
if g.size != self.degree: | |
if strict: | |
return False | |
g = Permutation(g, size=self.degree) | |
if g in self.generators: | |
return True | |
return bool(self.coset_factor(g.array_form, True)) | |
def is_perfect(self): | |
"""Return ``True`` if the group is perfect. | |
A group is perfect if it equals to its derived subgroup. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation(1,2,3)(4,5) | |
>>> b = Permutation(1,2,3,4,5) | |
>>> G = PermutationGroup([a, b]) | |
>>> G.is_perfect | |
False | |
""" | |
if self._is_perfect is None: | |
self._is_perfect = self.equals(self.derived_subgroup()) | |
return self._is_perfect | |
def is_abelian(self): | |
"""Test if the group is Abelian. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([0, 2, 1]) | |
>>> b = Permutation([1, 0, 2]) | |
>>> G = PermutationGroup([a, b]) | |
>>> G.is_abelian | |
False | |
>>> a = Permutation([0, 2, 1]) | |
>>> G = PermutationGroup([a]) | |
>>> G.is_abelian | |
True | |
""" | |
if self._is_abelian is not None: | |
return self._is_abelian | |
self._is_abelian = True | |
gens = [p._array_form for p in self.generators] | |
for x in gens: | |
for y in gens: | |
if y <= x: | |
continue | |
if not _af_commutes_with(x, y): | |
self._is_abelian = False | |
return False | |
return True | |
def abelian_invariants(self): | |
""" | |
Returns the abelian invariants for the given group. | |
Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to | |
the direct product of finitely many nontrivial cyclic groups of | |
prime-power order. | |
Explanation | |
=========== | |
The prime-powers that occur as the orders of the factors are uniquely | |
determined by G. More precisely, the primes that occur in the orders of the | |
factors in any such decomposition of ``G`` are exactly the primes that divide | |
``|G|`` and for any such prime ``p``, if the orders of the factors that are | |
p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, | |
then the orders of the factors that are p-groups in any such decomposition of ``G`` | |
are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``. | |
The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken | |
for all primes that divide ``|G|`` are called the invariants of the nontrivial | |
group ``G`` as suggested in ([14], p. 542). | |
Notes | |
===== | |
We adopt the convention that the invariants of a trivial group are []. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([0, 2, 1]) | |
>>> b = Permutation([1, 0, 2]) | |
>>> G = PermutationGroup([a, b]) | |
>>> G.abelian_invariants() | |
[2] | |
>>> from sympy.combinatorics import CyclicGroup | |
>>> G = CyclicGroup(7) | |
>>> G.abelian_invariants() | |
[7] | |
""" | |
if self.is_trivial: | |
return [] | |
gns = self.generators | |
inv = [] | |
G = self | |
H = G.derived_subgroup() | |
Hgens = H.generators | |
for p in primefactors(G.order()): | |
ranks = [] | |
while True: | |
pows = [] | |
for g in gns: | |
elm = g**p | |
if not H.contains(elm): | |
pows.append(elm) | |
K = PermutationGroup(Hgens + pows) if pows else H | |
r = G.order()//K.order() | |
G = K | |
gns = pows | |
if r == 1: | |
break | |
ranks.append(multiplicity(p, r)) | |
if ranks: | |
pows = [1]*ranks[0] | |
for i in ranks: | |
for j in range(i): | |
pows[j] = pows[j]*p | |
inv.extend(pows) | |
inv.sort() | |
return inv | |
def is_elementary(self, p): | |
"""Return ``True`` if the group is elementary abelian. An elementary | |
abelian group is a finite abelian group, where every nontrivial | |
element has order `p`, where `p` is a prime. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([0, 2, 1]) | |
>>> G = PermutationGroup([a]) | |
>>> G.is_elementary(2) | |
True | |
>>> a = Permutation([0, 2, 1, 3]) | |
>>> b = Permutation([3, 1, 2, 0]) | |
>>> G = PermutationGroup([a, b]) | |
>>> G.is_elementary(2) | |
True | |
>>> G.is_elementary(3) | |
False | |
""" | |
return self.is_abelian and all(g.order() == p for g in self.generators) | |
def _eval_is_alt_sym_naive(self, only_sym=False, only_alt=False): | |
"""A naive test using the group order.""" | |
if only_sym and only_alt: | |
raise ValueError( | |
"Both {} and {} cannot be set to True" | |
.format(only_sym, only_alt)) | |
n = self.degree | |
sym_order = _factorial(n) | |
order = self.order() | |
if order == sym_order: | |
self._is_sym = True | |
self._is_alt = False | |
if only_alt: | |
return False | |
return True | |
elif 2*order == sym_order: | |
self._is_sym = False | |
self._is_alt = True | |
if only_sym: | |
return False | |
return True | |
return False | |
def _eval_is_alt_sym_monte_carlo(self, eps=0.05, perms=None): | |
"""A test using monte-carlo algorithm. | |
Parameters | |
========== | |
eps : float, optional | |
The criterion for the incorrect ``False`` return. | |
perms : list[Permutation], optional | |
If explicitly given, it tests over the given candidates | |
for testing. | |
If ``None``, it randomly computes ``N_eps`` and chooses | |
``N_eps`` sample of the permutation from the group. | |
See Also | |
======== | |
_check_cycles_alt_sym | |
""" | |
if perms is None: | |
n = self.degree | |
if n < 17: | |
c_n = 0.34 | |
else: | |
c_n = 0.57 | |
d_n = (c_n*log(2))/log(n) | |
N_eps = int(-log(eps)/d_n) | |
perms = (self.random_pr() for i in range(N_eps)) | |
return self._eval_is_alt_sym_monte_carlo(perms=perms) | |
for perm in perms: | |
if _check_cycles_alt_sym(perm): | |
return True | |
return False | |
def is_alt_sym(self, eps=0.05, _random_prec=None): | |
r"""Monte Carlo test for the symmetric/alternating group for degrees | |
>= 8. | |
Explanation | |
=========== | |
More specifically, it is one-sided Monte Carlo with the | |
answer True (i.e., G is symmetric/alternating) guaranteed to be | |
correct, and the answer False being incorrect with probability eps. | |
For degree < 8, the order of the group is checked so the test | |
is deterministic. | |
Notes | |
===== | |
The algorithm itself uses some nontrivial results from group theory and | |
number theory: | |
1) If a transitive group ``G`` of degree ``n`` contains an element | |
with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the | |
symmetric or alternating group ([1], pp. 81-82) | |
2) The proportion of elements in the symmetric/alternating group having | |
the property described in 1) is approximately `\log(2)/\log(n)` | |
([1], p.82; [2], pp. 226-227). | |
The helper function ``_check_cycles_alt_sym`` is used to | |
go over the cycles in a permutation and look for ones satisfying 1). | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import DihedralGroup | |
>>> D = DihedralGroup(10) | |
>>> D.is_alt_sym() | |
False | |
See Also | |
======== | |
_check_cycles_alt_sym | |
""" | |
if _random_prec is not None: | |
N_eps = _random_prec['N_eps'] | |
perms= (_random_prec[i] for i in range(N_eps)) | |
return self._eval_is_alt_sym_monte_carlo(perms=perms) | |
if self._is_sym or self._is_alt: | |
return True | |
if self._is_sym is False and self._is_alt is False: | |
return False | |
n = self.degree | |
if n < 8: | |
return self._eval_is_alt_sym_naive() | |
elif self.is_transitive(): | |
return self._eval_is_alt_sym_monte_carlo(eps=eps) | |
self._is_sym, self._is_alt = False, False | |
return False | |
def is_nilpotent(self): | |
"""Test if the group is nilpotent. | |
Explanation | |
=========== | |
A group `G` is nilpotent if it has a central series of finite length. | |
Alternatively, `G` is nilpotent if its lower central series terminates | |
with the trivial group. Every nilpotent group is also solvable | |
([1], p.29, [12]). | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, | |
... CyclicGroup) | |
>>> C = CyclicGroup(6) | |
>>> C.is_nilpotent | |
True | |
>>> S = SymmetricGroup(5) | |
>>> S.is_nilpotent | |
False | |
See Also | |
======== | |
lower_central_series, is_solvable | |
""" | |
if self._is_nilpotent is None: | |
lcs = self.lower_central_series() | |
terminator = lcs[len(lcs) - 1] | |
gens = terminator.generators | |
degree = self.degree | |
identity = _af_new(list(range(degree))) | |
if all(g == identity for g in gens): | |
self._is_solvable = True | |
self._is_nilpotent = True | |
return True | |
else: | |
self._is_nilpotent = False | |
return False | |
else: | |
return self._is_nilpotent | |
def is_normal(self, gr, strict=True): | |
"""Test if ``G=self`` is a normal subgroup of ``gr``. | |
Explanation | |
=========== | |
G is normal in gr if | |
for each g2 in G, g1 in gr, ``g = g1*g2*g1**-1`` belongs to G | |
It is sufficient to check this for each g1 in gr.generators and | |
g2 in G.generators. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([1, 2, 0]) | |
>>> b = Permutation([1, 0, 2]) | |
>>> G = PermutationGroup([a, b]) | |
>>> G1 = PermutationGroup([a, Permutation([2, 0, 1])]) | |
>>> G1.is_normal(G) | |
True | |
""" | |
if not self.is_subgroup(gr, strict=strict): | |
return False | |
d_self = self.degree | |
d_gr = gr.degree | |
if self.is_trivial and (d_self == d_gr or not strict): | |
return True | |
if self._is_abelian: | |
return True | |
new_self = self.copy() | |
if not strict and d_self != d_gr: | |
if d_self < d_gr: | |
new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)]) | |
else: | |
gr = PermGroup(gr.generators + [Permutation(d_self - 1)]) | |
gens2 = [p._array_form for p in new_self.generators] | |
gens1 = [p._array_form for p in gr.generators] | |
for g1 in gens1: | |
for g2 in gens2: | |
p = _af_rmuln(g1, g2, _af_invert(g1)) | |
if not new_self.coset_factor(p, True): | |
return False | |
return True | |
def is_primitive(self, randomized=True): | |
r"""Test if a group is primitive. | |
Explanation | |
=========== | |
A permutation group ``G`` acting on a set ``S`` is called primitive if | |
``S`` contains no nontrivial block under the action of ``G`` | |
(a block is nontrivial if its cardinality is more than ``1``). | |
Notes | |
===== | |
The algorithm is described in [1], p.83, and uses the function | |
minimal_block to search for blocks of the form `\{0, k\}` for ``k`` | |
ranging over representatives for the orbits of `G_0`, the stabilizer of | |
``0``. This algorithm has complexity `O(n^2)` where ``n`` is the degree | |
of the group, and will perform badly if `G_0` is small. | |
There are two implementations offered: one finds `G_0` | |
deterministically using the function ``stabilizer``, and the other | |
(default) produces random elements of `G_0` using ``random_stab``, | |
hoping that they generate a subgroup of `G_0` with not too many more | |
orbits than `G_0` (this is suggested in [1], p.83). Behavior is changed | |
by the ``randomized`` flag. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import DihedralGroup | |
>>> D = DihedralGroup(10) | |
>>> D.is_primitive() | |
False | |
See Also | |
======== | |
minimal_block, random_stab | |
""" | |
if self._is_primitive is not None: | |
return self._is_primitive | |
if self.is_transitive() is False: | |
return False | |
if randomized: | |
random_stab_gens = [] | |
v = self.schreier_vector(0) | |
for _ in range(len(self)): | |
random_stab_gens.append(self.random_stab(0, v)) | |
stab = PermutationGroup(random_stab_gens) | |
else: | |
stab = self.stabilizer(0) | |
orbits = stab.orbits() | |
for orb in orbits: | |
x = orb.pop() | |
if x != 0 and any(e != 0 for e in self.minimal_block([0, x])): | |
self._is_primitive = False | |
return False | |
self._is_primitive = True | |
return True | |
def minimal_blocks(self, randomized=True): | |
''' | |
For a transitive group, return the list of all minimal | |
block systems. If a group is intransitive, return `False`. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> from sympy.combinatorics.named_groups import DihedralGroup | |
>>> DihedralGroup(6).minimal_blocks() | |
[[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]] | |
>>> G = PermutationGroup(Permutation(1,2,5)) | |
>>> G.minimal_blocks() | |
False | |
See Also | |
======== | |
minimal_block, is_transitive, is_primitive | |
''' | |
def _number_blocks(blocks): | |
# number the blocks of a block system | |
# in order and return the number of | |
# blocks and the tuple with the | |
# reordering | |
n = len(blocks) | |
appeared = {} | |
m = 0 | |
b = [None]*n | |
for i in range(n): | |
if blocks[i] not in appeared: | |
appeared[blocks[i]] = m | |
b[i] = m | |
m += 1 | |
else: | |
b[i] = appeared[blocks[i]] | |
return tuple(b), m | |
if not self.is_transitive(): | |
return False | |
blocks = [] | |
num_blocks = [] | |
rep_blocks = [] | |
if randomized: | |
random_stab_gens = [] | |
v = self.schreier_vector(0) | |
for i in range(len(self)): | |
random_stab_gens.append(self.random_stab(0, v)) | |
stab = PermutationGroup(random_stab_gens) | |
else: | |
stab = self.stabilizer(0) | |
orbits = stab.orbits() | |
for orb in orbits: | |
x = orb.pop() | |
if x != 0: | |
block = self.minimal_block([0, x]) | |
num_block, _ = _number_blocks(block) | |
# a representative block (containing 0) | |
rep = {j for j in range(self.degree) if num_block[j] == 0} | |
# check if the system is minimal with | |
# respect to the already discovere ones | |
minimal = True | |
blocks_remove_mask = [False] * len(blocks) | |
for i, r in enumerate(rep_blocks): | |
if len(r) > len(rep) and rep.issubset(r): | |
# i-th block system is not minimal | |
blocks_remove_mask[i] = True | |
elif len(r) < len(rep) and r.issubset(rep): | |
# the system being checked is not minimal | |
minimal = False | |
break | |
# remove non-minimal representative blocks | |
blocks = [b for i, b in enumerate(blocks) if not blocks_remove_mask[i]] | |
num_blocks = [n for i, n in enumerate(num_blocks) if not blocks_remove_mask[i]] | |
rep_blocks = [r for i, r in enumerate(rep_blocks) if not blocks_remove_mask[i]] | |
if minimal and num_block not in num_blocks: | |
blocks.append(block) | |
num_blocks.append(num_block) | |
rep_blocks.append(rep) | |
return blocks | |
def is_solvable(self): | |
"""Test if the group is solvable. | |
``G`` is solvable if its derived series terminates with the trivial | |
group ([1], p.29). | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import SymmetricGroup | |
>>> S = SymmetricGroup(3) | |
>>> S.is_solvable | |
True | |
See Also | |
======== | |
is_nilpotent, derived_series | |
""" | |
if self._is_solvable is None: | |
if self.order() % 2 != 0: | |
return True | |
ds = self.derived_series() | |
terminator = ds[len(ds) - 1] | |
gens = terminator.generators | |
degree = self.degree | |
identity = _af_new(list(range(degree))) | |
if all(g == identity for g in gens): | |
self._is_solvable = True | |
return True | |
else: | |
self._is_solvable = False | |
return False | |
else: | |
return self._is_solvable | |
def is_subgroup(self, G, strict=True): | |
"""Return ``True`` if all elements of ``self`` belong to ``G``. | |
If ``strict`` is ``False`` then if ``self``'s degree is smaller | |
than ``G``'s, the elements will be resized to have the same degree. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> from sympy.combinatorics import SymmetricGroup, CyclicGroup | |
Testing is strict by default: the degree of each group must be the | |
same: | |
>>> p = Permutation(0, 1, 2, 3, 4, 5) | |
>>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)]) | |
>>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)]) | |
>>> G3 = PermutationGroup([p, p**2]) | |
>>> assert G1.order() == G2.order() == G3.order() == 6 | |
>>> G1.is_subgroup(G2) | |
True | |
>>> G1.is_subgroup(G3) | |
False | |
>>> G3.is_subgroup(PermutationGroup(G3[1])) | |
False | |
>>> G3.is_subgroup(PermutationGroup(G3[0])) | |
True | |
To ignore the size, set ``strict`` to ``False``: | |
>>> S3 = SymmetricGroup(3) | |
>>> S5 = SymmetricGroup(5) | |
>>> S3.is_subgroup(S5, strict=False) | |
True | |
>>> C7 = CyclicGroup(7) | |
>>> G = S5*C7 | |
>>> S5.is_subgroup(G, False) | |
True | |
>>> C7.is_subgroup(G, 0) | |
False | |
""" | |
if isinstance(G, SymmetricPermutationGroup): | |
if self.degree != G.degree: | |
return False | |
return True | |
if not isinstance(G, PermutationGroup): | |
return False | |
if self == G or self.generators[0]==Permutation(): | |
return True | |
if G.order() % self.order() != 0: | |
return False | |
if self.degree == G.degree or \ | |
(self.degree < G.degree and not strict): | |
gens = self.generators | |
else: | |
return False | |
return all(G.contains(g, strict=strict) for g in gens) | |
def is_polycyclic(self): | |
"""Return ``True`` if a group is polycyclic. A group is polycyclic if | |
it has a subnormal series with cyclic factors. For finite groups, | |
this is the same as if the group is solvable. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([0, 2, 1, 3]) | |
>>> b = Permutation([2, 0, 1, 3]) | |
>>> G = PermutationGroup([a, b]) | |
>>> G.is_polycyclic | |
True | |
""" | |
return self.is_solvable | |
def is_transitive(self, strict=True): | |
"""Test if the group is transitive. | |
Explanation | |
=========== | |
A group is transitive if it has a single orbit. | |
If ``strict`` is ``False`` the group is transitive if it has | |
a single orbit of length different from 1. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([0, 2, 1, 3]) | |
>>> b = Permutation([2, 0, 1, 3]) | |
>>> G1 = PermutationGroup([a, b]) | |
>>> G1.is_transitive() | |
False | |
>>> G1.is_transitive(strict=False) | |
True | |
>>> c = Permutation([2, 3, 0, 1]) | |
>>> G2 = PermutationGroup([a, c]) | |
>>> G2.is_transitive() | |
True | |
>>> d = Permutation([1, 0, 2, 3]) | |
>>> e = Permutation([0, 1, 3, 2]) | |
>>> G3 = PermutationGroup([d, e]) | |
>>> G3.is_transitive() or G3.is_transitive(strict=False) | |
False | |
""" | |
if self._is_transitive: # strict or not, if True then True | |
return self._is_transitive | |
if strict: | |
if self._is_transitive is not None: # we only store strict=True | |
return self._is_transitive | |
ans = len(self.orbit(0)) == self.degree | |
self._is_transitive = ans | |
return ans | |
got_orb = False | |
for x in self.orbits(): | |
if len(x) > 1: | |
if got_orb: | |
return False | |
got_orb = True | |
return got_orb | |
def is_trivial(self): | |
"""Test if the group is the trivial group. | |
This is true if the group contains only the identity permutation. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> G = PermutationGroup([Permutation([0, 1, 2])]) | |
>>> G.is_trivial | |
True | |
""" | |
if self._is_trivial is None: | |
self._is_trivial = len(self) == 1 and self[0].is_Identity | |
return self._is_trivial | |
def lower_central_series(self): | |
r"""Return the lower central series for the group. | |
The lower central series for a group `G` is the series | |
`G = G_0 > G_1 > G_2 > \ldots` where | |
`G_k = [G, G_{k-1}]`, i.e. every term after the first is equal to the | |
commutator of `G` and the previous term in `G1` ([1], p.29). | |
Returns | |
======= | |
A list of permutation groups in the order `G = G_0, G_1, G_2, \ldots` | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import (AlternatingGroup, | |
... DihedralGroup) | |
>>> A = AlternatingGroup(4) | |
>>> len(A.lower_central_series()) | |
2 | |
>>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2)) | |
True | |
See Also | |
======== | |
commutator, derived_series | |
""" | |
res = [self] | |
current = self | |
nxt = self.commutator(self, current) | |
while not current.is_subgroup(nxt): | |
res.append(nxt) | |
current = nxt | |
nxt = self.commutator(self, current) | |
return res | |
def max_div(self): | |
"""Maximum proper divisor of the degree of a permutation group. | |
Explanation | |
=========== | |
Obviously, this is the degree divided by its minimal proper divisor | |
(larger than ``1``, if one exists). As it is guaranteed to be prime, | |
the ``sieve`` from ``sympy.ntheory`` is used. | |
This function is also used as an optimization tool for the functions | |
``minimal_block`` and ``_union_find_merge``. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> G = PermutationGroup([Permutation([0, 2, 1, 3])]) | |
>>> G.max_div | |
2 | |
See Also | |
======== | |
minimal_block, _union_find_merge | |
""" | |
if self._max_div is not None: | |
return self._max_div | |
n = self.degree | |
if n == 1: | |
return 1 | |
for x in sieve: | |
if n % x == 0: | |
d = n//x | |
self._max_div = d | |
return d | |
def minimal_block(self, points): | |
r"""For a transitive group, finds the block system generated by | |
``points``. | |
Explanation | |
=========== | |
If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S`` | |
is called a block under the action of ``G`` if for all ``g`` in ``G`` | |
we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no | |
common points (``g`` moves ``B`` entirely). ([1], p.23; [6]). | |
The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G`` | |
partition the set ``S`` and this set of translates is known as a block | |
system. Moreover, we obviously have that all blocks in the partition | |
have the same size, hence the block size divides ``|S|`` ([1], p.23). | |
A ``G``-congruence is an equivalence relation ``~`` on the set ``S`` | |
such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``. | |
For a transitive group, the equivalence classes of a ``G``-congruence | |
and the blocks of a block system are the same thing ([1], p.23). | |
The algorithm below checks the group for transitivity, and then finds | |
the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2), | |
..., (p_0,p_{k-1})`` which is the same as finding the maximal block | |
system (i.e., the one with minimum block size) such that | |
``p_0, ..., p_{k-1}`` are in the same block ([1], p.83). | |
It is an implementation of Atkinson's algorithm, as suggested in [1], | |
and manipulates an equivalence relation on the set ``S`` using a | |
union-find data structure. The running time is just above | |
`O(|points||S|)`. ([1], pp. 83-87; [7]). | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import DihedralGroup | |
>>> D = DihedralGroup(10) | |
>>> D.minimal_block([0, 5]) | |
[0, 1, 2, 3, 4, 0, 1, 2, 3, 4] | |
>>> D.minimal_block([0, 1]) | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | |
See Also | |
======== | |
_union_find_rep, _union_find_merge, is_transitive, is_primitive | |
""" | |
if not self.is_transitive(): | |
return False | |
n = self.degree | |
gens = self.generators | |
# initialize the list of equivalence class representatives | |
parents = list(range(n)) | |
ranks = [1]*n | |
not_rep = [] | |
k = len(points) | |
# the block size must divide the degree of the group | |
if k > self.max_div: | |
return [0]*n | |
for i in range(k - 1): | |
parents[points[i + 1]] = points[0] | |
not_rep.append(points[i + 1]) | |
ranks[points[0]] = k | |
i = 0 | |
len_not_rep = k - 1 | |
while i < len_not_rep: | |
gamma = not_rep[i] | |
i += 1 | |
for gen in gens: | |
# find has side effects: performs path compression on the list | |
# of representatives | |
delta = self._union_find_rep(gamma, parents) | |
# union has side effects: performs union by rank on the list | |
# of representatives | |
temp = self._union_find_merge(gen(gamma), gen(delta), ranks, | |
parents, not_rep) | |
if temp == -1: | |
return [0]*n | |
len_not_rep += temp | |
for i in range(n): | |
# force path compression to get the final state of the equivalence | |
# relation | |
self._union_find_rep(i, parents) | |
# rewrite result so that block representatives are minimal | |
new_reps = {} | |
return [new_reps.setdefault(r, i) for i, r in enumerate(parents)] | |
def conjugacy_class(self, x): | |
r"""Return the conjugacy class of an element in the group. | |
Explanation | |
=========== | |
The conjugacy class of an element ``g`` in a group ``G`` is the set of | |
elements ``x`` in ``G`` that are conjugate with ``g``, i.e. for which | |
``g = xax^{-1}`` | |
for some ``a`` in ``G``. | |
Note that conjugacy is an equivalence relation, and therefore that | |
conjugacy classes are partitions of ``G``. For a list of all the | |
conjugacy classes of the group, use the conjugacy_classes() method. | |
In a permutation group, each conjugacy class corresponds to a particular | |
`cycle structure': for example, in ``S_3``, the conjugacy classes are: | |
* the identity class, ``{()}`` | |
* all transpositions, ``{(1 2), (1 3), (2 3)}`` | |
* all 3-cycles, ``{(1 2 3), (1 3 2)}`` | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, SymmetricGroup | |
>>> S3 = SymmetricGroup(3) | |
>>> S3.conjugacy_class(Permutation(0, 1, 2)) | |
{(0 1 2), (0 2 1)} | |
Notes | |
===== | |
This procedure computes the conjugacy class directly by finding the | |
orbit of the element under conjugation in G. This algorithm is only | |
feasible for permutation groups of relatively small order, but is like | |
the orbit() function itself in that respect. | |
""" | |
# Ref: "Computing the conjugacy classes of finite groups"; Butler, G. | |
# Groups '93 Galway/St Andrews; edited by Campbell, C. M. | |
new_class = {x} | |
last_iteration = new_class | |
while len(last_iteration) > 0: | |
this_iteration = set() | |
for y in last_iteration: | |
for s in self.generators: | |
conjugated = s * y * (~s) | |
if conjugated not in new_class: | |
this_iteration.add(conjugated) | |
new_class.update(last_iteration) | |
last_iteration = this_iteration | |
return new_class | |
def conjugacy_classes(self): | |
r"""Return the conjugacy classes of the group. | |
Explanation | |
=========== | |
As described in the documentation for the .conjugacy_class() function, | |
conjugacy is an equivalence relation on a group G which partitions the | |
set of elements. This method returns a list of all these conjugacy | |
classes of G. | |
Examples | |
======== | |
>>> from sympy.combinatorics import SymmetricGroup | |
>>> SymmetricGroup(3).conjugacy_classes() | |
[{(2)}, {(0 1 2), (0 2 1)}, {(0 2), (1 2), (2)(0 1)}] | |
""" | |
identity = _af_new(list(range(self.degree))) | |
known_elements = {identity} | |
classes = [known_elements.copy()] | |
for x in self.generate(): | |
if x not in known_elements: | |
new_class = self.conjugacy_class(x) | |
classes.append(new_class) | |
known_elements.update(new_class) | |
return classes | |
def normal_closure(self, other, k=10): | |
r"""Return the normal closure of a subgroup/set of permutations. | |
Explanation | |
=========== | |
If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G`` | |
is defined as the intersection of all normal subgroups of ``G`` that | |
contain ``A`` ([1], p.14). Alternatively, it is the group generated by | |
the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a | |
generator of the subgroup ``\left\langle S\right\rangle`` generated by | |
``S`` (for some chosen generating set for ``\left\langle S\right\rangle``) | |
([1], p.73). | |
Parameters | |
========== | |
other | |
a subgroup/list of permutations/single permutation | |
k | |
an implementation-specific parameter that determines the number | |
of conjugates that are adjoined to ``other`` at once | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, | |
... CyclicGroup, AlternatingGroup) | |
>>> S = SymmetricGroup(5) | |
>>> C = CyclicGroup(5) | |
>>> G = S.normal_closure(C) | |
>>> G.order() | |
60 | |
>>> G.is_subgroup(AlternatingGroup(5)) | |
True | |
See Also | |
======== | |
commutator, derived_subgroup, random_pr | |
Notes | |
===== | |
The algorithm is described in [1], pp. 73-74; it makes use of the | |
generation of random elements for permutation groups by the product | |
replacement algorithm. | |
""" | |
if hasattr(other, 'generators'): | |
degree = self.degree | |
identity = _af_new(list(range(degree))) | |
if all(g == identity for g in other.generators): | |
return other | |
Z = PermutationGroup(other.generators[:]) | |
base, strong_gens = Z.schreier_sims_incremental() | |
strong_gens_distr = _distribute_gens_by_base(base, strong_gens) | |
basic_orbits, basic_transversals = \ | |
_orbits_transversals_from_bsgs(base, strong_gens_distr) | |
self._random_pr_init(r=10, n=20) | |
_loop = True | |
while _loop: | |
Z._random_pr_init(r=10, n=10) | |
for _ in range(k): | |
g = self.random_pr() | |
h = Z.random_pr() | |
conj = h^g | |
res = _strip(conj, base, basic_orbits, basic_transversals) | |
if res[0] != identity or res[1] != len(base) + 1: | |
gens = Z.generators | |
gens.append(conj) | |
Z = PermutationGroup(gens) | |
strong_gens.append(conj) | |
temp_base, temp_strong_gens = \ | |
Z.schreier_sims_incremental(base, strong_gens) | |
base, strong_gens = temp_base, temp_strong_gens | |
strong_gens_distr = \ | |
_distribute_gens_by_base(base, strong_gens) | |
basic_orbits, basic_transversals = \ | |
_orbits_transversals_from_bsgs(base, | |
strong_gens_distr) | |
_loop = False | |
for g in self.generators: | |
for h in Z.generators: | |
conj = h^g | |
res = _strip(conj, base, basic_orbits, | |
basic_transversals) | |
if res[0] != identity or res[1] != len(base) + 1: | |
_loop = True | |
break | |
if _loop: | |
break | |
return Z | |
elif hasattr(other, '__getitem__'): | |
return self.normal_closure(PermutationGroup(other)) | |
elif hasattr(other, 'array_form'): | |
return self.normal_closure(PermutationGroup([other])) | |
def orbit(self, alpha, action='tuples'): | |
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set. | |
Explanation | |
=========== | |
The time complexity of the algorithm used here is `O(|Orb|*r)` where | |
`|Orb|` is the size of the orbit and ``r`` is the number of generators of | |
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. | |
Here alpha can be a single point, or a list of points. | |
If alpha is a single point, the ordinary orbit is computed. | |
if alpha is a list of points, there are three available options: | |
'union' - computes the union of the orbits of the points in the list | |
'tuples' - computes the orbit of the list interpreted as an ordered | |
tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) ) | |
'sets' - computes the orbit of the list interpreted as a sets | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) | |
>>> G = PermutationGroup([a]) | |
>>> G.orbit(0) | |
{0, 1, 2} | |
>>> G.orbit([0, 4], 'union') | |
{0, 1, 2, 3, 4, 5, 6} | |
See Also | |
======== | |
orbit_transversal | |
""" | |
return _orbit(self.degree, self.generators, alpha, action) | |
def orbit_rep(self, alpha, beta, schreier_vector=None): | |
"""Return a group element which sends ``alpha`` to ``beta``. | |
Explanation | |
=========== | |
If ``beta`` is not in the orbit of ``alpha``, the function returns | |
``False``. This implementation makes use of the schreier vector. | |
For a proof of correctness, see [1], p.80 | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import AlternatingGroup | |
>>> G = AlternatingGroup(5) | |
>>> G.orbit_rep(0, 4) | |
(0 4 1 2 3) | |
See Also | |
======== | |
schreier_vector | |
""" | |
if schreier_vector is None: | |
schreier_vector = self.schreier_vector(alpha) | |
if schreier_vector[beta] is None: | |
return False | |
k = schreier_vector[beta] | |
gens = [x._array_form for x in self.generators] | |
a = [] | |
while k != -1: | |
a.append(gens[k]) | |
beta = gens[k].index(beta) # beta = (~gens[k])(beta) | |
k = schreier_vector[beta] | |
if a: | |
return _af_new(_af_rmuln(*a)) | |
else: | |
return _af_new(list(range(self._degree))) | |
def orbit_transversal(self, alpha, pairs=False): | |
r"""Computes a transversal for the orbit of ``alpha`` as a set. | |
Explanation | |
=========== | |
For a permutation group `G`, a transversal for the orbit | |
`Orb = \{g(\alpha) | g \in G\}` is a set | |
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`. | |
Note that there may be more than one possible transversal. | |
If ``pairs`` is set to ``True``, it returns the list of pairs | |
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79 | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import DihedralGroup | |
>>> G = DihedralGroup(6) | |
>>> G.orbit_transversal(0) | |
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)] | |
See Also | |
======== | |
orbit | |
""" | |
return _orbit_transversal(self._degree, self.generators, alpha, pairs) | |
def orbits(self, rep=False): | |
"""Return the orbits of ``self``, ordered according to lowest element | |
in each orbit. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation(1, 5)(2, 3)(4, 0, 6) | |
>>> b = Permutation(1, 5)(3, 4)(2, 6, 0) | |
>>> G = PermutationGroup([a, b]) | |
>>> G.orbits() | |
[{0, 2, 3, 4, 6}, {1, 5}] | |
""" | |
return _orbits(self._degree, self._generators) | |
def order(self): | |
"""Return the order of the group: the number of permutations that | |
can be generated from elements of the group. | |
The number of permutations comprising the group is given by | |
``len(group)``; the length of each permutation in the group is | |
given by ``group.size``. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([1, 0, 2]) | |
>>> G = PermutationGroup([a]) | |
>>> G.degree | |
3 | |
>>> len(G) | |
1 | |
>>> G.order() | |
2 | |
>>> list(G.generate()) | |
[(2), (2)(0 1)] | |
>>> a = Permutation([0, 2, 1]) | |
>>> b = Permutation([1, 0, 2]) | |
>>> G = PermutationGroup([a, b]) | |
>>> G.order() | |
6 | |
See Also | |
======== | |
degree | |
""" | |
if self._order is not None: | |
return self._order | |
if self._is_sym: | |
n = self._degree | |
self._order = factorial(n) | |
return self._order | |
if self._is_alt: | |
n = self._degree | |
self._order = factorial(n)/2 | |
return self._order | |
m = prod([len(x) for x in self.basic_transversals]) | |
self._order = m | |
return m | |
def index(self, H): | |
""" | |
Returns the index of a permutation group. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation(1,2,3) | |
>>> b =Permutation(3) | |
>>> G = PermutationGroup([a]) | |
>>> H = PermutationGroup([b]) | |
>>> G.index(H) | |
3 | |
""" | |
if H.is_subgroup(self): | |
return self.order()//H.order() | |
def is_symmetric(self): | |
"""Return ``True`` if the group is symmetric. | |
Examples | |
======== | |
>>> from sympy.combinatorics import SymmetricGroup | |
>>> g = SymmetricGroup(5) | |
>>> g.is_symmetric | |
True | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> g = PermutationGroup( | |
... Permutation(0, 1, 2, 3, 4), | |
... Permutation(2, 3)) | |
>>> g.is_symmetric | |
True | |
Notes | |
===== | |
This uses a naive test involving the computation of the full | |
group order. | |
If you need more quicker taxonomy for large groups, you can use | |
:meth:`PermutationGroup.is_alt_sym`. | |
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate | |
and is not able to distinguish between an alternating group and | |
a symmetric group. | |
See Also | |
======== | |
is_alt_sym | |
""" | |
_is_sym = self._is_sym | |
if _is_sym is not None: | |
return _is_sym | |
n = self.degree | |
if n >= 8: | |
if self.is_transitive(): | |
_is_alt_sym = self._eval_is_alt_sym_monte_carlo() | |
if _is_alt_sym: | |
if any(g.is_odd for g in self.generators): | |
self._is_sym, self._is_alt = True, False | |
return True | |
self._is_sym, self._is_alt = False, True | |
return False | |
return self._eval_is_alt_sym_naive(only_sym=True) | |
self._is_sym, self._is_alt = False, False | |
return False | |
return self._eval_is_alt_sym_naive(only_sym=True) | |
def is_alternating(self): | |
"""Return ``True`` if the group is alternating. | |
Examples | |
======== | |
>>> from sympy.combinatorics import AlternatingGroup | |
>>> g = AlternatingGroup(5) | |
>>> g.is_alternating | |
True | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> g = PermutationGroup( | |
... Permutation(0, 1, 2, 3, 4), | |
... Permutation(2, 3, 4)) | |
>>> g.is_alternating | |
True | |
Notes | |
===== | |
This uses a naive test involving the computation of the full | |
group order. | |
If you need more quicker taxonomy for large groups, you can use | |
:meth:`PermutationGroup.is_alt_sym`. | |
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate | |
and is not able to distinguish between an alternating group and | |
a symmetric group. | |
See Also | |
======== | |
is_alt_sym | |
""" | |
_is_alt = self._is_alt | |
if _is_alt is not None: | |
return _is_alt | |
n = self.degree | |
if n >= 8: | |
if self.is_transitive(): | |
_is_alt_sym = self._eval_is_alt_sym_monte_carlo() | |
if _is_alt_sym: | |
if all(g.is_even for g in self.generators): | |
self._is_sym, self._is_alt = False, True | |
return True | |
self._is_sym, self._is_alt = True, False | |
return False | |
return self._eval_is_alt_sym_naive(only_alt=True) | |
self._is_sym, self._is_alt = False, False | |
return False | |
return self._eval_is_alt_sym_naive(only_alt=True) | |
def _distinct_primes_lemma(cls, primes): | |
"""Subroutine to test if there is only one cyclic group for the | |
order.""" | |
primes = sorted(primes) | |
l = len(primes) | |
for i in range(l): | |
for j in range(i+1, l): | |
if primes[j] % primes[i] == 1: | |
return None | |
return True | |
def is_cyclic(self): | |
r""" | |
Return ``True`` if the group is Cyclic. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import AbelianGroup | |
>>> G = AbelianGroup(3, 4) | |
>>> G.is_cyclic | |
True | |
>>> G = AbelianGroup(4, 4) | |
>>> G.is_cyclic | |
False | |
Notes | |
===== | |
If the order of a group $n$ can be factored into the distinct | |
primes $p_1, p_2, \dots , p_s$ and if | |
.. math:: | |
\forall i, j \in \{1, 2, \dots, s \}: | |
p_i \not \equiv 1 \pmod {p_j} | |
holds true, there is only one group of the order $n$ which | |
is a cyclic group [1]_. This is a generalization of the lemma | |
that the group of order $15, 35, \dots$ are cyclic. | |
And also, these additional lemmas can be used to test if a | |
group is cyclic if the order of the group is already found. | |
- If the group is abelian and the order of the group is | |
square-free, the group is cyclic. | |
- If the order of the group is less than $6$ and is not $4$, the | |
group is cyclic. | |
- If the order of the group is prime, the group is cyclic. | |
References | |
========== | |
.. [1] 1978: John S. Rose: A Course on Group Theory, | |
Introduction to Finite Group Theory: 1.4 | |
""" | |
if self._is_cyclic is not None: | |
return self._is_cyclic | |
if len(self.generators) == 1: | |
self._is_cyclic = True | |
self._is_abelian = True | |
return True | |
if self._is_abelian is False: | |
self._is_cyclic = False | |
return False | |
order = self.order() | |
if order < 6: | |
self._is_abelian = True | |
if order != 4: | |
self._is_cyclic = True | |
return True | |
factors = factorint(order) | |
if all(v == 1 for v in factors.values()): | |
if self._is_abelian: | |
self._is_cyclic = True | |
return True | |
primes = list(factors.keys()) | |
if PermutationGroup._distinct_primes_lemma(primes) is True: | |
self._is_cyclic = True | |
self._is_abelian = True | |
return True | |
if not self.is_abelian: | |
self._is_cyclic = False | |
return False | |
self._is_cyclic = all( | |
any(g**(order//p) != self.identity for g in self.generators) | |
for p, e in factors.items() if e > 1 | |
) | |
return self._is_cyclic | |
def is_dihedral(self): | |
r""" | |
Return ``True`` if the group is dihedral. | |
Examples | |
======== | |
>>> from sympy.combinatorics.perm_groups import PermutationGroup | |
>>> from sympy.combinatorics.permutations import Permutation | |
>>> from sympy.combinatorics.named_groups import SymmetricGroup, CyclicGroup | |
>>> G = PermutationGroup(Permutation(1, 6)(2, 5)(3, 4), Permutation(0, 1, 2, 3, 4, 5, 6)) | |
>>> G.is_dihedral | |
True | |
>>> G = SymmetricGroup(3) | |
>>> G.is_dihedral | |
True | |
>>> G = CyclicGroup(6) | |
>>> G.is_dihedral | |
False | |
References | |
========== | |
.. [Di1] https://math.stackexchange.com/questions/827230/given-a-cayley-table-is-there-an-algorithm-to-determine-if-it-is-a-dihedral-gro/827273#827273 | |
.. [Di2] https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral.pdf | |
.. [Di3] https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf | |
.. [Di4] https://en.wikipedia.org/wiki/Dihedral_group | |
""" | |
if self._is_dihedral is not None: | |
return self._is_dihedral | |
order = self.order() | |
if order % 2 == 1: | |
self._is_dihedral = False | |
return False | |
if order == 2: | |
self._is_dihedral = True | |
return True | |
if order == 4: | |
# The dihedral group of order 4 is the Klein 4-group. | |
self._is_dihedral = not self.is_cyclic | |
return self._is_dihedral | |
if self.is_abelian: | |
# The only abelian dihedral groups are the ones of orders 2 and 4. | |
self._is_dihedral = False | |
return False | |
# Now we know the group is of even order >= 6, and nonabelian. | |
n = order // 2 | |
# Handle special cases where there are exactly two generators. | |
gens = self.generators | |
if len(gens) == 2: | |
x, y = gens | |
a, b = x.order(), y.order() | |
# Make a >= b | |
if a < b: | |
x, y, a, b = y, x, b, a | |
# Using Theorem 2.1 of [Di3]: | |
if a == 2 == b: | |
self._is_dihedral = True | |
return True | |
# Using Theorem 1.1 of [Di3]: | |
if a == n and b == 2 and y*x*y == ~x: | |
self._is_dihedral = True | |
return True | |
# Proceed with algorithm of [Di1] | |
# Find elements of orders 2 and n | |
order_2, order_n = [], [] | |
for p in self.elements: | |
k = p.order() | |
if k == 2: | |
order_2.append(p) | |
elif k == n: | |
order_n.append(p) | |
if len(order_2) != n + 1 - (n % 2): | |
self._is_dihedral = False | |
return False | |
if not order_n: | |
self._is_dihedral = False | |
return False | |
x = order_n[0] | |
# Want an element y of order 2 that is not a power of x | |
# (i.e. that is not the 180-deg rotation, when n is even). | |
y = order_2[0] | |
if n % 2 == 0 and y == x**(n//2): | |
y = order_2[1] | |
self._is_dihedral = (y*x*y == ~x) | |
return self._is_dihedral | |
def pointwise_stabilizer(self, points, incremental=True): | |
r"""Return the pointwise stabilizer for a set of points. | |
Explanation | |
=========== | |
For a permutation group `G` and a set of points | |
`\{p_1, p_2,\ldots, p_k\}`, the pointwise stabilizer of | |
`p_1, p_2, \ldots, p_k` is defined as | |
`G_{p_1,\ldots, p_k} = | |
\{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\}` ([1],p20). | |
It is a subgroup of `G`. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import SymmetricGroup | |
>>> S = SymmetricGroup(7) | |
>>> Stab = S.pointwise_stabilizer([2, 3, 5]) | |
>>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5)) | |
True | |
See Also | |
======== | |
stabilizer, schreier_sims_incremental | |
Notes | |
===== | |
When incremental == True, | |
rather than the obvious implementation using successive calls to | |
``.stabilizer()``, this uses the incremental Schreier-Sims algorithm | |
to obtain a base with starting segment - the given points. | |
""" | |
if incremental: | |
base, strong_gens = self.schreier_sims_incremental(base=points) | |
stab_gens = [] | |
degree = self.degree | |
for gen in strong_gens: | |
if [gen(point) for point in points] == points: | |
stab_gens.append(gen) | |
if not stab_gens: | |
stab_gens = _af_new(list(range(degree))) | |
return PermutationGroup(stab_gens) | |
else: | |
gens = self._generators | |
degree = self.degree | |
for x in points: | |
gens = _stabilizer(degree, gens, x) | |
return PermutationGroup(gens) | |
def make_perm(self, n, seed=None): | |
""" | |
Multiply ``n`` randomly selected permutations from | |
pgroup together, starting with the identity | |
permutation. If ``n`` is a list of integers, those | |
integers will be used to select the permutations and they | |
will be applied in L to R order: make_perm((A, B, C)) will | |
give CBA(I) where I is the identity permutation. | |
``seed`` is used to set the seed for the random selection | |
of permutations from pgroup. If this is a list of integers, | |
the corresponding permutations from pgroup will be selected | |
in the order give. This is mainly used for testing purposes. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])] | |
>>> G = PermutationGroup([a, b]) | |
>>> G.make_perm(1, [0]) | |
(0 1)(2 3) | |
>>> G.make_perm(3, [0, 1, 0]) | |
(0 2 3 1) | |
>>> G.make_perm([0, 1, 0]) | |
(0 2 3 1) | |
See Also | |
======== | |
random | |
""" | |
if is_sequence(n): | |
if seed is not None: | |
raise ValueError('If n is a sequence, seed should be None') | |
n, seed = len(n), n | |
else: | |
try: | |
n = int(n) | |
except TypeError: | |
raise ValueError('n must be an integer or a sequence.') | |
randomrange = _randrange(seed) | |
# start with the identity permutation | |
result = Permutation(list(range(self.degree))) | |
m = len(self) | |
for _ in range(n): | |
p = self[randomrange(m)] | |
result = rmul(result, p) | |
return result | |
def random(self, af=False): | |
"""Return a random group element | |
""" | |
rank = randrange(self.order()) | |
return self.coset_unrank(rank, af) | |
def random_pr(self, gen_count=11, iterations=50, _random_prec=None): | |
"""Return a random group element using product replacement. | |
Explanation | |
=========== | |
For the details of the product replacement algorithm, see | |
``_random_pr_init`` In ``random_pr`` the actual 'product replacement' | |
is performed. Notice that if the attribute ``_random_gens`` | |
is empty, it needs to be initialized by ``_random_pr_init``. | |
See Also | |
======== | |
_random_pr_init | |
""" | |
if self._random_gens == []: | |
self._random_pr_init(gen_count, iterations) | |
random_gens = self._random_gens | |
r = len(random_gens) - 1 | |
# handle randomized input for testing purposes | |
if _random_prec is None: | |
s = randrange(r) | |
t = randrange(r - 1) | |
if t == s: | |
t = r - 1 | |
x = choice([1, 2]) | |
e = choice([-1, 1]) | |
else: | |
s = _random_prec['s'] | |
t = _random_prec['t'] | |
if t == s: | |
t = r - 1 | |
x = _random_prec['x'] | |
e = _random_prec['e'] | |
if x == 1: | |
random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e)) | |
random_gens[r] = _af_rmul(random_gens[r], random_gens[s]) | |
else: | |
random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s]) | |
random_gens[r] = _af_rmul(random_gens[s], random_gens[r]) | |
return _af_new(random_gens[r]) | |
def random_stab(self, alpha, schreier_vector=None, _random_prec=None): | |
"""Random element from the stabilizer of ``alpha``. | |
The schreier vector for ``alpha`` is an optional argument used | |
for speeding up repeated calls. The algorithm is described in [1], p.81 | |
See Also | |
======== | |
random_pr, orbit_rep | |
""" | |
if schreier_vector is None: | |
schreier_vector = self.schreier_vector(alpha) | |
if _random_prec is None: | |
rand = self.random_pr() | |
else: | |
rand = _random_prec['rand'] | |
beta = rand(alpha) | |
h = self.orbit_rep(alpha, beta, schreier_vector) | |
return rmul(~h, rand) | |
def schreier_sims(self): | |
"""Schreier-Sims algorithm. | |
Explanation | |
=========== | |
It computes the generators of the chain of stabilizers | |
`G > G_{b_1} > .. > G_{b1,..,b_r} > 1` | |
in which `G_{b_1,..,b_i}` stabilizes `b_1,..,b_i`, | |
and the corresponding ``s`` cosets. | |
An element of the group can be written as the product | |
`h_1*..*h_s`. | |
We use the incremental Schreier-Sims algorithm. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([0, 2, 1]) | |
>>> b = Permutation([1, 0, 2]) | |
>>> G = PermutationGroup([a, b]) | |
>>> G.schreier_sims() | |
>>> G.basic_transversals | |
[{0: (2)(0 1), 1: (2), 2: (1 2)}, | |
{0: (2), 2: (0 2)}] | |
""" | |
if self._transversals: | |
return | |
self._schreier_sims() | |
return | |
def _schreier_sims(self, base=None): | |
schreier = self.schreier_sims_incremental(base=base, slp_dict=True) | |
base, strong_gens = schreier[:2] | |
self._base = base | |
self._strong_gens = strong_gens | |
self._strong_gens_slp = schreier[2] | |
if not base: | |
self._transversals = [] | |
self._basic_orbits = [] | |
return | |
strong_gens_distr = _distribute_gens_by_base(base, strong_gens) | |
basic_orbits, transversals, slps = _orbits_transversals_from_bsgs(base,\ | |
strong_gens_distr, slp=True) | |
# rewrite the indices stored in slps in terms of strong_gens | |
for i, slp in enumerate(slps): | |
gens = strong_gens_distr[i] | |
for k in slp: | |
slp[k] = [strong_gens.index(gens[s]) for s in slp[k]] | |
self._transversals = transversals | |
self._basic_orbits = [sorted(x) for x in basic_orbits] | |
self._transversal_slp = slps | |
def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False): | |
"""Extend a sequence of points and generating set to a base and strong | |
generating set. | |
Parameters | |
========== | |
base | |
The sequence of points to be extended to a base. Optional | |
parameter with default value ``[]``. | |
gens | |
The generating set to be extended to a strong generating set | |
relative to the base obtained. Optional parameter with default | |
value ``self.generators``. | |
slp_dict | |
If `True`, return a dictionary `{g: gens}` for each strong | |
generator `g` where `gens` is a list of strong generators | |
coming before `g` in `strong_gens`, such that the product | |
of the elements of `gens` is equal to `g`. | |
Returns | |
======= | |
(base, strong_gens) | |
``base`` is the base obtained, and ``strong_gens`` is the strong | |
generating set relative to it. The original parameters ``base``, | |
``gens`` remain unchanged. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import AlternatingGroup | |
>>> from sympy.combinatorics.testutil import _verify_bsgs | |
>>> A = AlternatingGroup(7) | |
>>> base = [2, 3] | |
>>> seq = [2, 3] | |
>>> base, strong_gens = A.schreier_sims_incremental(base=seq) | |
>>> _verify_bsgs(A, base, strong_gens) | |
True | |
>>> base[:2] | |
[2, 3] | |
Notes | |
===== | |
This version of the Schreier-Sims algorithm runs in polynomial time. | |
There are certain assumptions in the implementation - if the trivial | |
group is provided, ``base`` and ``gens`` are returned immediately, | |
as any sequence of points is a base for the trivial group. If the | |
identity is present in the generators ``gens``, it is removed as | |
it is a redundant generator. | |
The implementation is described in [1], pp. 90-93. | |
See Also | |
======== | |
schreier_sims, schreier_sims_random | |
""" | |
if base is None: | |
base = [] | |
if gens is None: | |
gens = self.generators[:] | |
degree = self.degree | |
id_af = list(range(degree)) | |
# handle the trivial group | |
if len(gens) == 1 and gens[0].is_Identity: | |
if slp_dict: | |
return base, gens, {gens[0]: [gens[0]]} | |
return base, gens | |
# prevent side effects | |
_base, _gens = base[:], gens[:] | |
# remove the identity as a generator | |
_gens = [x for x in _gens if not x.is_Identity] | |
# make sure no generator fixes all base points | |
for gen in _gens: | |
if all(x == gen._array_form[x] for x in _base): | |
for new in id_af: | |
if gen._array_form[new] != new: | |
break | |
else: | |
assert None # can this ever happen? | |
_base.append(new) | |
# distribute generators according to basic stabilizers | |
strong_gens_distr = _distribute_gens_by_base(_base, _gens) | |
strong_gens_slp = [] | |
# initialize the basic stabilizers, basic orbits and basic transversals | |
orbs = {} | |
transversals = {} | |
slps = {} | |
base_len = len(_base) | |
for i in range(base_len): | |
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i], | |
_base[i], pairs=True, af=True, slp=True) | |
transversals[i] = dict(transversals[i]) | |
orbs[i] = list(transversals[i].keys()) | |
# main loop: amend the stabilizer chain until we have generators | |
# for all stabilizers | |
i = base_len - 1 | |
while i >= 0: | |
# this flag is used to continue with the main loop from inside | |
# a nested loop | |
continue_i = False | |
# test the generators for being a strong generating set | |
db = {} | |
for beta, u_beta in list(transversals[i].items()): | |
for j, gen in enumerate(strong_gens_distr[i]): | |
gb = gen._array_form[beta] | |
u1 = transversals[i][gb] | |
g1 = _af_rmul(gen._array_form, u_beta) | |
slp = [(i, g) for g in slps[i][beta]] | |
slp = [(i, j)] + slp | |
if g1 != u1: | |
# test if the schreier generator is in the i+1-th | |
# would-be basic stabilizer | |
y = True | |
try: | |
u1_inv = db[gb] | |
except KeyError: | |
u1_inv = db[gb] = _af_invert(u1) | |
schreier_gen = _af_rmul(u1_inv, g1) | |
u1_inv_slp = slps[i][gb][:] | |
u1_inv_slp.reverse() | |
u1_inv_slp = [(i, (g,)) for g in u1_inv_slp] | |
slp = u1_inv_slp + slp | |
h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps) | |
if j <= base_len: | |
# new strong generator h at level j | |
y = False | |
elif h: | |
# h fixes all base points | |
y = False | |
moved = 0 | |
while h[moved] == moved: | |
moved += 1 | |
_base.append(moved) | |
base_len += 1 | |
strong_gens_distr.append([]) | |
if y is False: | |
# if a new strong generator is found, update the | |
# data structures and start over | |
h = _af_new(h) | |
strong_gens_slp.append((h, slp)) | |
for l in range(i + 1, j): | |
strong_gens_distr[l].append(h) | |
transversals[l], slps[l] =\ | |
_orbit_transversal(degree, strong_gens_distr[l], | |
_base[l], pairs=True, af=True, slp=True) | |
transversals[l] = dict(transversals[l]) | |
orbs[l] = list(transversals[l].keys()) | |
i = j - 1 | |
# continue main loop using the flag | |
continue_i = True | |
if continue_i is True: | |
break | |
if continue_i is True: | |
break | |
if continue_i is True: | |
continue | |
i -= 1 | |
strong_gens = _gens[:] | |
if slp_dict: | |
# create the list of the strong generators strong_gens and | |
# rewrite the indices of strong_gens_slp in terms of the | |
# elements of strong_gens | |
for k, slp in strong_gens_slp: | |
strong_gens.append(k) | |
for i in range(len(slp)): | |
s = slp[i] | |
if isinstance(s[1], tuple): | |
slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1 | |
else: | |
slp[i] = strong_gens_distr[s[0]][s[1]] | |
strong_gens_slp = dict(strong_gens_slp) | |
# add the original generators | |
for g in _gens: | |
strong_gens_slp[g] = [g] | |
return (_base, strong_gens, strong_gens_slp) | |
strong_gens.extend([k for k, _ in strong_gens_slp]) | |
return _base, strong_gens | |
def schreier_sims_random(self, base=None, gens=None, consec_succ=10, | |
_random_prec=None): | |
r"""Randomized Schreier-Sims algorithm. | |
Explanation | |
=========== | |
The randomized Schreier-Sims algorithm takes the sequence ``base`` | |
and the generating set ``gens``, and extends ``base`` to a base, and | |
``gens`` to a strong generating set relative to that base with | |
probability of a wrong answer at most `2^{-consec\_succ}`, | |
provided the random generators are sufficiently random. | |
Parameters | |
========== | |
base | |
The sequence to be extended to a base. | |
gens | |
The generating set to be extended to a strong generating set. | |
consec_succ | |
The parameter defining the probability of a wrong answer. | |
_random_prec | |
An internal parameter used for testing purposes. | |
Returns | |
======= | |
(base, strong_gens) | |
``base`` is the base and ``strong_gens`` is the strong generating | |
set relative to it. | |
Examples | |
======== | |
>>> from sympy.combinatorics.testutil import _verify_bsgs | |
>>> from sympy.combinatorics.named_groups import SymmetricGroup | |
>>> S = SymmetricGroup(5) | |
>>> base, strong_gens = S.schreier_sims_random(consec_succ=5) | |
>>> _verify_bsgs(S, base, strong_gens) #doctest: +SKIP | |
True | |
Notes | |
===== | |
The algorithm is described in detail in [1], pp. 97-98. It extends | |
the orbits ``orbs`` and the permutation groups ``stabs`` to | |
basic orbits and basic stabilizers for the base and strong generating | |
set produced in the end. | |
The idea of the extension process | |
is to "sift" random group elements through the stabilizer chain | |
and amend the stabilizers/orbits along the way when a sift | |
is not successful. | |
The helper function ``_strip`` is used to attempt | |
to decompose a random group element according to the current | |
state of the stabilizer chain and report whether the element was | |
fully decomposed (successful sift) or not (unsuccessful sift). In | |
the latter case, the level at which the sift failed is reported and | |
used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly. | |
The halting condition is for ``consec_succ`` consecutive successful | |
sifts to pass. This makes sure that the current ``base`` and ``gens`` | |
form a BSGS with probability at least `1 - 1/\text{consec\_succ}`. | |
See Also | |
======== | |
schreier_sims | |
""" | |
if base is None: | |
base = [] | |
if gens is None: | |
gens = self.generators | |
base_len = len(base) | |
n = self.degree | |
# make sure no generator fixes all base points | |
for gen in gens: | |
if all(gen(x) == x for x in base): | |
new = 0 | |
while gen._array_form[new] == new: | |
new += 1 | |
base.append(new) | |
base_len += 1 | |
# distribute generators according to basic stabilizers | |
strong_gens_distr = _distribute_gens_by_base(base, gens) | |
# initialize the basic stabilizers, basic transversals and basic orbits | |
transversals = {} | |
orbs = {} | |
for i in range(base_len): | |
transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i], | |
base[i], pairs=True)) | |
orbs[i] = list(transversals[i].keys()) | |
# initialize the number of consecutive elements sifted | |
c = 0 | |
# start sifting random elements while the number of consecutive sifts | |
# is less than consec_succ | |
while c < consec_succ: | |
if _random_prec is None: | |
g = self.random_pr() | |
else: | |
g = _random_prec['g'].pop() | |
h, j = _strip(g, base, orbs, transversals) | |
y = True | |
# determine whether a new base point is needed | |
if j <= base_len: | |
y = False | |
elif not h.is_Identity: | |
y = False | |
moved = 0 | |
while h(moved) == moved: | |
moved += 1 | |
base.append(moved) | |
base_len += 1 | |
strong_gens_distr.append([]) | |
# if the element doesn't sift, amend the strong generators and | |
# associated stabilizers and orbits | |
if y is False: | |
for l in range(1, j): | |
strong_gens_distr[l].append(h) | |
transversals[l] = dict(_orbit_transversal(n, | |
strong_gens_distr[l], base[l], pairs=True)) | |
orbs[l] = list(transversals[l].keys()) | |
c = 0 | |
else: | |
c += 1 | |
# build the strong generating set | |
strong_gens = strong_gens_distr[0][:] | |
for gen in strong_gens_distr[1]: | |
if gen not in strong_gens: | |
strong_gens.append(gen) | |
return base, strong_gens | |
def schreier_vector(self, alpha): | |
"""Computes the schreier vector for ``alpha``. | |
Explanation | |
=========== | |
The Schreier vector efficiently stores information | |
about the orbit of ``alpha``. It can later be used to quickly obtain | |
elements of the group that send ``alpha`` to a particular element | |
in the orbit. Notice that the Schreier vector depends on the order | |
in which the group generators are listed. For a definition, see [3]. | |
Since list indices start from zero, we adopt the convention to use | |
"None" instead of 0 to signify that an element does not belong | |
to the orbit. | |
For the algorithm and its correctness, see [2], pp.78-80. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([2, 4, 6, 3, 1, 5, 0]) | |
>>> b = Permutation([0, 1, 3, 5, 4, 6, 2]) | |
>>> G = PermutationGroup([a, b]) | |
>>> G.schreier_vector(0) | |
[-1, None, 0, 1, None, 1, 0] | |
See Also | |
======== | |
orbit | |
""" | |
n = self.degree | |
v = [None]*n | |
v[alpha] = -1 | |
orb = [alpha] | |
used = [False]*n | |
used[alpha] = True | |
gens = self.generators | |
r = len(gens) | |
for b in orb: | |
for i in range(r): | |
temp = gens[i]._array_form[b] | |
if used[temp] is False: | |
orb.append(temp) | |
used[temp] = True | |
v[temp] = i | |
return v | |
def stabilizer(self, alpha): | |
r"""Return the stabilizer subgroup of ``alpha``. | |
Explanation | |
=========== | |
The stabilizer of `\alpha` is the group `G_\alpha = | |
\{g \in G | g(\alpha) = \alpha\}`. | |
For a proof of correctness, see [1], p.79. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import DihedralGroup | |
>>> G = DihedralGroup(6) | |
>>> G.stabilizer(5) | |
PermutationGroup([ | |
(5)(0 4)(1 3)]) | |
See Also | |
======== | |
orbit | |
""" | |
return PermGroup(_stabilizer(self._degree, self._generators, alpha)) | |
def strong_gens(self): | |
r"""Return a strong generating set from the Schreier-Sims algorithm. | |
Explanation | |
=========== | |
A generating set `S = \{g_1, g_2, \dots, g_t\}` for a permutation group | |
`G` is a strong generating set relative to the sequence of points | |
(referred to as a "base") `(b_1, b_2, \dots, b_k)` if, for | |
`1 \leq i \leq k` we have that the intersection of the pointwise | |
stabilizer `G^{(i+1)} := G_{b_1, b_2, \dots, b_i}` with `S` generates | |
the pointwise stabilizer `G^{(i+1)}`. The concepts of a base and | |
strong generating set and their applications are discussed in depth | |
in [1], pp. 87-89 and [2], pp. 55-57. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import DihedralGroup | |
>>> D = DihedralGroup(4) | |
>>> D.strong_gens | |
[(0 1 2 3), (0 3)(1 2), (1 3)] | |
>>> D.base | |
[0, 1] | |
See Also | |
======== | |
base, basic_transversals, basic_orbits, basic_stabilizers | |
""" | |
if self._strong_gens == []: | |
self.schreier_sims() | |
return self._strong_gens | |
def subgroup(self, gens): | |
""" | |
Return the subgroup generated by `gens` which is a list of | |
elements of the group | |
""" | |
if not all(g in self for g in gens): | |
raise ValueError("The group does not contain the supplied generators") | |
G = PermutationGroup(gens) | |
return G | |
def subgroup_search(self, prop, base=None, strong_gens=None, tests=None, | |
init_subgroup=None): | |
"""Find the subgroup of all elements satisfying the property ``prop``. | |
Explanation | |
=========== | |
This is done by a depth-first search with respect to base images that | |
uses several tests to prune the search tree. | |
Parameters | |
========== | |
prop | |
The property to be used. Has to be callable on group elements | |
and always return ``True`` or ``False``. It is assumed that | |
all group elements satisfying ``prop`` indeed form a subgroup. | |
base | |
A base for the supergroup. | |
strong_gens | |
A strong generating set for the supergroup. | |
tests | |
A list of callables of length equal to the length of ``base``. | |
These are used to rule out group elements by partial base images, | |
so that ``tests[l](g)`` returns False if the element ``g`` is known | |
not to satisfy prop base on where g sends the first ``l + 1`` base | |
points. | |
init_subgroup | |
if a subgroup of the sought group is | |
known in advance, it can be passed to the function as this | |
parameter. | |
Returns | |
======= | |
res | |
The subgroup of all elements satisfying ``prop``. The generating | |
set for this group is guaranteed to be a strong generating set | |
relative to the base ``base``. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import (SymmetricGroup, | |
... AlternatingGroup) | |
>>> from sympy.combinatorics.testutil import _verify_bsgs | |
>>> S = SymmetricGroup(7) | |
>>> prop_even = lambda x: x.is_even | |
>>> base, strong_gens = S.schreier_sims_incremental() | |
>>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens) | |
>>> G.is_subgroup(AlternatingGroup(7)) | |
True | |
>>> _verify_bsgs(G, base, G.generators) | |
True | |
Notes | |
===== | |
This function is extremely lengthy and complicated and will require | |
some careful attention. The implementation is described in | |
[1], pp. 114-117, and the comments for the code here follow the lines | |
of the pseudocode in the book for clarity. | |
The complexity is exponential in general, since the search process by | |
itself visits all members of the supergroup. However, there are a lot | |
of tests which are used to prune the search tree, and users can define | |
their own tests via the ``tests`` parameter, so in practice, and for | |
some computations, it's not terrible. | |
A crucial part in the procedure is the frequent base change performed | |
(this is line 11 in the pseudocode) in order to obtain a new basic | |
stabilizer. The book mentiones that this can be done by using | |
``.baseswap(...)``, however the current implementation uses a more | |
straightforward way to find the next basic stabilizer - calling the | |
function ``.stabilizer(...)`` on the previous basic stabilizer. | |
""" | |
# initialize BSGS and basic group properties | |
def get_reps(orbits): | |
# get the minimal element in the base ordering | |
return [min(orbit, key = lambda x: base_ordering[x]) \ | |
for orbit in orbits] | |
def update_nu(l): | |
temp_index = len(basic_orbits[l]) + 1 -\ | |
len(res_basic_orbits_init_base[l]) | |
# this corresponds to the element larger than all points | |
if temp_index >= len(sorted_orbits[l]): | |
nu[l] = base_ordering[degree] | |
else: | |
nu[l] = sorted_orbits[l][temp_index] | |
if base is None: | |
base, strong_gens = self.schreier_sims_incremental() | |
base_len = len(base) | |
degree = self.degree | |
identity = _af_new(list(range(degree))) | |
base_ordering = _base_ordering(base, degree) | |
# add an element larger than all points | |
base_ordering.append(degree) | |
# add an element smaller than all points | |
base_ordering.append(-1) | |
# compute BSGS-related structures | |
strong_gens_distr = _distribute_gens_by_base(base, strong_gens) | |
basic_orbits, transversals = _orbits_transversals_from_bsgs(base, | |
strong_gens_distr) | |
# handle subgroup initialization and tests | |
if init_subgroup is None: | |
init_subgroup = PermutationGroup([identity]) | |
if tests is None: | |
trivial_test = lambda x: True | |
tests = [] | |
for i in range(base_len): | |
tests.append(trivial_test) | |
# line 1: more initializations. | |
res = init_subgroup | |
f = base_len - 1 | |
l = base_len - 1 | |
# line 2: set the base for K to the base for G | |
res_base = base[:] | |
# line 3: compute BSGS and related structures for K | |
res_base, res_strong_gens = res.schreier_sims_incremental( | |
base=res_base) | |
res_strong_gens_distr = _distribute_gens_by_base(res_base, | |
res_strong_gens) | |
res_generators = res.generators | |
res_basic_orbits_init_base = \ | |
[_orbit(degree, res_strong_gens_distr[i], res_base[i])\ | |
for i in range(base_len)] | |
# initialize orbit representatives | |
orbit_reps = [None]*base_len | |
# line 4: orbit representatives for f-th basic stabilizer of K | |
orbits = _orbits(degree, res_strong_gens_distr[f]) | |
orbit_reps[f] = get_reps(orbits) | |
# line 5: remove the base point from the representatives to avoid | |
# getting the identity element as a generator for K | |
orbit_reps[f].remove(base[f]) | |
# line 6: more initializations | |
c = [0]*base_len | |
u = [identity]*base_len | |
sorted_orbits = [None]*base_len | |
for i in range(base_len): | |
sorted_orbits[i] = basic_orbits[i][:] | |
sorted_orbits[i].sort(key=lambda point: base_ordering[point]) | |
# line 7: initializations | |
mu = [None]*base_len | |
nu = [None]*base_len | |
# this corresponds to the element smaller than all points | |
mu[l] = degree + 1 | |
update_nu(l) | |
# initialize computed words | |
computed_words = [identity]*base_len | |
# line 8: main loop | |
while True: | |
# apply all the tests | |
while l < base_len - 1 and \ | |
computed_words[l](base[l]) in orbit_reps[l] and \ | |
base_ordering[mu[l]] < \ | |
base_ordering[computed_words[l](base[l])] < \ | |
base_ordering[nu[l]] and \ | |
tests[l](computed_words): | |
# line 11: change the (partial) base of K | |
new_point = computed_words[l](base[l]) | |
res_base[l] = new_point | |
new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l], | |
new_point) | |
res_strong_gens_distr[l + 1] = new_stab_gens | |
# line 12: calculate minimal orbit representatives for the | |
# l+1-th basic stabilizer | |
orbits = _orbits(degree, new_stab_gens) | |
orbit_reps[l + 1] = get_reps(orbits) | |
# line 13: amend sorted orbits | |
l += 1 | |
temp_orbit = [computed_words[l - 1](point) for point | |
in basic_orbits[l]] | |
temp_orbit.sort(key=lambda point: base_ordering[point]) | |
sorted_orbits[l] = temp_orbit | |
# lines 14 and 15: update variables used minimality tests | |
new_mu = degree + 1 | |
for i in range(l): | |
if base[l] in res_basic_orbits_init_base[i]: | |
candidate = computed_words[i](base[i]) | |
if base_ordering[candidate] > base_ordering[new_mu]: | |
new_mu = candidate | |
mu[l] = new_mu | |
update_nu(l) | |
# line 16: determine the new transversal element | |
c[l] = 0 | |
temp_point = sorted_orbits[l][c[l]] | |
gamma = computed_words[l - 1]._array_form.index(temp_point) | |
u[l] = transversals[l][gamma] | |
# update computed words | |
computed_words[l] = rmul(computed_words[l - 1], u[l]) | |
# lines 17 & 18: apply the tests to the group element found | |
g = computed_words[l] | |
temp_point = g(base[l]) | |
if l == base_len - 1 and \ | |
base_ordering[mu[l]] < \ | |
base_ordering[temp_point] < base_ordering[nu[l]] and \ | |
temp_point in orbit_reps[l] and \ | |
tests[l](computed_words) and \ | |
prop(g): | |
# line 19: reset the base of K | |
res_generators.append(g) | |
res_base = base[:] | |
# line 20: recalculate basic orbits (and transversals) | |
res_strong_gens.append(g) | |
res_strong_gens_distr = _distribute_gens_by_base(res_base, | |
res_strong_gens) | |
res_basic_orbits_init_base = \ | |
[_orbit(degree, res_strong_gens_distr[i], res_base[i]) \ | |
for i in range(base_len)] | |
# line 21: recalculate orbit representatives | |
# line 22: reset the search depth | |
orbit_reps[f] = get_reps(orbits) | |
l = f | |
# line 23: go up the tree until in the first branch not fully | |
# searched | |
while l >= 0 and c[l] == len(basic_orbits[l]) - 1: | |
l = l - 1 | |
# line 24: if the entire tree is traversed, return K | |
if l == -1: | |
return PermutationGroup(res_generators) | |
# lines 25-27: update orbit representatives | |
if l < f: | |
# line 26 | |
f = l | |
c[l] = 0 | |
# line 27 | |
temp_orbits = _orbits(degree, res_strong_gens_distr[f]) | |
orbit_reps[f] = get_reps(temp_orbits) | |
# line 28: update variables used for minimality testing | |
mu[l] = degree + 1 | |
temp_index = len(basic_orbits[l]) + 1 - \ | |
len(res_basic_orbits_init_base[l]) | |
if temp_index >= len(sorted_orbits[l]): | |
nu[l] = base_ordering[degree] | |
else: | |
nu[l] = sorted_orbits[l][temp_index] | |
# line 29: set the next element from the current branch and update | |
# accordingly | |
c[l] += 1 | |
if l == 0: | |
gamma = sorted_orbits[l][c[l]] | |
else: | |
gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]]) | |
u[l] = transversals[l][gamma] | |
if l == 0: | |
computed_words[l] = u[l] | |
else: | |
computed_words[l] = rmul(computed_words[l - 1], u[l]) | |
def transitivity_degree(self): | |
r"""Compute the degree of transitivity of the group. | |
Explanation | |
=========== | |
A permutation group `G` acting on `\Omega = \{0, 1, \dots, n-1\}` is | |
``k``-fold transitive, if, for any `k` points | |
`(a_1, a_2, \dots, a_k) \in \Omega` and any `k` points | |
`(b_1, b_2, \dots, b_k) \in \Omega` there exists `g \in G` such that | |
`g(a_1) = b_1, g(a_2) = b_2, \dots, g(a_k) = b_k` | |
The degree of transitivity of `G` is the maximum ``k`` such that | |
`G` is ``k``-fold transitive. ([8]) | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> a = Permutation([1, 2, 0]) | |
>>> b = Permutation([1, 0, 2]) | |
>>> G = PermutationGroup([a, b]) | |
>>> G.transitivity_degree | |
3 | |
See Also | |
======== | |
is_transitive, orbit | |
""" | |
if self._transitivity_degree is None: | |
n = self.degree | |
G = self | |
# if G is k-transitive, a tuple (a_0,..,a_k) | |
# can be brought to (b_0,...,b_(k-1), b_k) | |
# where b_0,...,b_(k-1) are fixed points; | |
# consider the group G_k which stabilizes b_0,...,b_(k-1) | |
# if G_k is transitive on the subset excluding b_0,...,b_(k-1) | |
# then G is (k+1)-transitive | |
for i in range(n): | |
orb = G.orbit(i) | |
if len(orb) != n - i: | |
self._transitivity_degree = i | |
return i | |
G = G.stabilizer(i) | |
self._transitivity_degree = n | |
return n | |
else: | |
return self._transitivity_degree | |
def _p_elements_group(self, p): | |
''' | |
For an abelian p-group, return the subgroup consisting of | |
all elements of order p (and the identity) | |
''' | |
gens = self.generators[:] | |
gens = sorted(gens, key=lambda x: x.order(), reverse=True) | |
gens_p = [g**(g.order()/p) for g in gens] | |
gens_r = [] | |
for i in range(len(gens)): | |
x = gens[i] | |
x_order = x.order() | |
# x_p has order p | |
x_p = x**(x_order/p) | |
if i > 0: | |
P = PermutationGroup(gens_p[:i]) | |
else: | |
P = PermutationGroup(self.identity) | |
if x**(x_order/p) not in P: | |
gens_r.append(x**(x_order/p)) | |
else: | |
# replace x by an element of order (x.order()/p) | |
# so that gens still generates G | |
g = P.generator_product(x_p, original=True) | |
for s in g: | |
x = x*s**-1 | |
x_order = x_order/p | |
# insert x to gens so that the sorting is preserved | |
del gens[i] | |
del gens_p[i] | |
j = i - 1 | |
while j < len(gens) and gens[j].order() >= x_order: | |
j += 1 | |
gens = gens[:j] + [x] + gens[j:] | |
gens_p = gens_p[:j] + [x] + gens_p[j:] | |
return PermutationGroup(gens_r) | |
def _sylow_alt_sym(self, p): | |
''' | |
Return a p-Sylow subgroup of a symmetric or an | |
alternating group. | |
Explanation | |
=========== | |
The algorithm for this is hinted at in [1], Chapter 4, | |
Exercise 4. | |
For Sym(n) with n = p^i, the idea is as follows. Partition | |
the interval [0..n-1] into p equal parts, each of length p^(i-1): | |
[0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...[(p-1)*p^(i-1)..p^i-1]. | |
Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup | |
of ``self``) acting on each of the parts. Call the subgroups | |
P_1, P_2...P_p. The generators for the subgroups P_2...P_p | |
can be obtained from those of P_1 by applying a "shifting" | |
permutation to them, that is, a permutation mapping [0..p^(i-1)-1] | |
to the second part (the other parts are obtained by using the shift | |
multiple times). The union of this permutation and the generators | |
of P_1 is a p-Sylow subgroup of ``self``. | |
For n not equal to a power of p, partition | |
[0..n-1] in accordance with how n would be written in base p. | |
E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition | |
is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup, | |
take the union of the generators for each of the parts. | |
For the above example, {(0 1), (0 2)(1 3), (0 4), (1 5)(2 7)} | |
from the first part, {(8 9)} from the second part and | |
nothing from the third. This gives 4 generators in total, and | |
the subgroup they generate is p-Sylow. | |
Alternating groups are treated the same except when p=2. In this | |
case, (0 1)(s s+1) should be added for an appropriate s (the start | |
of a part) for each part in the partitions. | |
See Also | |
======== | |
sylow_subgroup, is_alt_sym | |
''' | |
n = self.degree | |
gens = [] | |
identity = Permutation(n-1) | |
# the case of 2-sylow subgroups of alternating groups | |
# needs special treatment | |
alt = p == 2 and all(g.is_even for g in self.generators) | |
# find the presentation of n in base p | |
coeffs = [] | |
m = n | |
while m > 0: | |
coeffs.append(m % p) | |
m = m // p | |
power = len(coeffs)-1 | |
# for a symmetric group, gens[:i] is the generating | |
# set for a p-Sylow subgroup on [0..p**(i-1)-1]. For | |
# alternating groups, the same is given by gens[:2*(i-1)] | |
for i in range(1, power+1): | |
if i == 1 and alt: | |
# (0 1) shouldn't be added for alternating groups | |
continue | |
gen = Permutation([(j + p**(i-1)) % p**i for j in range(p**i)]) | |
gens.append(identity*gen) | |
if alt: | |
gen = Permutation(0, 1)*gen*Permutation(0, 1)*gen | |
gens.append(gen) | |
# the first point in the current part (see the algorithm | |
# description in the docstring) | |
start = 0 | |
while power > 0: | |
a = coeffs[power] | |
# make the permutation shifting the start of the first | |
# part ([0..p^i-1] for some i) to the current one | |
for _ in range(a): | |
shift = Permutation() | |
if start > 0: | |
for i in range(p**power): | |
shift = shift(i, start + i) | |
if alt: | |
gen = Permutation(0, 1)*shift*Permutation(0, 1)*shift | |
gens.append(gen) | |
j = 2*(power - 1) | |
else: | |
j = power | |
for i, gen in enumerate(gens[:j]): | |
if alt and i % 2 == 1: | |
continue | |
# shift the generator to the start of the | |
# partition part | |
gen = shift*gen*shift | |
gens.append(gen) | |
start += p**power | |
power = power-1 | |
return gens | |
def sylow_subgroup(self, p): | |
''' | |
Return a p-Sylow subgroup of the group. | |
The algorithm is described in [1], Chapter 4, Section 7 | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import DihedralGroup | |
>>> from sympy.combinatorics.named_groups import SymmetricGroup | |
>>> from sympy.combinatorics.named_groups import AlternatingGroup | |
>>> D = DihedralGroup(6) | |
>>> S = D.sylow_subgroup(2) | |
>>> S.order() | |
4 | |
>>> G = SymmetricGroup(6) | |
>>> S = G.sylow_subgroup(5) | |
>>> S.order() | |
5 | |
>>> G1 = AlternatingGroup(3) | |
>>> G2 = AlternatingGroup(5) | |
>>> G3 = AlternatingGroup(9) | |
>>> S1 = G1.sylow_subgroup(3) | |
>>> S2 = G2.sylow_subgroup(3) | |
>>> S3 = G3.sylow_subgroup(3) | |
>>> len1 = len(S1.lower_central_series()) | |
>>> len2 = len(S2.lower_central_series()) | |
>>> len3 = len(S3.lower_central_series()) | |
>>> len1 == len2 | |
True | |
>>> len1 < len3 | |
True | |
''' | |
from sympy.combinatorics.homomorphisms import ( | |
orbit_homomorphism, block_homomorphism) | |
if not isprime(p): | |
raise ValueError("p must be a prime") | |
def is_p_group(G): | |
# check if the order of G is a power of p | |
# and return the power | |
m = G.order() | |
n = 0 | |
while m % p == 0: | |
m = m/p | |
n += 1 | |
if m == 1: | |
return True, n | |
return False, n | |
def _sylow_reduce(mu, nu): | |
# reduction based on two homomorphisms | |
# mu and nu with trivially intersecting | |
# kernels | |
Q = mu.image().sylow_subgroup(p) | |
Q = mu.invert_subgroup(Q) | |
nu = nu.restrict_to(Q) | |
R = nu.image().sylow_subgroup(p) | |
return nu.invert_subgroup(R) | |
order = self.order() | |
if order % p != 0: | |
return PermutationGroup([self.identity]) | |
p_group, n = is_p_group(self) | |
if p_group: | |
return self | |
if self.is_alt_sym(): | |
return PermutationGroup(self._sylow_alt_sym(p)) | |
# if there is a non-trivial orbit with size not divisible | |
# by p, the sylow subgroup is contained in its stabilizer | |
# (by orbit-stabilizer theorem) | |
orbits = self.orbits() | |
non_p_orbits = [o for o in orbits if len(o) % p != 0 and len(o) != 1] | |
if non_p_orbits: | |
G = self.stabilizer(list(non_p_orbits[0]).pop()) | |
return G.sylow_subgroup(p) | |
if not self.is_transitive(): | |
# apply _sylow_reduce to orbit actions | |
orbits = sorted(orbits, key=len) | |
omega1 = orbits.pop() | |
omega2 = orbits[0].union(*orbits) | |
mu = orbit_homomorphism(self, omega1) | |
nu = orbit_homomorphism(self, omega2) | |
return _sylow_reduce(mu, nu) | |
blocks = self.minimal_blocks() | |
if len(blocks) > 1: | |
# apply _sylow_reduce to block system actions | |
mu = block_homomorphism(self, blocks[0]) | |
nu = block_homomorphism(self, blocks[1]) | |
return _sylow_reduce(mu, nu) | |
elif len(blocks) == 1: | |
block = list(blocks)[0] | |
if any(e != 0 for e in block): | |
# self is imprimitive | |
mu = block_homomorphism(self, block) | |
if not is_p_group(mu.image())[0]: | |
S = mu.image().sylow_subgroup(p) | |
return mu.invert_subgroup(S).sylow_subgroup(p) | |
# find an element of order p | |
g = self.random() | |
g_order = g.order() | |
while g_order % p != 0 or g_order == 0: | |
g = self.random() | |
g_order = g.order() | |
g = g**(g_order // p) | |
if order % p**2 != 0: | |
return PermutationGroup(g) | |
C = self.centralizer(g) | |
while C.order() % p**n != 0: | |
S = C.sylow_subgroup(p) | |
s_order = S.order() | |
Z = S.center() | |
P = Z._p_elements_group(p) | |
h = P.random() | |
C_h = self.centralizer(h) | |
while C_h.order() % p*s_order != 0: | |
h = P.random() | |
C_h = self.centralizer(h) | |
C = C_h | |
return C.sylow_subgroup(p) | |
def _block_verify(self, L, alpha): | |
delta = sorted(self.orbit(alpha)) | |
# p[i] will be the number of the block | |
# delta[i] belongs to | |
p = [-1]*len(delta) | |
blocks = [-1]*len(delta) | |
B = [[]] # future list of blocks | |
u = [0]*len(delta) # u[i] in L s.t. alpha^u[i] = B[0][i] | |
t = L.orbit_transversal(alpha, pairs=True) | |
for a, beta in t: | |
B[0].append(a) | |
i_a = delta.index(a) | |
p[i_a] = 0 | |
blocks[i_a] = alpha | |
u[i_a] = beta | |
rho = 0 | |
m = 0 # number of blocks - 1 | |
while rho <= m: | |
beta = B[rho][0] | |
for g in self.generators: | |
d = beta^g | |
i_d = delta.index(d) | |
sigma = p[i_d] | |
if sigma < 0: | |
# define a new block | |
m += 1 | |
sigma = m | |
u[i_d] = u[delta.index(beta)]*g | |
p[i_d] = sigma | |
rep = d | |
blocks[i_d] = rep | |
newb = [rep] | |
for gamma in B[rho][1:]: | |
i_gamma = delta.index(gamma) | |
d = gamma^g | |
i_d = delta.index(d) | |
if p[i_d] < 0: | |
u[i_d] = u[i_gamma]*g | |
p[i_d] = sigma | |
blocks[i_d] = rep | |
newb.append(d) | |
else: | |
# B[rho] is not a block | |
s = u[i_gamma]*g*u[i_d]**(-1) | |
return False, s | |
B.append(newb) | |
else: | |
for h in B[rho][1:]: | |
if h^g not in B[sigma]: | |
# B[rho] is not a block | |
s = u[delta.index(beta)]*g*u[i_d]**(-1) | |
return False, s | |
rho += 1 | |
return True, blocks | |
def _verify(H, K, phi, z, alpha): | |
''' | |
Return a list of relators ``rels`` in generators ``gens`_h` that | |
are mapped to ``H.generators`` by ``phi`` so that given a finite | |
presentation <gens_k | rels_k> of ``K`` on a subset of ``gens_h`` | |
<gens_h | rels_k + rels> is a finite presentation of ``H``. | |
Explanation | |
=========== | |
``H`` should be generated by the union of ``K.generators`` and ``z`` | |
(a single generator), and ``H.stabilizer(alpha) == K``; ``phi`` is a | |
canonical injection from a free group into a permutation group | |
containing ``H``. | |
The algorithm is described in [1], Chapter 6. | |
Examples | |
======== | |
>>> from sympy.combinatorics import free_group, Permutation, PermutationGroup | |
>>> from sympy.combinatorics.homomorphisms import homomorphism | |
>>> from sympy.combinatorics.fp_groups import FpGroup | |
>>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5)) | |
>>> K = PermutationGroup(Permutation(5)(0, 2)) | |
>>> F = free_group("x_0 x_1")[0] | |
>>> gens = F.generators | |
>>> phi = homomorphism(F, H, F.generators, H.generators) | |
>>> rels_k = [gens[0]**2] # relators for presentation of K | |
>>> z= Permutation(1, 5) | |
>>> check, rels_h = H._verify(K, phi, z, 1) | |
>>> check | |
True | |
>>> rels = rels_k + rels_h | |
>>> G = FpGroup(F, rels) # presentation of H | |
>>> G.order() == H.order() | |
True | |
See also | |
======== | |
strong_presentation, presentation, stabilizer | |
''' | |
orbit = H.orbit(alpha) | |
beta = alpha^(z**-1) | |
K_beta = K.stabilizer(beta) | |
# orbit representatives of K_beta | |
gammas = [alpha, beta] | |
orbits = list({tuple(K_beta.orbit(o)) for o in orbit}) | |
orbit_reps = [orb[0] for orb in orbits] | |
for rep in orbit_reps: | |
if rep not in gammas: | |
gammas.append(rep) | |
# orbit transversal of K | |
betas = [alpha, beta] | |
transversal = {alpha: phi.invert(H.identity), beta: phi.invert(z**-1)} | |
for s, g in K.orbit_transversal(beta, pairs=True): | |
if s not in transversal: | |
transversal[s] = transversal[beta]*phi.invert(g) | |
union = K.orbit(alpha).union(K.orbit(beta)) | |
while (len(union) < len(orbit)): | |
for gamma in gammas: | |
if gamma in union: | |
r = gamma^z | |
if r not in union: | |
betas.append(r) | |
transversal[r] = transversal[gamma]*phi.invert(z) | |
for s, g in K.orbit_transversal(r, pairs=True): | |
if s not in transversal: | |
transversal[s] = transversal[r]*phi.invert(g) | |
union = union.union(K.orbit(r)) | |
break | |
# compute relators | |
rels = [] | |
for b in betas: | |
k_gens = K.stabilizer(b).generators | |
for y in k_gens: | |
new_rel = transversal[b] | |
gens = K.generator_product(y, original=True) | |
for g in gens[::-1]: | |
new_rel = new_rel*phi.invert(g) | |
new_rel = new_rel*transversal[b]**-1 | |
perm = phi(new_rel) | |
try: | |
gens = K.generator_product(perm, original=True) | |
except ValueError: | |
return False, perm | |
for g in gens: | |
new_rel = new_rel*phi.invert(g)**-1 | |
if new_rel not in rels: | |
rels.append(new_rel) | |
for gamma in gammas: | |
new_rel = transversal[gamma]*phi.invert(z)*transversal[gamma^z]**-1 | |
perm = phi(new_rel) | |
try: | |
gens = K.generator_product(perm, original=True) | |
except ValueError: | |
return False, perm | |
for g in gens: | |
new_rel = new_rel*phi.invert(g)**-1 | |
if new_rel not in rels: | |
rels.append(new_rel) | |
return True, rels | |
def strong_presentation(self): | |
''' | |
Return a strong finite presentation of group. The generators | |
of the returned group are in the same order as the strong | |
generators of group. | |
The algorithm is based on Sims' Verify algorithm described | |
in [1], Chapter 6. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import DihedralGroup | |
>>> P = DihedralGroup(4) | |
>>> G = P.strong_presentation() | |
>>> P.order() == G.order() | |
True | |
See Also | |
======== | |
presentation, _verify | |
''' | |
from sympy.combinatorics.fp_groups import (FpGroup, | |
simplify_presentation) | |
from sympy.combinatorics.free_groups import free_group | |
from sympy.combinatorics.homomorphisms import (block_homomorphism, | |
homomorphism, GroupHomomorphism) | |
strong_gens = self.strong_gens[:] | |
stabs = self.basic_stabilizers[:] | |
base = self.base[:] | |
# injection from a free group on len(strong_gens) | |
# generators into G | |
gen_syms = [('x_%d'%i) for i in range(len(strong_gens))] | |
F = free_group(', '.join(gen_syms))[0] | |
phi = homomorphism(F, self, F.generators, strong_gens) | |
H = PermutationGroup(self.identity) | |
while stabs: | |
alpha = base.pop() | |
K = H | |
H = stabs.pop() | |
new_gens = [g for g in H.generators if g not in K] | |
if K.order() == 1: | |
z = new_gens.pop() | |
rels = [F.generators[-1]**z.order()] | |
intermediate_gens = [z] | |
K = PermutationGroup(intermediate_gens) | |
# add generators one at a time building up from K to H | |
while new_gens: | |
z = new_gens.pop() | |
intermediate_gens = [z] + intermediate_gens | |
K_s = PermutationGroup(intermediate_gens) | |
orbit = K_s.orbit(alpha) | |
orbit_k = K.orbit(alpha) | |
# split into cases based on the orbit of K_s | |
if orbit_k == orbit: | |
if z in K: | |
rel = phi.invert(z) | |
perm = z | |
else: | |
t = K.orbit_rep(alpha, alpha^z) | |
rel = phi.invert(z)*phi.invert(t)**-1 | |
perm = z*t**-1 | |
for g in K.generator_product(perm, original=True): | |
rel = rel*phi.invert(g)**-1 | |
new_rels = [rel] | |
elif len(orbit_k) == 1: | |
# `success` is always true because `strong_gens` | |
# and `base` are already a verified BSGS. Later | |
# this could be changed to start with a randomly | |
# generated (potential) BSGS, and then new elements | |
# would have to be appended to it when `success` | |
# is false. | |
success, new_rels = K_s._verify(K, phi, z, alpha) | |
else: | |
# K.orbit(alpha) should be a block | |
# under the action of K_s on K_s.orbit(alpha) | |
check, block = K_s._block_verify(K, alpha) | |
if check: | |
# apply _verify to the action of K_s | |
# on the block system; for convenience, | |
# add the blocks as additional points | |
# that K_s should act on | |
t = block_homomorphism(K_s, block) | |
m = t.codomain.degree # number of blocks | |
d = K_s.degree | |
# conjugating with p will shift | |
# permutations in t.image() to | |
# higher numbers, e.g. | |
# p*(0 1)*p = (m m+1) | |
p = Permutation() | |
for i in range(m): | |
p *= Permutation(i, i+d) | |
t_img = t.images | |
# combine generators of K_s with their | |
# action on the block system | |
images = {g: g*p*t_img[g]*p for g in t_img} | |
for g in self.strong_gens[:-len(K_s.generators)]: | |
images[g] = g | |
K_s_act = PermutationGroup(list(images.values())) | |
f = GroupHomomorphism(self, K_s_act, images) | |
K_act = PermutationGroup([f(g) for g in K.generators]) | |
success, new_rels = K_s_act._verify(K_act, f.compose(phi), f(z), d) | |
for n in new_rels: | |
if n not in rels: | |
rels.append(n) | |
K = K_s | |
group = FpGroup(F, rels) | |
return simplify_presentation(group) | |
def presentation(self, eliminate_gens=True): | |
''' | |
Return an `FpGroup` presentation of the group. | |
The algorithm is described in [1], Chapter 6.1. | |
''' | |
from sympy.combinatorics.fp_groups import (FpGroup, | |
simplify_presentation) | |
from sympy.combinatorics.coset_table import CosetTable | |
from sympy.combinatorics.free_groups import free_group | |
from sympy.combinatorics.homomorphisms import homomorphism | |
if self._fp_presentation: | |
return self._fp_presentation | |
def _factor_group_by_rels(G, rels): | |
if isinstance(G, FpGroup): | |
rels.extend(G.relators) | |
return FpGroup(G.free_group, list(set(rels))) | |
return FpGroup(G, rels) | |
gens = self.generators | |
len_g = len(gens) | |
if len_g == 1: | |
order = gens[0].order() | |
# handle the trivial group | |
if order == 1: | |
return free_group([])[0] | |
F, x = free_group('x') | |
return FpGroup(F, [x**order]) | |
if self.order() > 20: | |
half_gens = self.generators[0:(len_g+1)//2] | |
else: | |
half_gens = [] | |
H = PermutationGroup(half_gens) | |
H_p = H.presentation() | |
len_h = len(H_p.generators) | |
C = self.coset_table(H) | |
n = len(C) # subgroup index | |
gen_syms = [('x_%d'%i) for i in range(len(gens))] | |
F = free_group(', '.join(gen_syms))[0] | |
# mapping generators of H_p to those of F | |
images = [F.generators[i] for i in range(len_h)] | |
R = homomorphism(H_p, F, H_p.generators, images, check=False) | |
# rewrite relators | |
rels = R(H_p.relators) | |
G_p = FpGroup(F, rels) | |
# injective homomorphism from G_p into self | |
T = homomorphism(G_p, self, G_p.generators, gens) | |
C_p = CosetTable(G_p, []) | |
C_p.table = [[None]*(2*len_g) for i in range(n)] | |
# initiate the coset transversal | |
transversal = [None]*n | |
transversal[0] = G_p.identity | |
# fill in the coset table as much as possible | |
for i in range(2*len_h): | |
C_p.table[0][i] = 0 | |
gamma = 1 | |
for alpha, x in product(range(n), range(2*len_g)): | |
beta = C[alpha][x] | |
if beta == gamma: | |
gen = G_p.generators[x//2]**((-1)**(x % 2)) | |
transversal[beta] = transversal[alpha]*gen | |
C_p.table[alpha][x] = beta | |
C_p.table[beta][x + (-1)**(x % 2)] = alpha | |
gamma += 1 | |
if gamma == n: | |
break | |
C_p.p = list(range(n)) | |
beta = x = 0 | |
while not C_p.is_complete(): | |
# find the first undefined entry | |
while C_p.table[beta][x] == C[beta][x]: | |
x = (x + 1) % (2*len_g) | |
if x == 0: | |
beta = (beta + 1) % n | |
# define a new relator | |
gen = G_p.generators[x//2]**((-1)**(x % 2)) | |
new_rel = transversal[beta]*gen*transversal[C[beta][x]]**-1 | |
perm = T(new_rel) | |
nxt = G_p.identity | |
for s in H.generator_product(perm, original=True): | |
nxt = nxt*T.invert(s)**-1 | |
new_rel = new_rel*nxt | |
# continue coset enumeration | |
G_p = _factor_group_by_rels(G_p, [new_rel]) | |
C_p.scan_and_fill(0, new_rel) | |
C_p = G_p.coset_enumeration([], strategy="coset_table", | |
draft=C_p, max_cosets=n, incomplete=True) | |
self._fp_presentation = simplify_presentation(G_p) | |
return self._fp_presentation | |
def polycyclic_group(self): | |
""" | |
Return the PolycyclicGroup instance with below parameters: | |
Explanation | |
=========== | |
* pc_sequence : Polycyclic sequence is formed by collecting all | |
the missing generators between the adjacent groups in the | |
derived series of given permutation group. | |
* pc_series : Polycyclic series is formed by adding all the missing | |
generators of ``der[i+1]`` in ``der[i]``, where ``der`` represents | |
the derived series. | |
* relative_order : A list, computed by the ratio of adjacent groups in | |
pc_series. | |
""" | |
from sympy.combinatorics.pc_groups import PolycyclicGroup | |
if not self.is_polycyclic: | |
raise ValueError("The group must be solvable") | |
der = self.derived_series() | |
pc_series = [] | |
pc_sequence = [] | |
relative_order = [] | |
pc_series.append(der[-1]) | |
der.reverse() | |
for i in range(len(der)-1): | |
H = der[i] | |
for g in der[i+1].generators: | |
if g not in H: | |
H = PermutationGroup([g] + H.generators) | |
pc_series.insert(0, H) | |
pc_sequence.insert(0, g) | |
G1 = pc_series[0].order() | |
G2 = pc_series[1].order() | |
relative_order.insert(0, G1 // G2) | |
return PolycyclicGroup(pc_sequence, pc_series, relative_order, collector=None) | |
def _orbit(degree, generators, alpha, action='tuples'): | |
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set. | |
Explanation | |
=========== | |
The time complexity of the algorithm used here is `O(|Orb|*r)` where | |
`|Orb|` is the size of the orbit and ``r`` is the number of generators of | |
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. | |
Here alpha can be a single point, or a list of points. | |
If alpha is a single point, the ordinary orbit is computed. | |
if alpha is a list of points, there are three available options: | |
'union' - computes the union of the orbits of the points in the list | |
'tuples' - computes the orbit of the list interpreted as an ordered | |
tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) ) | |
'sets' - computes the orbit of the list interpreted as a sets | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup | |
>>> from sympy.combinatorics.perm_groups import _orbit | |
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) | |
>>> G = PermutationGroup([a]) | |
>>> _orbit(G.degree, G.generators, 0) | |
{0, 1, 2} | |
>>> _orbit(G.degree, G.generators, [0, 4], 'union') | |
{0, 1, 2, 3, 4, 5, 6} | |
See Also | |
======== | |
orbit, orbit_transversal | |
""" | |
if not hasattr(alpha, '__getitem__'): | |
alpha = [alpha] | |
gens = [x._array_form for x in generators] | |
if len(alpha) == 1 or action == 'union': | |
orb = alpha | |
used = [False]*degree | |
for el in alpha: | |
used[el] = True | |
for b in orb: | |
for gen in gens: | |
temp = gen[b] | |
if used[temp] == False: | |
orb.append(temp) | |
used[temp] = True | |
return set(orb) | |
elif action == 'tuples': | |
alpha = tuple(alpha) | |
orb = [alpha] | |
used = {alpha} | |
for b in orb: | |
for gen in gens: | |
temp = tuple([gen[x] for x in b]) | |
if temp not in used: | |
orb.append(temp) | |
used.add(temp) | |
return set(orb) | |
elif action == 'sets': | |
alpha = frozenset(alpha) | |
orb = [alpha] | |
used = {alpha} | |
for b in orb: | |
for gen in gens: | |
temp = frozenset([gen[x] for x in b]) | |
if temp not in used: | |
orb.append(temp) | |
used.add(temp) | |
return {tuple(x) for x in orb} | |
def _orbits(degree, generators): | |
"""Compute the orbits of G. | |
If ``rep=False`` it returns a list of sets else it returns a list of | |
representatives of the orbits | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation | |
>>> from sympy.combinatorics.perm_groups import _orbits | |
>>> a = Permutation([0, 2, 1]) | |
>>> b = Permutation([1, 0, 2]) | |
>>> _orbits(a.size, [a, b]) | |
[{0, 1, 2}] | |
""" | |
orbs = [] | |
sorted_I = list(range(degree)) | |
I = set(sorted_I) | |
while I: | |
i = sorted_I[0] | |
orb = _orbit(degree, generators, i) | |
orbs.append(orb) | |
# remove all indices that are in this orbit | |
I -= orb | |
sorted_I = [i for i in sorted_I if i not in orb] | |
return orbs | |
def _orbit_transversal(degree, generators, alpha, pairs, af=False, slp=False): | |
r"""Computes a transversal for the orbit of ``alpha`` as a set. | |
Explanation | |
=========== | |
generators generators of the group ``G`` | |
For a permutation group ``G``, a transversal for the orbit | |
`Orb = \{g(\alpha) | g \in G\}` is a set | |
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`. | |
Note that there may be more than one possible transversal. | |
If ``pairs`` is set to ``True``, it returns the list of pairs | |
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79 | |
if ``af`` is ``True``, the transversal elements are given in | |
array form. | |
If `slp` is `True`, a dictionary `{beta: slp_beta}` is returned | |
for `\beta \in Orb` where `slp_beta` is a list of indices of the | |
generators in `generators` s.t. if `slp_beta = [i_1 \dots i_n]` | |
`g_\beta = generators[i_n] \times \dots \times generators[i_1]`. | |
Examples | |
======== | |
>>> from sympy.combinatorics.named_groups import DihedralGroup | |
>>> from sympy.combinatorics.perm_groups import _orbit_transversal | |
>>> G = DihedralGroup(6) | |
>>> _orbit_transversal(G.degree, G.generators, 0, False) | |
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)] | |
""" | |
tr = [(alpha, list(range(degree)))] | |
slp_dict = {alpha: []} | |
used = [False]*degree | |
used[alpha] = True | |
gens = [x._array_form for x in generators] | |
for x, px in tr: | |
px_slp = slp_dict[x] | |
for gen in gens: | |
temp = gen[x] | |
if used[temp] == False: | |
slp_dict[temp] = [gens.index(gen)] + px_slp | |
tr.append((temp, _af_rmul(gen, px))) | |
used[temp] = True | |
if pairs: | |
if not af: | |
tr = [(x, _af_new(y)) for x, y in tr] | |
if not slp: | |
return tr | |
return tr, slp_dict | |
if af: | |
tr = [y for _, y in tr] | |
if not slp: | |
return tr | |
return tr, slp_dict | |
tr = [_af_new(y) for _, y in tr] | |
if not slp: | |
return tr | |
return tr, slp_dict | |
def _stabilizer(degree, generators, alpha): | |
r"""Return the stabilizer subgroup of ``alpha``. | |
Explanation | |
=========== | |
The stabilizer of `\alpha` is the group `G_\alpha = | |
\{g \in G | g(\alpha) = \alpha\}`. | |
For a proof of correctness, see [1], p.79. | |
degree : degree of G | |
generators : generators of G | |
Examples | |
======== | |
>>> from sympy.combinatorics.perm_groups import _stabilizer | |
>>> from sympy.combinatorics.named_groups import DihedralGroup | |
>>> G = DihedralGroup(6) | |
>>> _stabilizer(G.degree, G.generators, 5) | |
[(5)(0 4)(1 3), (5)] | |
See Also | |
======== | |
orbit | |
""" | |
orb = [alpha] | |
table = {alpha: list(range(degree))} | |
table_inv = {alpha: list(range(degree))} | |
used = [False]*degree | |
used[alpha] = True | |
gens = [x._array_form for x in generators] | |
stab_gens = [] | |
for b in orb: | |
for gen in gens: | |
temp = gen[b] | |
if used[temp] is False: | |
gen_temp = _af_rmul(gen, table[b]) | |
orb.append(temp) | |
table[temp] = gen_temp | |
table_inv[temp] = _af_invert(gen_temp) | |
used[temp] = True | |
else: | |
schreier_gen = _af_rmuln(table_inv[temp], gen, table[b]) | |
if schreier_gen not in stab_gens: | |
stab_gens.append(schreier_gen) | |
return [_af_new(x) for x in stab_gens] | |
PermGroup = PermutationGroup | |
class SymmetricPermutationGroup(Basic): | |
""" | |
The class defining the lazy form of SymmetricGroup. | |
deg : int | |
""" | |
def __new__(cls, deg): | |
deg = _sympify(deg) | |
obj = Basic.__new__(cls, deg) | |
return obj | |
def __init__(self, *args, **kwargs): | |
self._deg = self.args[0] | |
self._order = None | |
def __contains__(self, i): | |
"""Return ``True`` if *i* is contained in SymmetricPermutationGroup. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, SymmetricPermutationGroup | |
>>> G = SymmetricPermutationGroup(4) | |
>>> Permutation(1, 2, 3) in G | |
True | |
""" | |
if not isinstance(i, Permutation): | |
raise TypeError("A SymmetricPermutationGroup contains only Permutations as " | |
"elements, not elements of type %s" % type(i)) | |
return i.size == self.degree | |
def order(self): | |
""" | |
Return the order of the SymmetricPermutationGroup. | |
Examples | |
======== | |
>>> from sympy.combinatorics import SymmetricPermutationGroup | |
>>> G = SymmetricPermutationGroup(4) | |
>>> G.order() | |
24 | |
""" | |
if self._order is not None: | |
return self._order | |
n = self._deg | |
self._order = factorial(n) | |
return self._order | |
def degree(self): | |
""" | |
Return the degree of the SymmetricPermutationGroup. | |
Examples | |
======== | |
>>> from sympy.combinatorics import SymmetricPermutationGroup | |
>>> G = SymmetricPermutationGroup(4) | |
>>> G.degree | |
4 | |
""" | |
return self._deg | |
def identity(self): | |
''' | |
Return the identity element of the SymmetricPermutationGroup. | |
Examples | |
======== | |
>>> from sympy.combinatorics import SymmetricPermutationGroup | |
>>> G = SymmetricPermutationGroup(4) | |
>>> G.identity() | |
(3) | |
''' | |
return _af_new(list(range(self._deg))) | |
class Coset(Basic): | |
"""A left coset of a permutation group with respect to an element. | |
Parameters | |
========== | |
g : Permutation | |
H : PermutationGroup | |
dir : "+" or "-", If not specified by default it will be "+" | |
here ``dir`` specified the type of coset "+" represent the | |
right coset and "-" represent the left coset. | |
G : PermutationGroup, optional | |
The group which contains *H* as its subgroup and *g* as its | |
element. | |
If not specified, it would automatically become a symmetric | |
group ``SymmetricPermutationGroup(g.size)`` and | |
``SymmetricPermutationGroup(H.degree)`` if ``g.size`` and ``H.degree`` | |
are matching.``SymmetricPermutationGroup`` is a lazy form of SymmetricGroup | |
used for representation purpose. | |
""" | |
def __new__(cls, g, H, G=None, dir="+"): | |
g = _sympify(g) | |
if not isinstance(g, Permutation): | |
raise NotImplementedError | |
H = _sympify(H) | |
if not isinstance(H, PermutationGroup): | |
raise NotImplementedError | |
if G is not None: | |
G = _sympify(G) | |
if not isinstance(G, (PermutationGroup, SymmetricPermutationGroup)): | |
raise NotImplementedError | |
if not H.is_subgroup(G): | |
raise ValueError("{} must be a subgroup of {}.".format(H, G)) | |
if g not in G: | |
raise ValueError("{} must be an element of {}.".format(g, G)) | |
else: | |
g_size = g.size | |
h_degree = H.degree | |
if g_size != h_degree: | |
raise ValueError( | |
"The size of the permutation {} and the degree of " | |
"the permutation group {} should be matching " | |
.format(g, H)) | |
G = SymmetricPermutationGroup(g.size) | |
if isinstance(dir, str): | |
dir = Symbol(dir) | |
elif not isinstance(dir, Symbol): | |
raise TypeError("dir must be of type basestring or " | |
"Symbol, not %s" % type(dir)) | |
if str(dir) not in ('+', '-'): | |
raise ValueError("dir must be one of '+' or '-' not %s" % dir) | |
obj = Basic.__new__(cls, g, H, G, dir) | |
return obj | |
def __init__(self, *args, **kwargs): | |
self._dir = self.args[3] | |
def is_left_coset(self): | |
""" | |
Check if the coset is left coset that is ``gH``. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset | |
>>> a = Permutation(1, 2) | |
>>> b = Permutation(0, 1) | |
>>> G = PermutationGroup([a, b]) | |
>>> cst = Coset(a, G, dir="-") | |
>>> cst.is_left_coset | |
True | |
""" | |
return str(self._dir) == '-' | |
def is_right_coset(self): | |
""" | |
Check if the coset is right coset that is ``Hg``. | |
Examples | |
======== | |
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset | |
>>> a = Permutation(1, 2) | |
>>> b = Permutation(0, 1) | |
>>> G = PermutationGroup([a, b]) | |
>>> cst = Coset(a, G, dir="+") | |
>>> cst.is_right_coset | |
True | |
""" | |
return str(self._dir) == '+' | |
def as_list(self): | |
""" | |
Return all the elements of coset in the form of list. | |
""" | |
g = self.args[0] | |
H = self.args[1] | |
cst = [] | |
if str(self._dir) == '+': | |
for h in H.elements: | |
cst.append(h*g) | |
else: | |
for h in H.elements: | |
cst.append(g*h) | |
return cst | |