Spaces:
Sleeping
Sleeping
""" | |
This module implements a method to find | |
Euler-Lagrange Equations for given Lagrangian. | |
""" | |
from itertools import combinations_with_replacement | |
from sympy.core.function import (Derivative, Function, diff) | |
from sympy.core.relational import Eq | |
from sympy.core.singleton import S | |
from sympy.core.symbol import Symbol | |
from sympy.core.sympify import sympify | |
from sympy.utilities.iterables import iterable | |
def euler_equations(L, funcs=(), vars=()): | |
r""" | |
Find the Euler-Lagrange equations [1]_ for a given Lagrangian. | |
Parameters | |
========== | |
L : Expr | |
The Lagrangian that should be a function of the functions listed | |
in the second argument and their derivatives. | |
For example, in the case of two functions $f(x,y)$, $g(x,y)$ and | |
two independent variables $x$, $y$ the Lagrangian has the form: | |
.. math:: L\left(f(x,y),g(x,y),\frac{\partial f(x,y)}{\partial x}, | |
\frac{\partial f(x,y)}{\partial y}, | |
\frac{\partial g(x,y)}{\partial x}, | |
\frac{\partial g(x,y)}{\partial y},x,y\right) | |
In many cases it is not necessary to provide anything, except the | |
Lagrangian, it will be auto-detected (and an error raised if this | |
cannot be done). | |
funcs : Function or an iterable of Functions | |
The functions that the Lagrangian depends on. The Euler equations | |
are differential equations for each of these functions. | |
vars : Symbol or an iterable of Symbols | |
The Symbols that are the independent variables of the functions. | |
Returns | |
======= | |
eqns : list of Eq | |
The list of differential equations, one for each function. | |
Examples | |
======== | |
>>> from sympy import euler_equations, Symbol, Function | |
>>> x = Function('x') | |
>>> t = Symbol('t') | |
>>> L = (x(t).diff(t))**2/2 - x(t)**2/2 | |
>>> euler_equations(L, x(t), t) | |
[Eq(-x(t) - Derivative(x(t), (t, 2)), 0)] | |
>>> u = Function('u') | |
>>> x = Symbol('x') | |
>>> L = (u(t, x).diff(t))**2/2 - (u(t, x).diff(x))**2/2 | |
>>> euler_equations(L, u(t, x), [t, x]) | |
[Eq(-Derivative(u(t, x), (t, 2)) + Derivative(u(t, x), (x, 2)), 0)] | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation | |
""" | |
funcs = tuple(funcs) if iterable(funcs) else (funcs,) | |
if not funcs: | |
funcs = tuple(L.atoms(Function)) | |
else: | |
for f in funcs: | |
if not isinstance(f, Function): | |
raise TypeError('Function expected, got: %s' % f) | |
vars = tuple(vars) if iterable(vars) else (vars,) | |
if not vars: | |
vars = funcs[0].args | |
else: | |
vars = tuple(sympify(var) for var in vars) | |
if not all(isinstance(v, Symbol) for v in vars): | |
raise TypeError('Variables are not symbols, got %s' % vars) | |
for f in funcs: | |
if not vars == f.args: | |
raise ValueError("Variables %s do not match args: %s" % (vars, f)) | |
order = max([len(d.variables) for d in L.atoms(Derivative) | |
if d.expr in funcs] + [0]) | |
eqns = [] | |
for f in funcs: | |
eq = diff(L, f) | |
for i in range(1, order + 1): | |
for p in combinations_with_replacement(vars, i): | |
eq = eq + S.NegativeOne**i*diff(L, diff(f, *p), *p) | |
new_eq = Eq(eq, 0) | |
if isinstance(new_eq, Eq): | |
eqns.append(new_eq) | |
return eqns | |