Spaces:
Sleeping
Sleeping
""" | |
Do NOT manually edit this file. | |
Instead, run ./bin/ask_update.py. | |
""" | |
from sympy.assumptions.ask import Q | |
from sympy.assumptions.cnf import Literal | |
from sympy.core.cache import cacheit | |
def get_all_known_facts(): | |
""" | |
Known facts between unary predicates as CNF clauses. | |
""" | |
return { | |
frozenset((Literal(Q.algebraic, False), Literal(Q.imaginary, True), Literal(Q.transcendental, False))), | |
frozenset((Literal(Q.algebraic, False), Literal(Q.negative, True), Literal(Q.transcendental, False))), | |
frozenset((Literal(Q.algebraic, False), Literal(Q.positive, True), Literal(Q.transcendental, False))), | |
frozenset((Literal(Q.algebraic, False), Literal(Q.rational, True))), | |
frozenset((Literal(Q.algebraic, False), Literal(Q.transcendental, False), Literal(Q.zero, True))), | |
frozenset((Literal(Q.algebraic, True), Literal(Q.finite, False))), | |
frozenset((Literal(Q.algebraic, True), Literal(Q.transcendental, True))), | |
frozenset((Literal(Q.antihermitian, False), Literal(Q.hermitian, False), Literal(Q.zero, True))), | |
frozenset((Literal(Q.antihermitian, False), Literal(Q.imaginary, True))), | |
frozenset((Literal(Q.commutative, False), Literal(Q.finite, True))), | |
frozenset((Literal(Q.commutative, False), Literal(Q.infinite, True))), | |
frozenset((Literal(Q.complex_elements, False), Literal(Q.real_elements, True))), | |
frozenset((Literal(Q.composite, False), Literal(Q.even, True), Literal(Q.positive, True), Literal(Q.prime, False))), | |
frozenset((Literal(Q.composite, True), Literal(Q.even, False), Literal(Q.odd, False))), | |
frozenset((Literal(Q.composite, True), Literal(Q.positive, False))), | |
frozenset((Literal(Q.composite, True), Literal(Q.prime, True))), | |
frozenset((Literal(Q.diagonal, False), Literal(Q.lower_triangular, True), Literal(Q.upper_triangular, True))), | |
frozenset((Literal(Q.diagonal, True), Literal(Q.lower_triangular, False))), | |
frozenset((Literal(Q.diagonal, True), Literal(Q.normal, False))), | |
frozenset((Literal(Q.diagonal, True), Literal(Q.symmetric, False))), | |
frozenset((Literal(Q.diagonal, True), Literal(Q.upper_triangular, False))), | |
frozenset((Literal(Q.even, False), Literal(Q.odd, False), Literal(Q.prime, True))), | |
frozenset((Literal(Q.even, False), Literal(Q.zero, True))), | |
frozenset((Literal(Q.even, True), Literal(Q.odd, True))), | |
frozenset((Literal(Q.even, True), Literal(Q.rational, False))), | |
frozenset((Literal(Q.finite, False), Literal(Q.transcendental, True))), | |
frozenset((Literal(Q.finite, True), Literal(Q.infinite, True))), | |
frozenset((Literal(Q.fullrank, False), Literal(Q.invertible, True))), | |
frozenset((Literal(Q.fullrank, True), Literal(Q.invertible, False), Literal(Q.square, True))), | |
frozenset((Literal(Q.hermitian, False), Literal(Q.negative, True))), | |
frozenset((Literal(Q.hermitian, False), Literal(Q.positive, True))), | |
frozenset((Literal(Q.hermitian, False), Literal(Q.zero, True))), | |
frozenset((Literal(Q.imaginary, True), Literal(Q.negative, True))), | |
frozenset((Literal(Q.imaginary, True), Literal(Q.positive, True))), | |
frozenset((Literal(Q.imaginary, True), Literal(Q.zero, True))), | |
frozenset((Literal(Q.infinite, False), Literal(Q.negative_infinite, True))), | |
frozenset((Literal(Q.infinite, False), Literal(Q.positive_infinite, True))), | |
frozenset((Literal(Q.integer_elements, True), Literal(Q.real_elements, False))), | |
frozenset((Literal(Q.invertible, False), Literal(Q.positive_definite, True))), | |
frozenset((Literal(Q.invertible, False), Literal(Q.singular, False))), | |
frozenset((Literal(Q.invertible, False), Literal(Q.unitary, True))), | |
frozenset((Literal(Q.invertible, True), Literal(Q.singular, True))), | |
frozenset((Literal(Q.invertible, True), Literal(Q.square, False))), | |
frozenset((Literal(Q.irrational, False), Literal(Q.negative, True), Literal(Q.rational, False))), | |
frozenset((Literal(Q.irrational, False), Literal(Q.positive, True), Literal(Q.rational, False))), | |
frozenset((Literal(Q.irrational, False), Literal(Q.rational, False), Literal(Q.zero, True))), | |
frozenset((Literal(Q.irrational, True), Literal(Q.negative, False), Literal(Q.positive, False), Literal(Q.zero, False))), | |
frozenset((Literal(Q.irrational, True), Literal(Q.rational, True))), | |
frozenset((Literal(Q.lower_triangular, False), Literal(Q.triangular, True), Literal(Q.upper_triangular, False))), | |
frozenset((Literal(Q.lower_triangular, True), Literal(Q.triangular, False))), | |
frozenset((Literal(Q.negative, False), Literal(Q.positive, False), Literal(Q.rational, True), Literal(Q.zero, False))), | |
frozenset((Literal(Q.negative, True), Literal(Q.negative_infinite, True))), | |
frozenset((Literal(Q.negative, True), Literal(Q.positive, True))), | |
frozenset((Literal(Q.negative, True), Literal(Q.positive_infinite, True))), | |
frozenset((Literal(Q.negative, True), Literal(Q.zero, True))), | |
frozenset((Literal(Q.negative_infinite, True), Literal(Q.positive, True))), | |
frozenset((Literal(Q.negative_infinite, True), Literal(Q.positive_infinite, True))), | |
frozenset((Literal(Q.negative_infinite, True), Literal(Q.zero, True))), | |
frozenset((Literal(Q.normal, False), Literal(Q.unitary, True))), | |
frozenset((Literal(Q.normal, True), Literal(Q.square, False))), | |
frozenset((Literal(Q.odd, True), Literal(Q.rational, False))), | |
frozenset((Literal(Q.orthogonal, False), Literal(Q.real_elements, True), Literal(Q.unitary, True))), | |
frozenset((Literal(Q.orthogonal, True), Literal(Q.positive_definite, False))), | |
frozenset((Literal(Q.orthogonal, True), Literal(Q.unitary, False))), | |
frozenset((Literal(Q.positive, False), Literal(Q.prime, True))), | |
frozenset((Literal(Q.positive, True), Literal(Q.positive_infinite, True))), | |
frozenset((Literal(Q.positive, True), Literal(Q.zero, True))), | |
frozenset((Literal(Q.positive_infinite, True), Literal(Q.zero, True))), | |
frozenset((Literal(Q.square, False), Literal(Q.symmetric, True))), | |
frozenset((Literal(Q.triangular, False), Literal(Q.unit_triangular, True))), | |
frozenset((Literal(Q.triangular, False), Literal(Q.upper_triangular, True))) | |
} | |
def get_all_known_matrix_facts(): | |
""" | |
Known facts between unary predicates for matrices as CNF clauses. | |
""" | |
return { | |
frozenset((Literal(Q.complex_elements, False), Literal(Q.real_elements, True))), | |
frozenset((Literal(Q.diagonal, False), Literal(Q.lower_triangular, True), Literal(Q.upper_triangular, True))), | |
frozenset((Literal(Q.diagonal, True), Literal(Q.lower_triangular, False))), | |
frozenset((Literal(Q.diagonal, True), Literal(Q.normal, False))), | |
frozenset((Literal(Q.diagonal, True), Literal(Q.symmetric, False))), | |
frozenset((Literal(Q.diagonal, True), Literal(Q.upper_triangular, False))), | |
frozenset((Literal(Q.fullrank, False), Literal(Q.invertible, True))), | |
frozenset((Literal(Q.fullrank, True), Literal(Q.invertible, False), Literal(Q.square, True))), | |
frozenset((Literal(Q.integer_elements, True), Literal(Q.real_elements, False))), | |
frozenset((Literal(Q.invertible, False), Literal(Q.positive_definite, True))), | |
frozenset((Literal(Q.invertible, False), Literal(Q.singular, False))), | |
frozenset((Literal(Q.invertible, False), Literal(Q.unitary, True))), | |
frozenset((Literal(Q.invertible, True), Literal(Q.singular, True))), | |
frozenset((Literal(Q.invertible, True), Literal(Q.square, False))), | |
frozenset((Literal(Q.lower_triangular, False), Literal(Q.triangular, True), Literal(Q.upper_triangular, False))), | |
frozenset((Literal(Q.lower_triangular, True), Literal(Q.triangular, False))), | |
frozenset((Literal(Q.normal, False), Literal(Q.unitary, True))), | |
frozenset((Literal(Q.normal, True), Literal(Q.square, False))), | |
frozenset((Literal(Q.orthogonal, False), Literal(Q.real_elements, True), Literal(Q.unitary, True))), | |
frozenset((Literal(Q.orthogonal, True), Literal(Q.positive_definite, False))), | |
frozenset((Literal(Q.orthogonal, True), Literal(Q.unitary, False))), | |
frozenset((Literal(Q.square, False), Literal(Q.symmetric, True))), | |
frozenset((Literal(Q.triangular, False), Literal(Q.unit_triangular, True))), | |
frozenset((Literal(Q.triangular, False), Literal(Q.upper_triangular, True))) | |
} | |
def get_all_known_number_facts(): | |
""" | |
Known facts between unary predicates for numbers as CNF clauses. | |
""" | |
return { | |
frozenset((Literal(Q.algebraic, False), Literal(Q.imaginary, True), Literal(Q.transcendental, False))), | |
frozenset((Literal(Q.algebraic, False), Literal(Q.negative, True), Literal(Q.transcendental, False))), | |
frozenset((Literal(Q.algebraic, False), Literal(Q.positive, True), Literal(Q.transcendental, False))), | |
frozenset((Literal(Q.algebraic, False), Literal(Q.rational, True))), | |
frozenset((Literal(Q.algebraic, False), Literal(Q.transcendental, False), Literal(Q.zero, True))), | |
frozenset((Literal(Q.algebraic, True), Literal(Q.finite, False))), | |
frozenset((Literal(Q.algebraic, True), Literal(Q.transcendental, True))), | |
frozenset((Literal(Q.antihermitian, False), Literal(Q.hermitian, False), Literal(Q.zero, True))), | |
frozenset((Literal(Q.antihermitian, False), Literal(Q.imaginary, True))), | |
frozenset((Literal(Q.commutative, False), Literal(Q.finite, True))), | |
frozenset((Literal(Q.commutative, False), Literal(Q.infinite, True))), | |
frozenset((Literal(Q.composite, False), Literal(Q.even, True), Literal(Q.positive, True), Literal(Q.prime, False))), | |
frozenset((Literal(Q.composite, True), Literal(Q.even, False), Literal(Q.odd, False))), | |
frozenset((Literal(Q.composite, True), Literal(Q.positive, False))), | |
frozenset((Literal(Q.composite, True), Literal(Q.prime, True))), | |
frozenset((Literal(Q.even, False), Literal(Q.odd, False), Literal(Q.prime, True))), | |
frozenset((Literal(Q.even, False), Literal(Q.zero, True))), | |
frozenset((Literal(Q.even, True), Literal(Q.odd, True))), | |
frozenset((Literal(Q.even, True), Literal(Q.rational, False))), | |
frozenset((Literal(Q.finite, False), Literal(Q.transcendental, True))), | |
frozenset((Literal(Q.finite, True), Literal(Q.infinite, True))), | |
frozenset((Literal(Q.hermitian, False), Literal(Q.negative, True))), | |
frozenset((Literal(Q.hermitian, False), Literal(Q.positive, True))), | |
frozenset((Literal(Q.hermitian, False), Literal(Q.zero, True))), | |
frozenset((Literal(Q.imaginary, True), Literal(Q.negative, True))), | |
frozenset((Literal(Q.imaginary, True), Literal(Q.positive, True))), | |
frozenset((Literal(Q.imaginary, True), Literal(Q.zero, True))), | |
frozenset((Literal(Q.infinite, False), Literal(Q.negative_infinite, True))), | |
frozenset((Literal(Q.infinite, False), Literal(Q.positive_infinite, True))), | |
frozenset((Literal(Q.irrational, False), Literal(Q.negative, True), Literal(Q.rational, False))), | |
frozenset((Literal(Q.irrational, False), Literal(Q.positive, True), Literal(Q.rational, False))), | |
frozenset((Literal(Q.irrational, False), Literal(Q.rational, False), Literal(Q.zero, True))), | |
frozenset((Literal(Q.irrational, True), Literal(Q.negative, False), Literal(Q.positive, False), Literal(Q.zero, False))), | |
frozenset((Literal(Q.irrational, True), Literal(Q.rational, True))), | |
frozenset((Literal(Q.negative, False), Literal(Q.positive, False), Literal(Q.rational, True), Literal(Q.zero, False))), | |
frozenset((Literal(Q.negative, True), Literal(Q.negative_infinite, True))), | |
frozenset((Literal(Q.negative, True), Literal(Q.positive, True))), | |
frozenset((Literal(Q.negative, True), Literal(Q.positive_infinite, True))), | |
frozenset((Literal(Q.negative, True), Literal(Q.zero, True))), | |
frozenset((Literal(Q.negative_infinite, True), Literal(Q.positive, True))), | |
frozenset((Literal(Q.negative_infinite, True), Literal(Q.positive_infinite, True))), | |
frozenset((Literal(Q.negative_infinite, True), Literal(Q.zero, True))), | |
frozenset((Literal(Q.odd, True), Literal(Q.rational, False))), | |
frozenset((Literal(Q.positive, False), Literal(Q.prime, True))), | |
frozenset((Literal(Q.positive, True), Literal(Q.positive_infinite, True))), | |
frozenset((Literal(Q.positive, True), Literal(Q.zero, True))), | |
frozenset((Literal(Q.positive_infinite, True), Literal(Q.zero, True))) | |
} | |
def get_known_facts_dict(): | |
""" | |
Logical relations between unary predicates as dictionary. | |
Each key is a predicate, and item is two groups of predicates. | |
First group contains the predicates which are implied by the key, and | |
second group contains the predicates which are rejected by the key. | |
""" | |
return { | |
Q.algebraic: (set([Q.algebraic, Q.commutative, Q.complex, Q.finite]), | |
set([Q.infinite, Q.negative_infinite, Q.positive_infinite, | |
Q.transcendental])), | |
Q.antihermitian: (set([Q.antihermitian]), set([])), | |
Q.commutative: (set([Q.commutative]), set([])), | |
Q.complex: (set([Q.commutative, Q.complex, Q.finite]), | |
set([Q.infinite, Q.negative_infinite, Q.positive_infinite])), | |
Q.complex_elements: (set([Q.complex_elements]), set([])), | |
Q.composite: (set([Q.algebraic, Q.commutative, Q.complex, Q.composite, | |
Q.extended_nonnegative, Q.extended_nonzero, | |
Q.extended_positive, Q.extended_real, Q.finite, Q.hermitian, | |
Q.integer, Q.nonnegative, Q.nonzero, Q.positive, Q.rational, | |
Q.real]), set([Q.extended_negative, Q.extended_nonpositive, | |
Q.imaginary, Q.infinite, Q.irrational, Q.negative, | |
Q.negative_infinite, Q.nonpositive, Q.positive_infinite, | |
Q.prime, Q.transcendental, Q.zero])), | |
Q.diagonal: (set([Q.diagonal, Q.lower_triangular, Q.normal, Q.square, | |
Q.symmetric, Q.triangular, Q.upper_triangular]), set([])), | |
Q.even: (set([Q.algebraic, Q.commutative, Q.complex, Q.even, | |
Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.rational, | |
Q.real]), set([Q.imaginary, Q.infinite, Q.irrational, | |
Q.negative_infinite, Q.odd, Q.positive_infinite, | |
Q.transcendental])), | |
Q.extended_negative: (set([Q.commutative, Q.extended_negative, | |
Q.extended_nonpositive, Q.extended_nonzero, Q.extended_real]), | |
set([Q.composite, Q.extended_nonnegative, Q.extended_positive, | |
Q.imaginary, Q.nonnegative, Q.positive, Q.positive_infinite, | |
Q.prime, Q.zero])), | |
Q.extended_nonnegative: (set([Q.commutative, Q.extended_nonnegative, | |
Q.extended_real]), set([Q.extended_negative, Q.imaginary, | |
Q.negative, Q.negative_infinite])), | |
Q.extended_nonpositive: (set([Q.commutative, Q.extended_nonpositive, | |
Q.extended_real]), set([Q.composite, Q.extended_positive, | |
Q.imaginary, Q.positive, Q.positive_infinite, Q.prime])), | |
Q.extended_nonzero: (set([Q.commutative, Q.extended_nonzero, | |
Q.extended_real]), set([Q.imaginary, Q.zero])), | |
Q.extended_positive: (set([Q.commutative, Q.extended_nonnegative, | |
Q.extended_nonzero, Q.extended_positive, Q.extended_real]), | |
set([Q.extended_negative, Q.extended_nonpositive, Q.imaginary, | |
Q.negative, Q.negative_infinite, Q.nonpositive, Q.zero])), | |
Q.extended_real: (set([Q.commutative, Q.extended_real]), | |
set([Q.imaginary])), | |
Q.finite: (set([Q.commutative, Q.finite]), set([Q.infinite, | |
Q.negative_infinite, Q.positive_infinite])), | |
Q.fullrank: (set([Q.fullrank]), set([])), | |
Q.hermitian: (set([Q.hermitian]), set([])), | |
Q.imaginary: (set([Q.antihermitian, Q.commutative, Q.complex, | |
Q.finite, Q.imaginary]), set([Q.composite, Q.even, | |
Q.extended_negative, Q.extended_nonnegative, | |
Q.extended_nonpositive, Q.extended_nonzero, | |
Q.extended_positive, Q.extended_real, Q.infinite, Q.integer, | |
Q.irrational, Q.negative, Q.negative_infinite, Q.nonnegative, | |
Q.nonpositive, Q.nonzero, Q.odd, Q.positive, | |
Q.positive_infinite, Q.prime, Q.rational, Q.real, Q.zero])), | |
Q.infinite: (set([Q.commutative, Q.infinite]), set([Q.algebraic, | |
Q.complex, Q.composite, Q.even, Q.finite, Q.imaginary, | |
Q.integer, Q.irrational, Q.negative, Q.nonnegative, | |
Q.nonpositive, Q.nonzero, Q.odd, Q.positive, Q.prime, | |
Q.rational, Q.real, Q.transcendental, Q.zero])), | |
Q.integer: (set([Q.algebraic, Q.commutative, Q.complex, | |
Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.rational, | |
Q.real]), set([Q.imaginary, Q.infinite, Q.irrational, | |
Q.negative_infinite, Q.positive_infinite, Q.transcendental])), | |
Q.integer_elements: (set([Q.complex_elements, Q.integer_elements, | |
Q.real_elements]), set([])), | |
Q.invertible: (set([Q.fullrank, Q.invertible, Q.square]), | |
set([Q.singular])), | |
Q.irrational: (set([Q.commutative, Q.complex, Q.extended_nonzero, | |
Q.extended_real, Q.finite, Q.hermitian, Q.irrational, | |
Q.nonzero, Q.real]), set([Q.composite, Q.even, Q.imaginary, | |
Q.infinite, Q.integer, Q.negative_infinite, Q.odd, | |
Q.positive_infinite, Q.prime, Q.rational, Q.zero])), | |
Q.is_true: (set([Q.is_true]), set([])), | |
Q.lower_triangular: (set([Q.lower_triangular, Q.triangular]), set([])), | |
Q.negative: (set([Q.commutative, Q.complex, Q.extended_negative, | |
Q.extended_nonpositive, Q.extended_nonzero, Q.extended_real, | |
Q.finite, Q.hermitian, Q.negative, Q.nonpositive, Q.nonzero, | |
Q.real]), set([Q.composite, Q.extended_nonnegative, | |
Q.extended_positive, Q.imaginary, Q.infinite, | |
Q.negative_infinite, Q.nonnegative, Q.positive, | |
Q.positive_infinite, Q.prime, Q.zero])), | |
Q.negative_infinite: (set([Q.commutative, Q.extended_negative, | |
Q.extended_nonpositive, Q.extended_nonzero, Q.extended_real, | |
Q.infinite, Q.negative_infinite]), set([Q.algebraic, | |
Q.complex, Q.composite, Q.even, Q.extended_nonnegative, | |
Q.extended_positive, Q.finite, Q.imaginary, Q.integer, | |
Q.irrational, Q.negative, Q.nonnegative, Q.nonpositive, | |
Q.nonzero, Q.odd, Q.positive, Q.positive_infinite, Q.prime, | |
Q.rational, Q.real, Q.transcendental, Q.zero])), | |
Q.noninteger: (set([Q.noninteger]), set([])), | |
Q.nonnegative: (set([Q.commutative, Q.complex, Q.extended_nonnegative, | |
Q.extended_real, Q.finite, Q.hermitian, Q.nonnegative, | |
Q.real]), set([Q.extended_negative, Q.imaginary, Q.infinite, | |
Q.negative, Q.negative_infinite, Q.positive_infinite])), | |
Q.nonpositive: (set([Q.commutative, Q.complex, Q.extended_nonpositive, | |
Q.extended_real, Q.finite, Q.hermitian, Q.nonpositive, | |
Q.real]), set([Q.composite, Q.extended_positive, Q.imaginary, | |
Q.infinite, Q.negative_infinite, Q.positive, | |
Q.positive_infinite, Q.prime])), | |
Q.nonzero: (set([Q.commutative, Q.complex, Q.extended_nonzero, | |
Q.extended_real, Q.finite, Q.hermitian, Q.nonzero, Q.real]), | |
set([Q.imaginary, Q.infinite, Q.negative_infinite, | |
Q.positive_infinite, Q.zero])), | |
Q.normal: (set([Q.normal, Q.square]), set([])), | |
Q.odd: (set([Q.algebraic, Q.commutative, Q.complex, | |
Q.extended_nonzero, Q.extended_real, Q.finite, Q.hermitian, | |
Q.integer, Q.nonzero, Q.odd, Q.rational, Q.real]), | |
set([Q.even, Q.imaginary, Q.infinite, Q.irrational, | |
Q.negative_infinite, Q.positive_infinite, Q.transcendental, | |
Q.zero])), | |
Q.orthogonal: (set([Q.fullrank, Q.invertible, Q.normal, Q.orthogonal, | |
Q.positive_definite, Q.square, Q.unitary]), set([Q.singular])), | |
Q.positive: (set([Q.commutative, Q.complex, Q.extended_nonnegative, | |
Q.extended_nonzero, Q.extended_positive, Q.extended_real, | |
Q.finite, Q.hermitian, Q.nonnegative, Q.nonzero, Q.positive, | |
Q.real]), set([Q.extended_negative, Q.extended_nonpositive, | |
Q.imaginary, Q.infinite, Q.negative, Q.negative_infinite, | |
Q.nonpositive, Q.positive_infinite, Q.zero])), | |
Q.positive_definite: (set([Q.fullrank, Q.invertible, | |
Q.positive_definite, Q.square]), set([Q.singular])), | |
Q.positive_infinite: (set([Q.commutative, Q.extended_nonnegative, | |
Q.extended_nonzero, Q.extended_positive, Q.extended_real, | |
Q.infinite, Q.positive_infinite]), set([Q.algebraic, | |
Q.complex, Q.composite, Q.even, Q.extended_negative, | |
Q.extended_nonpositive, Q.finite, Q.imaginary, Q.integer, | |
Q.irrational, Q.negative, Q.negative_infinite, Q.nonnegative, | |
Q.nonpositive, Q.nonzero, Q.odd, Q.positive, Q.prime, | |
Q.rational, Q.real, Q.transcendental, Q.zero])), | |
Q.prime: (set([Q.algebraic, Q.commutative, Q.complex, | |
Q.extended_nonnegative, Q.extended_nonzero, | |
Q.extended_positive, Q.extended_real, Q.finite, Q.hermitian, | |
Q.integer, Q.nonnegative, Q.nonzero, Q.positive, Q.prime, | |
Q.rational, Q.real]), set([Q.composite, Q.extended_negative, | |
Q.extended_nonpositive, Q.imaginary, Q.infinite, Q.irrational, | |
Q.negative, Q.negative_infinite, Q.nonpositive, | |
Q.positive_infinite, Q.transcendental, Q.zero])), | |
Q.rational: (set([Q.algebraic, Q.commutative, Q.complex, | |
Q.extended_real, Q.finite, Q.hermitian, Q.rational, Q.real]), | |
set([Q.imaginary, Q.infinite, Q.irrational, | |
Q.negative_infinite, Q.positive_infinite, Q.transcendental])), | |
Q.real: (set([Q.commutative, Q.complex, Q.extended_real, Q.finite, | |
Q.hermitian, Q.real]), set([Q.imaginary, Q.infinite, | |
Q.negative_infinite, Q.positive_infinite])), | |
Q.real_elements: (set([Q.complex_elements, Q.real_elements]), set([])), | |
Q.singular: (set([Q.singular]), set([Q.invertible, Q.orthogonal, | |
Q.positive_definite, Q.unitary])), | |
Q.square: (set([Q.square]), set([])), | |
Q.symmetric: (set([Q.square, Q.symmetric]), set([])), | |
Q.transcendental: (set([Q.commutative, Q.complex, Q.finite, | |
Q.transcendental]), set([Q.algebraic, Q.composite, Q.even, | |
Q.infinite, Q.integer, Q.negative_infinite, Q.odd, | |
Q.positive_infinite, Q.prime, Q.rational, Q.zero])), | |
Q.triangular: (set([Q.triangular]), set([])), | |
Q.unit_triangular: (set([Q.triangular, Q.unit_triangular]), set([])), | |
Q.unitary: (set([Q.fullrank, Q.invertible, Q.normal, Q.square, | |
Q.unitary]), set([Q.singular])), | |
Q.upper_triangular: (set([Q.triangular, Q.upper_triangular]), set([])), | |
Q.zero: (set([Q.algebraic, Q.commutative, Q.complex, Q.even, | |
Q.extended_nonnegative, Q.extended_nonpositive, | |
Q.extended_real, Q.finite, Q.hermitian, Q.integer, | |
Q.nonnegative, Q.nonpositive, Q.rational, Q.real, Q.zero]), | |
set([Q.composite, Q.extended_negative, Q.extended_nonzero, | |
Q.extended_positive, Q.imaginary, Q.infinite, Q.irrational, | |
Q.negative, Q.negative_infinite, Q.nonzero, Q.odd, Q.positive, | |
Q.positive_infinite, Q.prime, Q.transcendental])), | |
} | |