Spaces:
Sleeping
Sleeping
File size: 15,272 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
# Copyright (c) ONNX Project Contributors
# SPDX-License-Identifier: Apache-2.0
from typing import List, Optional, Union
import numpy as np
from onnx import (
AttributeProto,
FunctionProto,
GraphProto,
ModelProto,
NodeProto,
SparseTensorProto,
TensorProto,
)
from onnx.helper import (
make_attribute,
make_function,
make_graph,
make_model,
make_node,
make_tensor,
make_tensor_value_info,
set_model_props,
tensor_dtype_to_np_dtype,
)
from onnx.numpy_helper import from_array
def _replace_constant(
node: NodeProto, threshold: int, value_constant_of_shape: float
) -> List[NodeProto]:
"""Replaces a Constant node with a large tensor (with more than threshold elements) by a sequence of nodes that produces a dummy constant of same shape as original tensor."""
if node.op_type != "Constant":
raise TypeError(f"Node type must be 'Constant' not {node.op_type!r}.")
for att in node.attribute:
if att.name == "sparse_value":
raise NotImplementedError(
f"This feature is not yet implemented for a sparse constant "
f"(node name={node.name!r})."
)
if att.name == "value":
value = att.t
new_name = f"{value.name}__SHAPE"
dims = value.dims
size = np.prod(dims)
if size <= threshold:
return [node]
init = from_array(np.array(list(dims), dtype=np.int64), name=new_name)
dtype = tensor_dtype_to_np_dtype(value.data_type)
node_shape = make_node(
"Constant",
[],
[new_name],
value=init,
)
new_node = make_node(
"ConstantOfShape",
[new_name],
node.output,
value=from_array(np.array([value_constant_of_shape], dtype=dtype)),
)
return [node_shape, new_node]
raise NotImplementedError(
f"Replacement of constant with attribute {att.name!r}"
)
return [node]
def _replace_constant_of_shape_with_range(
onx: Union[GraphProto, FunctionProto]
) -> Union[GraphProto, FunctionProto]:
"""Replaces all *ConstantOfShape* by node *Range* to avoid constant tensors.
The function is not recursive. The recursivity is done by
*replace_initializer_by_constant_of_shape*.
"""
if isinstance(onx, GraphProto):
nodes = list(onx.node)
elif isinstance(onx, FunctionProto):
nodes = list(onx.node)
else:
raise TypeError(f"Not implemented for type {type(onx)}.")
existing_names = set()
for node in nodes:
existing_names |= set(node.input)
existing_names |= set(node.output)
def _find_name(prefix):
if prefix not in existing_names:
existing_names.add(prefix)
return prefix
i = 2
while True:
name = f"{prefix}_{i}"
if name not in existing_names:
existing_names.add(name)
return name
i += 1
# The function should never go through that line.
raise RuntimeError("The function should never go through that line.")
cst0 = make_node("Constant", [], [_find_name("zero")], value_int=0)
cst1 = make_node("Constant", [], [_find_name("one")], value_int=1)
update = {}
for inode, node in enumerate(nodes):
if node.op_type != "ConstantOfShape":
continue
shape = node.input[0]
n = make_node("ReduceProd", [shape], [_find_name(f"{shape}_N")])
a = make_node(
"Range",
[cst0.output[0], n.output[0], cst1.output[0]],
[_find_name(f"{shape}_RANGE")],
)
if len(node.attribute) == 1:
to = node.attribute[0].t.data_type
else:
to = TensorProto.FLOAT
ac = make_node("Cast", [a.output[0]], [_find_name(f"{shape}_RANGEf")], to=to)
cl = make_node("Cast", [n.output[0]], [_find_name(f"{shape}_Nf")], to=to)
d = make_node(
"Div", [ac.output[0], cl.output[0]], [_find_name(f"{shape}_FLAT")]
)
resh = make_node("Reshape", [d.output[0], shape], node.output)
update[inode] = [n, a, ac, cl, d, resh]
for inode, up in sorted(update.items(), reverse=True):
nodes[inode : inode + 1] = up
nodes.insert(0, cst0)
nodes.insert(1, cst1)
if isinstance(onx, GraphProto):
graph = make_graph(
nodes,
onx.name,
onx.input,
onx.output,
initializer=onx.initializer,
sparse_initializer=onx.sparse_initializer,
)
return graph
if isinstance(onx, FunctionProto):
new_onx = make_function(
onx.domain,
onx.name,
onx.input,
onx.output,
nodes,
opset_imports=onx.opset_import,
)
return new_onx
raise TypeError(f"Not implemented for type {type(onx)}.")
def _replace_constant_of_shape_value(
onx: Union[GraphProto, FunctionProto], value_constant_of_shape: float
) -> Union[GraphProto, FunctionProto]:
"""Replaces all fill value of all nodes *ConstantOfShape*."""
if isinstance(onx, GraphProto):
nodes = list(onx.node)
elif isinstance(onx, FunctionProto):
nodes = list(onx.node)
else:
raise TypeError(f"Not implemented for type {type(onx)}.")
existing_names = set()
for node in nodes:
existing_names |= set(node.input)
existing_names |= set(node.output)
update = {}
for inode, node in enumerate(nodes):
if node.op_type != "ConstantOfShape":
continue
tensor = node.attribute[0].t
new_tensor = make_tensor(
tensor.name, tensor.data_type, [1], [value_constant_of_shape]
)
new_node = make_node("ConstantOfShape", node.input, node.output)
att = make_attribute(node.attribute[0].name, value=new_tensor)
new_node.attribute.append(att)
update[inode] = new_node
for inode, up in update.items():
nodes[inode] = up
if isinstance(onx, GraphProto):
graph = make_graph(
nodes,
onx.name,
onx.input,
onx.output,
initializer=onx.initializer,
sparse_initializer=onx.sparse_initializer,
)
return graph
if isinstance(onx, FunctionProto):
new_onx = make_function(
onx.domain,
onx.name,
onx.input,
onx.output,
nodes,
opset_imports=onx.opset_import,
)
return new_onx
raise TypeError(f"Not implemented for type {type(onx)}.")
def replace_initializer_by_constant_of_shape( # noqa: PLR0911
onx: Union[FunctionProto, GraphProto, ModelProto],
threshold: int = 128,
ir_version: Optional[int] = None,
use_range: bool = False,
value_constant_of_shape: float = 0.5,
):
"""Replace initializers or constant node by nodes *ConstantOfShape* to reduce the size.
This reduce the cost to write a unit test about a specific graph structure.
Args:
onx: ModelProto
threshold: every initializer under this threshold is not
impacted
ir_version: initializer must be specified as input for
`ir_version <= 3`, this must be specified if onx is
:class:`FunctionProto` or :class:`GraphProto`
use_range: if uses operator *Range* instead of *ConstantOfShape*
to avoid constant tensors
value_constant_of_shape: value to use as a value for all nodes
*ConstantOfShape*, a high value may produce nan or inf
predictions
Returns:
onx, modified ModelProto
The function is designed so that the function can be reapplied on a modified model
and either replace *ConstantOfShape* with *Range* operators, either replace the fill value
for every *ConstantOfShape*.
"""
if isinstance(onx, FunctionProto):
modified = False
new_nodes: List[NodeProto] = []
for node in onx.node:
if node.op_type == "Constant":
cst_nodes = _replace_constant(node, threshold, value_constant_of_shape)
if len(cst_nodes) == 2: # noqa: PLR2004
modified = True
new_nodes.extend(cst_nodes)
continue
new_nodes.append(node)
if modified:
new_onx = make_function(
onx.domain,
onx.name,
onx.input,
onx.output,
new_nodes,
opset_imports=onx.opset_import,
)
if use_range:
return _replace_constant_of_shape_with_range(new_onx)
if value_constant_of_shape != 1:
return _replace_constant_of_shape_value(
new_onx, value_constant_of_shape
)
return new_onx
if use_range:
return _replace_constant_of_shape_with_range(onx)
if value_constant_of_shape != 1:
return _replace_constant_of_shape_value(onx, value_constant_of_shape)
return onx
if isinstance(onx, ModelProto):
new_graph = replace_initializer_by_constant_of_shape(
onx.graph,
ir_version=ir_version or onx.ir_version,
threshold=threshold,
use_range=use_range,
value_constant_of_shape=value_constant_of_shape,
)
new_functions = [
replace_initializer_by_constant_of_shape(
f,
threshold=threshold,
ir_version=ir_version or onx.ir_version,
use_range=use_range,
value_constant_of_shape=value_constant_of_shape,
)
for f in onx.functions
]
model = make_model(
new_graph,
functions=new_functions,
producer_name=onx.producer_name,
producer_version=onx.producer_version,
ir_version=ir_version or onx.ir_version,
doc_string=onx.doc_string,
domain=onx.domain,
model_version=onx.model_version,
)
if len(onx.metadata_props) > 0: # pragma: no cover
values = {p.key: p.value for p in onx.metadata_props}
set_model_props(model, values)
del model.opset_import[:]
for oimp in onx.opset_import:
op_set = model.opset_import.add()
if oimp.domain == "" and oimp.version < 11 and use_range: # noqa: PLR2004
raise RuntimeError(
f"Range was introduced in opset 11 but opset is {oimp.version}."
)
if oimp.domain == "" and oimp.version < 9: # noqa: PLR2004
raise RuntimeError(
f"ConstantOfShape was introduced in "
f"opset 9 but opset is {oimp.version}."
)
op_set.domain = oimp.domain
op_set.version = oimp.version
return model
if not isinstance(onx, GraphProto):
raise TypeError(f"onx should be a GraphProto at this stage not {type(onx)}.")
n_modifications = 0
new_nodes = []
removed = set()
additional_inputs = []
new_inits: List[TensorProto] = []
for init in onx.initializer:
dims = tuple(init.dims)
size = np.prod(dims)
if size <= threshold:
new_inits.append(init)
continue
n_modifications += 1
new_name = f"{init.name}__SHAPE"
new_inits.append(
from_array(np.array(list(dims), dtype=np.int64), name=new_name)
)
dtype = tensor_dtype_to_np_dtype(init.data_type)
node = make_node(
"ConstantOfShape",
[new_name],
[init.name],
value=from_array(np.array([0.5], dtype=dtype)),
)
new_nodes.append(node)
removed.add(init.name)
if ir_version is not None and ir_version <= 3: # noqa: PLR2004
additional_inputs.append(
make_tensor_value_info(new_name, TensorProto.INT64, [len(dims)])
)
new_sparse_inits: List[SparseTensorProto] = []
for sp_init in onx.sparse_initializer:
dims = tuple(sp_init.dims)
size = np.prod(dims)
if size <= threshold:
new_sparse_inits.append(sp_init)
continue
raise NotImplementedError(
f"This feature is not yet implemented for a sparse initializer "
f"(indices.name={sp_init.indices.name!r}, "
f"values.name={sp_init.values.name!r})."
)
for node in onx.node:
if node.op_type == "Constant":
shape_nodes = _replace_constant(node, threshold, value_constant_of_shape)
if len(shape_nodes) == 2: # noqa: PLR2004
n_modifications += 1
new_nodes.extend(shape_nodes)
continue
modified = False
atts = []
for att in node.attribute:
if (
att.type == AttributeProto.GRAPH
and hasattr(att, "g")
and att.g is not None
):
g = replace_initializer_by_constant_of_shape(
att.g,
threshold=threshold,
ir_version=ir_version,
use_range=use_range,
value_constant_of_shape=value_constant_of_shape,
)
if id(g) != id(att.g):
modified = True
att = make_attribute(att.name, g) # noqa: PLW2901
atts.append(att)
if modified:
new_node = make_node(node.op_type, node.input, node.output)
new_node.attribute.extend(atts)
new_nodes.append(new_node)
n_modifications += 1
else:
new_nodes.append(node)
if n_modifications > 0:
graph = make_graph(
new_nodes,
onx.name,
[i for i in onx.input if i.name not in removed] + additional_inputs,
onx.output,
initializer=new_inits,
sparse_initializer=new_sparse_inits,
)
if use_range:
return _replace_constant_of_shape_with_range(graph)
if value_constant_of_shape != 1:
return _replace_constant_of_shape_value(graph, value_constant_of_shape)
return graph
if use_range:
return _replace_constant_of_shape_with_range(onx)
if value_constant_of_shape != 1:
return _replace_constant_of_shape_value(onx, value_constant_of_shape)
return onx
|