File size: 16,872 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# Copyright (c) ONNX Project Contributors

# SPDX-License-Identifier: Apache-2.0
import contextlib
import unittest
from typing import List, Sequence

import parameterized

import onnx
from onnx import defs


class TestSchema(unittest.TestCase):
    def test_get_schema(self) -> None:
        defs.get_schema("Relu")

    def test_typecheck(self) -> None:
        defs.get_schema("Conv")

    def test_attr_default_value(self) -> None:
        v = defs.get_schema("BatchNormalization").attributes["epsilon"].default_value
        self.assertEqual(type(v), onnx.AttributeProto)
        self.assertEqual(v.type, onnx.AttributeProto.FLOAT)

    def test_function_body(self) -> None:
        self.assertEqual(
            type(defs.get_schema("Selu").function_body), onnx.FunctionProto
        )


class TestOpSchema(unittest.TestCase):
    def test_init(self):
        # Test that the constructor creates an OpSchema object
        schema = defs.OpSchema("test_op", "test_domain", 1)
        self.assertIsInstance(schema, defs.OpSchema)

    def test_init_with_inputs(self) -> None:
        op_schema = defs.OpSchema(
            "test_op",
            "test_domain",
            1,
            inputs=[defs.OpSchema.FormalParameter("input1", "T")],
            type_constraints=[("T", ["tensor(int64)"], "")],
        )
        self.assertEqual(op_schema.name, "test_op")
        self.assertEqual(op_schema.domain, "test_domain")
        self.assertEqual(op_schema.since_version, 1)
        self.assertEqual(len(op_schema.inputs), 1)
        self.assertEqual(op_schema.inputs[0].name, "input1")
        self.assertEqual(op_schema.inputs[0].type_str, "T")
        self.assertEqual(len(op_schema.type_constraints), 1)
        self.assertEqual(op_schema.type_constraints[0].type_param_str, "T")
        self.assertEqual(
            op_schema.type_constraints[0].allowed_type_strs, ["tensor(int64)"]
        )

    def test_init_creates_multi_input_output_schema(self) -> None:
        op_schema = defs.OpSchema(
            "test_op",
            "test_domain",
            1,
            inputs=[
                defs.OpSchema.FormalParameter("input1", "T"),
                defs.OpSchema.FormalParameter("input2", "T"),
            ],
            outputs=[
                defs.OpSchema.FormalParameter("output1", "T"),
                defs.OpSchema.FormalParameter("output2", "T"),
            ],
            type_constraints=[("T", ["tensor(int64)"], "")],
            attributes=[
                defs.OpSchema.Attribute(
                    "attr1", defs.OpSchema.AttrType.INTS, "attr1 description"
                )
            ],
        )
        self.assertEqual(len(op_schema.inputs), 2)
        self.assertEqual(op_schema.inputs[0].name, "input1")
        self.assertEqual(op_schema.inputs[0].type_str, "T")
        self.assertEqual(op_schema.inputs[1].name, "input2")
        self.assertEqual(op_schema.inputs[1].type_str, "T")
        self.assertEqual(len(op_schema.outputs), 2)
        self.assertEqual(op_schema.outputs[0].name, "output1")
        self.assertEqual(op_schema.outputs[0].type_str, "T")
        self.assertEqual(op_schema.outputs[1].name, "output2")
        self.assertEqual(op_schema.outputs[1].type_str, "T")
        self.assertEqual(len(op_schema.type_constraints), 1)
        self.assertEqual(op_schema.type_constraints[0].type_param_str, "T")
        self.assertEqual(
            op_schema.type_constraints[0].allowed_type_strs, ["tensor(int64)"]
        )
        self.assertEqual(len(op_schema.attributes), 1)
        self.assertEqual(op_schema.attributes["attr1"].name, "attr1")
        self.assertEqual(
            op_schema.attributes["attr1"].type, defs.OpSchema.AttrType.INTS
        )
        self.assertEqual(op_schema.attributes["attr1"].description, "attr1 description")

    def test_init_without_optional_arguments(self) -> None:
        op_schema = defs.OpSchema("test_op", "test_domain", 1)
        self.assertEqual(op_schema.name, "test_op")
        self.assertEqual(op_schema.domain, "test_domain")
        self.assertEqual(op_schema.since_version, 1)
        self.assertEqual(len(op_schema.inputs), 0)
        self.assertEqual(len(op_schema.outputs), 0)
        self.assertEqual(len(op_schema.type_constraints), 0)

    def test_name(self):
        # Test that the name parameter is required and is a string
        with self.assertRaises(TypeError):
            defs.OpSchema(domain="test_domain", since_version=1)  # type: ignore
        with self.assertRaises(TypeError):
            defs.OpSchema(123, "test_domain", 1)  # type: ignore

        schema = defs.OpSchema("test_op", "test_domain", 1)
        self.assertEqual(schema.name, "test_op")

    def test_domain(self):
        # Test that the domain parameter is required and is a string
        with self.assertRaises(TypeError):
            defs.OpSchema(name="test_op", since_version=1)  # type: ignore
        with self.assertRaises(TypeError):
            defs.OpSchema("test_op", 123, 1)  # type: ignore

        schema = defs.OpSchema("test_op", "test_domain", 1)
        self.assertEqual(schema.domain, "test_domain")

    def test_since_version(self):
        # Test that the since_version parameter is required and is an integer
        with self.assertRaises(TypeError):
            defs.OpSchema("test_op", "test_domain")  # type: ignore

        schema = defs.OpSchema("test_op", "test_domain", 1)
        self.assertEqual(schema.since_version, 1)

    def test_doc(self):
        schema = defs.OpSchema("test_op", "test_domain", 1, doc="test_doc")
        self.assertEqual(schema.doc, "test_doc")

    def test_inputs(self):
        # Test that the inputs parameter is optional and is a sequence of FormalParameter tuples
        inputs = [
            defs.OpSchema.FormalParameter(
                name="input1", type_str="T", description="The first input."
            )
        ]
        schema = defs.OpSchema(
            "test_op",
            "test_domain",
            1,
            inputs=inputs,
            type_constraints=[("T", ["tensor(int64)"], "")],
        )

        self.assertEqual(len(schema.inputs), 1)
        self.assertEqual(schema.inputs[0].name, "input1")
        self.assertEqual(schema.inputs[0].type_str, "T")
        self.assertEqual(schema.inputs[0].description, "The first input.")

    def test_outputs(self):
        # Test that the outputs parameter is optional and is a sequence of FormalParameter tuples
        outputs = [
            defs.OpSchema.FormalParameter(
                name="output1", type_str="T", description="The first output."
            )
        ]

        schema = defs.OpSchema(
            "test_op",
            "test_domain",
            1,
            outputs=outputs,
            type_constraints=[("T", ["tensor(int64)"], "")],
        )
        self.assertEqual(len(schema.outputs), 1)
        self.assertEqual(schema.outputs[0].name, "output1")
        self.assertEqual(schema.outputs[0].type_str, "T")
        self.assertEqual(schema.outputs[0].description, "The first output.")


class TestFormalParameter(unittest.TestCase):
    def test_init(self):
        name = "input1"
        type_str = "tensor(float)"
        description = "The first input."
        param_option = defs.OpSchema.FormalParameterOption.Single
        is_homogeneous = True
        min_arity = 1
        differentiation_category = defs.OpSchema.DifferentiationCategory.Unknown
        formal_parameter = defs.OpSchema.FormalParameter(
            name,
            type_str,
            description,
            param_option=param_option,
            is_homogeneous=is_homogeneous,
            min_arity=min_arity,
            differentiation_category=differentiation_category,
        )

        self.assertEqual(formal_parameter.name, name)
        self.assertEqual(formal_parameter.type_str, type_str)
        self.assertEqual(formal_parameter.description, description)
        self.assertEqual(formal_parameter.option, param_option)
        self.assertEqual(formal_parameter.is_homogeneous, is_homogeneous)
        self.assertEqual(formal_parameter.min_arity, min_arity)
        self.assertEqual(
            formal_parameter.differentiation_category, differentiation_category
        )


class TestTypeConstraintParam(unittest.TestCase):
    @parameterized.parameterized.expand(

        [

            ("single_type", "T", ["tensor(float)"], "Test description"),

            (

                "double_types",

                "T",

                ["tensor(float)", "tensor(int64)"],

                "Test description",

            ),

            ("tuple", "T", ("tensor(float)", "tensor(int64)"), "Test description"),

        ]

    )
    def test_init(

        self,

        _: str,

        type_param_str: str,

        allowed_types: Sequence[str],

        description: str,

    ) -> None:
        type_constraint = defs.OpSchema.TypeConstraintParam(
            type_param_str, allowed_types, description
        )
        self.assertEqual(type_constraint.description, description)
        self.assertEqual(type_constraint.allowed_type_strs, list(allowed_types))
        self.assertEqual(type_constraint.type_param_str, type_param_str)


class TestAttribute(unittest.TestCase):
    def test_init(self):
        name = "test_attr"
        type_ = defs.OpSchema.AttrType.STRINGS
        description = "Test attribute"
        attribute = defs.OpSchema.Attribute(name, type_, description)

        self.assertEqual(attribute.name, name)
        self.assertEqual(attribute.type, type_)
        self.assertEqual(attribute.description, description)

    def test_init_with_default_value(self):
        default_value = (
            defs.get_schema("BatchNormalization").attributes["epsilon"].default_value
        )
        self.assertIsInstance(default_value, onnx.AttributeProto)
        attribute = defs.OpSchema.Attribute("attr1", default_value, "attr1 description")
        self.assertEqual(default_value, attribute.default_value)
        self.assertEqual("attr1", attribute.name)
        self.assertEqual("attr1 description", attribute.description)


@parameterized.parameterized_class(

    [

        # register to exist domain

        {

            "op_type": "CustomOp",

            "op_version": 5,

            "op_domain": "",

            "trap_op_version": [1, 2, 6, 7],

        },

        # register to new domain

        {

            "op_type": "CustomOp",

            "op_version": 5,

            "op_domain": "test",

            "trap_op_version": [1, 2, 6, 7],

        },

    ]

)
class TestOpSchemaRegister(unittest.TestCase):
    op_type: str
    op_version: int
    op_domain: str
    # register some fake schema to check behavior
    trap_op_version: List[int]

    def setUp(self) -> None:
        # Ensure the schema is unregistered
        self.assertFalse(onnx.defs.has(self.op_type, self.op_domain))

    def tearDown(self) -> None:
        # Clean up the registered schema
        for version in [*self.trap_op_version, self.op_version]:
            with contextlib.suppress(onnx.defs.SchemaError):
                onnx.defs.deregister_schema(self.op_type, version, self.op_domain)

    def test_register_multi_schema(self):
        for version in [*self.trap_op_version, self.op_version]:
            op_schema = defs.OpSchema(
                self.op_type,
                self.op_domain,
                version,
            )
            onnx.defs.register_schema(op_schema)
            self.assertTrue(onnx.defs.has(self.op_type, version, self.op_domain))
        for version in [*self.trap_op_version, self.op_version]:
            # Also make sure the `op_schema` is accessible after register
            registered_op = onnx.defs.get_schema(
                op_schema.name, version, op_schema.domain
            )
            op_schema = defs.OpSchema(
                self.op_type,
                self.op_domain,
                version,
            )
            self.assertEqual(str(registered_op), str(op_schema))

    def test_using_the_specified_version_in_onnx_check(self):
        input = f"""

            <

                ir_version: 7,

                opset_import: [

                    "{self.op_domain}" : {self.op_version}

                ]

            >

            agraph (float[N, 128] X, int32 Y) => (float[N] Z)

            {{

                Z = {self.op_domain}.{self.op_type}<attr1=[1,2]>(X, Y)

            }}

           """
        model = onnx.parser.parse_model(input)
        op_schema = defs.OpSchema(
            self.op_type,
            self.op_domain,
            self.op_version,
            inputs=[
                defs.OpSchema.FormalParameter("input1", "T"),
                defs.OpSchema.FormalParameter("input2", "int32"),
            ],
            outputs=[
                defs.OpSchema.FormalParameter("output1", "T"),
            ],
            type_constraints=[("T", ["tensor(float)"], "")],
            attributes=[
                defs.OpSchema.Attribute(
                    "attr1", defs.OpSchema.AttrType.INTS, "attr1 description"
                )
            ],
        )
        with self.assertRaises(onnx.checker.ValidationError):
            onnx.checker.check_model(model, check_custom_domain=True)
        onnx.defs.register_schema(op_schema)
        # The fake schema will raise check exception if selected in checker
        for version in self.trap_op_version:
            onnx.defs.register_schema(
                defs.OpSchema(
                    self.op_type,
                    self.op_domain,
                    version,
                    outputs=[
                        defs.OpSchema.FormalParameter("output1", "int32"),
                    ],
                )
            )
        onnx.checker.check_model(model, check_custom_domain=True)

    def test_register_schema_raises_error_when_registering_a_schema_twice(self):
        op_schema = defs.OpSchema(
            self.op_type,
            self.op_domain,
            self.op_version,
        )
        onnx.defs.register_schema(op_schema)
        with self.assertRaises(onnx.defs.SchemaError):
            onnx.defs.register_schema(op_schema)

    def test_deregister_the_specified_schema(self):
        for version in [*self.trap_op_version, self.op_version]:
            op_schema = defs.OpSchema(
                self.op_type,
                self.op_domain,
                version,
            )
            onnx.defs.register_schema(op_schema)
            self.assertTrue(onnx.defs.has(op_schema.name, version, op_schema.domain))
        onnx.defs.deregister_schema(op_schema.name, self.op_version, op_schema.domain)
        for version in self.trap_op_version:
            self.assertTrue(onnx.defs.has(op_schema.name, version, op_schema.domain))
        # Maybe has lesser op version in trap list
        if onnx.defs.has(op_schema.name, self.op_version, op_schema.domain):
            schema = onnx.defs.get_schema(
                op_schema.name, self.op_version, op_schema.domain
            )
            self.assertLess(schema.since_version, self.op_version)

    def test_deregister_schema_raises_error_when_opschema_does_not_exist(self):
        with self.assertRaises(onnx.defs.SchemaError):
            onnx.defs.deregister_schema(self.op_type, self.op_version, self.op_domain)

    def test_legacy_schema_accessible_after_deregister(self):
        op_schema = defs.OpSchema(
            self.op_type,
            self.op_domain,
            self.op_version,
        )
        onnx.defs.register_schema(op_schema)
        schema_a = onnx.defs.get_schema(
            op_schema.name, op_schema.since_version, op_schema.domain
        )
        schema_b = onnx.defs.get_schema(op_schema.name, op_schema.domain)

        def filter_schema(schemas):
            return [op for op in schemas if op.name == op_schema.name]

        schema_c = filter_schema(onnx.defs.get_all_schemas())
        schema_d = filter_schema(onnx.defs.get_all_schemas_with_history())
        self.assertEqual(len(schema_c), 1)
        self.assertEqual(len(schema_d), 1)
        # Avoid memory residue and access storage as much as possible
        self.assertEqual(str(schema_a), str(op_schema))
        self.assertEqual(str(schema_b), str(op_schema))
        self.assertEqual(str(schema_c[0]), str(op_schema))
        self.assertEqual(str(schema_d[0]), str(op_schema))


if __name__ == "__main__":
    unittest.main()