File size: 9,634 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Copyright (c) ONNX Project Contributors

# SPDX-License-Identifier: Apache-2.0
import typing
import unittest

import onnx
import onnx.parser
import onnx.shape_inference


class TestModelInference(unittest.TestCase):
    def _check(self, model_text: str, *expected: int):
        """Check that the model inference infers the expected types for outputs.

        Restricted to the simple case of tensor types, so expected types specify

        only the element type (ints corresponding to onnx.TensorProto.DataType).

        """
        model = onnx.parser.parse_model(model_text)
        inferred = onnx.shape_inference.infer_shapes(model)
        outputs = inferred.graph.output
        for output, expected_elem_type in zip(outputs, expected):
            inferred_type = output.type
            self.assertTrue(inferred_type.HasField("tensor_type"))
            tensor_type = inferred_type.tensor_type
            self.assertTrue(tensor_type.HasField("elem_type"))
            elem_type = tensor_type.elem_type
            self.assertEqual(elem_type, expected_elem_type)

    def _check_inference_error(self, model_text: str):
        """Check that the model inference raises an InferenceError."""
        model = onnx.parser.parse_model(model_text)
        with self.assertRaises(onnx.shape_inference.InferenceError):
            onnx.shape_inference.infer_shapes(model, True, True)

    def test_unknown_op(self):
        """Test that model inference handles unknown ops.

        This special treatment is to support custom ops.

        See comments in shape inference code for details.

        """
        model = """

            <ir_version: 7, opset_import: [ "" : 17]>

            agraph (float[N] x) => (y)

            {

                y = SomeUnknownOp (x)

            }

        """
        # No output types are inferred for unknown ops.
        # But ensure that the inference does not fail.
        self._check(model)

    def test_mi_basic(self):
        """Test that model inference infers model output type."""
        model = """

            <

                ir_version: 7,

                opset_import: [ "" : 17]

            >

            agraph (float[N] x) => (y)

            {

                y = Cast<to=6> (x)

            }

        """
        self._check(model, onnx.TensorProto.INT32)

    def test_mi_function(self):
        """Test use of functions."""
        model = """

            <

                ir_version: 7,

                opset_import: [ "" : 17, "local" : 1]

            >

            agraph (float[N] x) => (y)

            {

                y = local.cast(x)

            }

            <

                opset_import: [ "" : 17 ],

                domain: "local"

            >

            cast (x) => (y)

            {

                y = Cast<to=6> (x)

            }

        """
        self._check(model, onnx.TensorProto.INT32)

    def test_mi_function_attr(self):
        """Test use of functions with attribute parameters."""
        model = """

            <

                ir_version: 7,

                opset_import: [ "" : 17, "local" : 1]

            >

            agraph (float[N] x) => (y)

            {

                y = local.cast<target=6>(x)

            }

            <

                opset_import: [ "" : 17 ],

                domain: "local"

            >

            cast<target>(x) => (y)

            {

                y = Cast<to:int = @target> (x)

            }

        """
        self._check(model, onnx.TensorProto.INT32)

    def test_mi_function_subgraph_attr(self):
        """Test use of function attributes within subgraphs."""
        model = """

            <

                ir_version: 7,

                opset_import: [ "" : 17, "local" : 1]

            >

            agraph (float[N] x, bool flag) => (y)

            {

                y = local.cast<target=6>(x, flag)

            }

            <

                opset_import: [ "" : 17 ],

                domain: "local"

            >

            cast<target>(x, flag) => (y)

            {

                y = If (flag) <

                    then_branch = g1 () => (z_then) { z_then = Cast<to:int = @target> (x) },

                    else_branch = g2 () => (z_else) { z_else = Cast<to:int = @target> (x) }

                    >

            }

        """
        self._check(model, onnx.TensorProto.INT32)

    def test_mi_function_multiple_calls(self):
        """Test use of multiple invocation of functions."""
        model = """

            <

                ir_version: 7,

                opset_import: [ "" : 17, "local" : 1]

            >

            agraph (float[N] x, bool flag) => (y, z)

            {

                y = local.cast<target=6>(x, flag)

                z = local.cast<target=7>(x, flag)

            }

            <

                opset_import: [ "" : 17 ],

                domain: "local"

            >

            cast<target>(x, flag) => (y)

            {

                y = If (flag) <

                    then_branch = g1 () => (z_then) { z_then = Cast<to:int = @target> (x) },

                    else_branch = g2 () => (z_else) { z_else = Cast<to:int = @target> (x) }

                    >

            }

        """
        self._check(model, onnx.TensorProto.INT32, onnx.TensorProto.INT64)

    def _check_shape(self, model_text: str, *expected: typing.Sequence[int]):
        """Check that the model inference infers the expected shapes for outputs.

        Restricted to the simple case of tensor type outputs with completely

        known shapes.

        """
        model = onnx.parser.parse_model(model_text)
        inferred = onnx.shape_inference.infer_shapes(model, True, True, True)
        outputs = inferred.graph.output
        for output, expected_shape in zip(outputs, expected):
            inferred_type = output.type
            self.assertTrue(inferred_type.HasField("tensor_type"))
            tensor_type = inferred_type.tensor_type
            self.assertTrue(tensor_type.HasField("shape"))
            inferred_shape = tensor_type.shape
            self.assertEqual(len(inferred_shape.dim), len(expected_shape))
            for inferred_dim, expected_dim in zip(inferred_shape.dim, expected_shape):
                self.assertTrue(inferred_dim.HasField("dim_value"))
                self.assertEqual(inferred_dim.dim_value, expected_dim)

    def test_mi_constant(self):
        model = """

            <

                ir_version: 7,

                opset_import: [ "" : 17]

            >

            mymodel (float[4, 8, 16] x) => (y) {

                shape = Constant<value_ints=[8,4,16]>()

                y = Reshape(x, shape)

            }

            """
        self._check_shape(model, [8, 4, 16])

    def test_mi_constant_2(self):
        model = """

            <

                ir_version: 7,

                opset_import: [ "" : 17]

            >

            mymodel (float[4, 8, 16] x) => (y) {

                shape = Constant<value_ints=[4,2,8]>()

                two = Constant<value_int=2>()

                shape2 = Mul(shape, two)

                y = Reshape(x, shape2)

            }

            """
        self._check_shape(model, [8, 4, 16])

    def test_mi_constant_in_function(self):
        model = """

            <

                ir_version: 7,

                opset_import: [ "" : 17, "local" : 1]

            >

            main (float x) => (y, z) {

                y, z = local.expand(x)

            }

            <

                opset_import: [ "" : 17 ],

                domain: "local"

            >

            expand (x) => (y, z) {

                shape1 = Constant<value = int64[2] {4,4}>()

                shape2 = Constant<value = int64[3] {8,8,8}>()

                z = Expand (x, shape2)

                y = Expand (x, shape1)

            }

            """
        self._check_shape(model, [4, 4], [8, 8, 8])

    def test_mi_function_default_attr(self):
        """Test use of default values of function attributes."""
        model = """

            <ir_version: 7, opset_import: [ "" : 17, "local" : 1]>

            agraph (float[N] x) => (y, z)

            {

                y = local.cast <target=6> (x) # casts to INT32 type (encoding value 6)

                z = local.cast (x)  # uses default-attribute value of 1 (FLOAT type)

            }



            <opset_import: [ "" : 17 ], domain: "local">

            cast <target: int = 1> (x) => (y)

            {

                y = Cast <to:int = @target> (x)

            }

        """
        self._check(model, onnx.TensorProto.INT32, onnx.TensorProto.FLOAT)

    def test_mi_overloaded_function(self):
        """Test use of functions."""
        model = """

            <ir_version: 10, opset_import: [ "" : 17, "local" : 1]>

            agraph (float[N] x) => (y, z)

            {

                y = local.cast:to_int32 (x)

                z = local.cast:to_int64 (x)

            }

            <opset_import: [ "" : 17 ], domain: "local", overload: "to_int32">

            cast (x) => (y)

            {

                y = Cast<to=6> (x)

            }

            <opset_import: [ "" : 17 ], domain: "local", overload: "to_int64">

            cast (x) => (y)

            {

                y = Cast<to=7> (x)

            }

        """
        self._check(model, onnx.TensorProto.INT32, onnx.TensorProto.INT64)


if __name__ == "__main__":
    unittest.main()