File size: 35,881 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
# Copyright (c) ONNX Project Contributors

# SPDX-License-Identifier: Apache-2.0

import unittest
from typing import Callable, List, Optional, Sequence, Tuple

import numpy as np

from onnx import (
    FunctionProto,
    GraphProto,
    ModelProto,
    NodeProto,
    SparseTensorProto,
    TensorProto,
    ValueInfoProto,
    checker,
    compose,
    helper,
    parser,
    version_converter,
)


def _load_model(m_def: str) -> ModelProto:
    """Parses a model from a string representation, including checking the model for correctness"""
    m = parser.parse_model(m_def)
    checker.check_model(m)
    return m


def _prefixed(prefix: str, s: str) -> str:
    """Prefixes a string (if not empty)"""
    return prefix + s if len(s) > 0 else s


def _get_shape(value_info: ValueInfoProto) -> List[int]:
    """Returns a list of integers representing the shape of the provided ValueInfoProto"""
    return [
        value_info.type.tensor_type.shape.dim[d].dim_value
        for d in range(len(value_info.type.tensor_type.shape.dim))
    ]


def _make_sparse_tensor(name: str) -> SparseTensorProto:
    dense_shape = [3, 3]
    linear_indices = [2, 3, 5]
    sparse_values = [1.7, 0.4, 0.9]
    values_tensor = helper.make_tensor(
        name=name + "_values",
        data_type=TensorProto.FLOAT,
        dims=[len(sparse_values)],
        vals=np.array(sparse_values).astype(np.float32),
        raw=False,
    )

    indices_tensor = helper.make_tensor(
        name=name + "_idx",
        data_type=TensorProto.INT64,
        dims=[len(linear_indices)],
        vals=np.array(linear_indices).astype(np.int64),
        raw=False,
    )
    return helper.make_sparse_tensor(values_tensor, indices_tensor, dense_shape)


M1_DEF = """

    <

        ir_version: 7,

        opset_import: [ "": 10, "com.microsoft": 1]

    >

    agraph (float[N, M] A0, float[N, M] A1, float[N, M] _A) => (float[N, M] B00, float[N, M] B10, float[N, M] B20)

    {

        B00 = Add(A0, A1)

        B10 = Sub(A0, A1)

        B20 = Mul(A0, A1)

    }

    """

M2_DEF = """

    <

        ir_version: 7,

        opset_import: [ "": 10, "com.microsoft": 1]

    >

    agraph (float[N, M] B01, float[N, M] B11, float[N, M] B21) => (float[N, M] D0)

    {

        C0 = Add(B01, B11)

        C1 = Sub(B11, B21)

        M1 = Mul(C0, C1)

    }

    """


class TestComposeFunctions(unittest.TestCase):
    def _test_merge_models(

        self,

        m1def: str,

        m2def: str,

        io_map: List[Tuple[str, str]],

        check_expectations: Callable[[GraphProto, GraphProto, GraphProto], None],

        inputs: Optional[List[str]] = None,

        outputs: Optional[List[str]] = None,

        prefix1: Optional[str] = None,

        prefix2: Optional[str] = None,

    ) -> None:
        m1, m2 = _load_model(m1def), _load_model(m2def)
        g3 = compose.merge_graphs(
            m1.graph,
            m2.graph,
            io_map=io_map,
            inputs=inputs,
            outputs=outputs,
            prefix1=prefix1,
            prefix2=prefix2,
        )
        checker.check_graph(g3)
        check_expectations(m1.graph, m2.graph, g3)
        m3 = compose.merge_models(
            m1,
            m2,
            io_map=io_map,
            inputs=inputs,
            outputs=outputs,
            prefix1=prefix1,
            prefix2=prefix2,
        )
        checker.check_model(m3)
        check_expectations(m1.graph, m2.graph, m3.graph)

    def test_case_connect_all_no_name_collision(self) -> None:
        """Tests a simple scenario where two models without overlapping names are merged by

        connecting all the outputs in the first models to all the inputs in the second model

        """

        def check_expectations(g1: GraphProto, g2: GraphProto, g3: GraphProto) -> None:
            self.assertEqual(g3.input, g1.input)
            self.assertEqual(g3.output, g2.output)
            self.assertEqual(
                ["Add", "Sub", "Mul", "Add", "Sub", "Mul"],
                [item.op_type for item in g3.node],
            )

        io_map = [("B00", "B01"), ("B10", "B11"), ("B20", "B21")]
        self._test_merge_models(M1_DEF, M2_DEF, io_map, check_expectations)

    def test_case_connect_same_output_twice(self) -> None:
        """Tests a scenario where we merge two models by connecting a single output in the first model

        to all the inputs in the second

        """

        def check_expectations(g1: GraphProto, g2: GraphProto, g3: GraphProto) -> None:
            del g2  # Unused
            self.assertEqual(g3.input, g1.input)
            self.assertEqual(["B10", "B20", "D0"], [elem.name for elem in g3.output])
            self.assertEqual(
                ["Add", "Sub", "Mul", "Add", "Sub", "Mul"],
                [item.op_type for item in g3.node],
            )

        io_map = [("B00", "B01"), ("B00", "B11"), ("B00", "B21")]
        self._test_merge_models(M1_DEF, M2_DEF, io_map, check_expectations)

    def test_case_connect_same_output_drop_outputs(self) -> None:
        """Tests a scenario where we merge two models by connecting a single output in the first model

        to all the inputs in the second, while dropping the rest of the outputs in the first model

        """

        def check_expectations(g1: GraphProto, g2: GraphProto, g3: GraphProto) -> None:
            del g2  # Unused
            self.assertEqual(g3.input, g1.input)
            self.assertEqual(["D0"], [elem.name for elem in g3.output])
            self.assertEqual(
                ["Add", "Add", "Sub", "Mul"], [item.op_type for item in g3.node]
            )

        io_map = [("B00", "B01"), ("B00", "B11"), ("B00", "B21")]
        outputs = ["D0"]
        self._test_merge_models(
            M1_DEF, M2_DEF, io_map, check_expectations, outputs=outputs
        )

    def test_case_connect_same_input_output_name(self) -> None:
        """Tests a scenario where we merge two models, where the inputs/outputs connected

        are named exactly the same

        """
        m1_def = """

            <

                ir_version: 7,

                opset_import: [ "": 10]

            >

            agraph (float[N, M] A) => (float[N, M] B)

            {

                B = Add(A, A)

            }

            """
        m2_def = """

            <

                ir_version: 7,

                opset_import: [ "": 10]

            >

            agraph (float[N, M] B) => (float[N, M] C)

            {

                C = Add(B, B)

            }

            """
        io_map = [("B", "B")]

        def check_expectations(g1: GraphProto, g2: GraphProto, g3: GraphProto) -> None:
            del g1, g2  # Unused

            self.assertEqual(["A"], [elem.name for elem in g3.input])
            self.assertEqual(["C"], [elem.name for elem in g3.output])

        self._test_merge_models(m1_def, m2_def, io_map, check_expectations)

    def test_case_drop_inputs_outputs(self) -> None:
        """Tests a scenario where we merge two models, not including some of the inputs/outputs"""
        m1_def = """

            <

                ir_version: 7,

                opset_import: [ "": 10]

            >

            agraph (float[N] A0, float[N] B0) => (float[N] A1, float[N] B1)

            {

                A1 = Add(A0, A0)

                B1 = Sub(B0, B0)

            }

            """
        m2_def = """

            <

                ir_version: 7,

                opset_import: [ "": 10]

            >

            agraph (float[N] A2, float[N] B2) => (float[N] A3, float[N] B3)

            {

                A3 = Add(A2, A2)

                B3 = Sub(B2, B2)

            }

            """
        io_map = [("A1", "B2")]

        def check_expectations(g1: GraphProto, g2: GraphProto, g3: GraphProto) -> None:
            del g1, g2  # Unused

            self.assertEqual(["A0"], [elem.name for elem in g3.input])
            self.assertEqual(["B3"], [elem.name for elem in g3.output])
            self.assertEqual(["Add", "Sub"], [elem.op_type for elem in g3.node])

        inputs = ["A0"]
        outputs = ["B3"]
        self._test_merge_models(
            m1_def, m2_def, io_map, check_expectations, inputs=inputs, outputs=outputs
        )

    def test_case_name_collision_prefix(self) -> None:
        """Tests a scenario where we merge two models that have name collisions, but they

        are avoided by prefixing the models model.

        """
        m1_def = """

            <

                ir_version: 7,

                opset_import: [ "": 10]

            >

            agraph (float[N] A, float[N] B) => (float[N] C)

            {

                C = Add(A, B)

            }

            """
        io_map = [("C", "A")]

        def check_expectations(g1: GraphProto, g2: GraphProto, g3: GraphProto) -> None:
            del g1, g2  # Unused

            self.assertEqual(["m1/A", "m1/B", "m2/B"], [elem.name for elem in g3.input])
            self.assertEqual(["m2/C"], [elem.name for elem in g3.output])
            self.assertEqual(["Add", "Add"], [elem.op_type for elem in g3.node])

        self._test_merge_models(
            m1_def, m1_def, io_map, check_expectations, prefix1="m1/", prefix2="m2/"
        )

    def test_case_connect_partially_no_name_collision(self) -> None:
        """Tests a scenario where two models without overlapping names are merged by

        connecting some outputs from the first model to some inputs in the second.

        The remaining inputs/outputs should be present in the combined model

        """

        def check_expectations(g1: GraphProto, g2: GraphProto, g4: GraphProto) -> None:
            del g1, g2  # Unused

            # B20 <-> B21 not connected. They should still be present
            # in the inputs and outputs of the combined graph
            self.assertEqual(
                ["A0", "A1", "_A", "B21"], [elem.name for elem in g4.input]
            )
            self.assertEqual(["B20", "D0"], [elem.name for elem in g4.output])

        io_map = [("B00", "B01"), ("B10", "B11")]
        self._test_merge_models(M1_DEF, M2_DEF, io_map, check_expectations)

    def test_merge_models_with_metadata_props(self) -> None:
        m1 = _load_model(M1_DEF)
        helper.set_model_props(m1, {"p1": "v1", "p2": "v2"})

        m2 = _load_model(M2_DEF)
        helper.set_model_props(m2, {"p3": "v3", "p4": "v4"})

        io_map = [("B00", "B01")]
        m3 = compose.merge_models(m1, m2, io_map=io_map)
        assert len(m3.metadata_props) == 4

        # Overlap, but same value
        helper.set_model_props(m2, {"p1": "v1", "p4": "v4"})
        m3 = compose.merge_models(m1, m2, io_map=io_map)
        assert len(m3.metadata_props) == 3

        # Same keys but not same value. Error
        helper.set_model_props(m2, {"p1": "v5", "p4": "v4"})
        self.assertRaises(ValueError, compose.merge_models, m1, m2, io_map=io_map)

    def test_error_wrong_input_output_name(self) -> None:
        """Tests that providing a non existing output/input name in the io_map argument produces an error."""
        m1, m2 = _load_model(M1_DEF), _load_model(M2_DEF)

        self.assertRaises(
            ValueError,
            compose.merge_models,
            m1,
            m2,
            io_map=[("wrong_outname", "B01"), ("B10", "B11"), ("B20", "B21")],
        )

        # Wrong output name
        self.assertRaises(
            ValueError,
            compose.merge_models,
            m1,
            m2,
            io_map=[("B00", "wrong_input"), ("B10", "B11"), ("B20", "B21")],
        )

    def test_error_ir_version_mismatch(self) -> None:
        m1 = _load_model(
            """

    <

        ir_version: 7,

        opset_import: [ "": 13]

    >

    agraph (float[N, M] X0) => (float[N, M] Y0)

    {

        Y0 = Add(X0, X0)

    }

    """
        )

        m2 = _load_model(
            """

    <

        ir_version: 6,

        opset_import: [ "": 13]

    >

    agraph (float[N, M] X1) => (float[N, M] Y1)

    {

        Y1 = Add(X1, X1)

    }

    """
        )
        # Wrong IR version name
        self.assertRaises(
            ValueError, compose.merge_models, m1, m2, io_map=[("Y0", "X1")]
        )

    def test_error_opset_import_mismatch(self) -> None:
        """Tests that providing models with different operator set imported produces an error."""
        m1, m2 = _load_model(M1_DEF), _load_model(M2_DEF)
        m1 = helper.make_model(
            m1.graph, producer_name="test", opset_imports=[helper.make_opsetid("", 10)]
        )
        m2 = helper.make_model(
            m2.graph, producer_name="test", opset_imports=[helper.make_opsetid("", 15)]
        )

        io_map = [("B00", "B01"), ("B10", "B11"), ("B20", "B21")]
        self.assertRaises(ValueError, compose.merge_models, m1, m2, io_map)

        # Converting to the same Operator set version, should work
        m1 = version_converter.convert_version(m1, 15)
        m3 = compose.merge_models(m1, m2, io_map=io_map)
        checker.check_model(m3)

    # FIXME: This function should be removed, as tests should not contain a copy of the tested logic.
    def _test_add_prefix(

        self,

        rename_nodes: bool = False,

        rename_edges: bool = False,

        rename_inputs: bool = False,

        rename_outputs: bool = False,

        rename_initializers: bool = False,

        rename_value_infos: bool = False,

        inplace: bool = False,

    ) -> None:
        m1 = _load_model(M1_DEF)

        prefix = "pre/"

        if inplace:
            m2 = ModelProto()
            m2.CopyFrom(m1)
            compose.add_prefix(
                m2,
                prefix,
                rename_nodes=rename_nodes,
                rename_edges=rename_edges,
                rename_inputs=rename_inputs,
                rename_outputs=rename_outputs,
                rename_initializers=rename_initializers,
                rename_value_infos=rename_value_infos,
                inplace=True,
            )
        else:
            m2 = compose.add_prefix(
                m1,
                prefix,
                rename_nodes=rename_nodes,
                rename_edges=rename_edges,
                rename_inputs=rename_inputs,
                rename_outputs=rename_outputs,
                rename_initializers=rename_initializers,
                rename_value_infos=rename_value_infos,
            )
        g_in = m1.graph
        g_out = m2.graph

        if (
            rename_edges
            or rename_inputs
            or rename_outputs
            or rename_initializers
            or rename_value_infos
        ):
            name_mapping = {}

            # Rename inputs/outputs/edges. Propagate name changes from and to edges
            if rename_edges:
                for n in g_in.node:
                    for e in n.input:
                        name_mapping[e] = _prefixed(prefix, e)
                    for e in n.output:
                        name_mapping[e] = _prefixed(prefix, e)
            if rename_inputs:
                for elem in g_in.input:
                    name_mapping[elem.name] = _prefixed(prefix, elem.name)
            if rename_outputs:
                for elem in g_in.output:
                    name_mapping[elem.name] = _prefixed(prefix, elem.name)

            if rename_initializers:
                for init in g_in.initializer:
                    name_mapping[init.name] = _prefixed(prefix, init.name)
                for sparse_init in g_in.sparse_initializer:
                    name_mapping[sparse_init.values.name] = _prefixed(
                        prefix, sparse_init.values.name
                    )
                    name_mapping[sparse_init.indices.name] = _prefixed(
                        prefix, sparse_init.indices.name
                    )

            if rename_value_infos:
                for value_info in g_in.output:
                    name_mapping[value_info.name] = _prefixed(prefix, value_info.name)

            for n1, n0 in zip(g_out.node, g_in.node):
                for e1, e0 in zip(n1.input, n0.input):
                    self.assertEqual(name_mapping.get(e0, e0), e1)
                for e1, e0 in zip(n1.output, n0.output):
                    self.assertEqual(name_mapping.get(e0, e0), e1)
            for i1, i0 in zip(g_out.input, g_in.input):
                self.assertEqual(name_mapping.get(i0.name, i0.name), i1.name)
            for o1, o0 in zip(g_out.output, g_in.output):
                self.assertEqual(name_mapping.get(o0.name, o0.name), o1.name)

            for init1, init0 in zip(g_out.initializer, g_in.initializer):
                self.assertEqual(name_mapping.get(init0.name, init0.name), init1.name)

            for sparse_init1, sparse_init0 in zip(
                g_out.sparse_initializer, g_in.sparse_initializer
            ):
                self.assertEqual(
                    name_mapping.get(
                        sparse_init0.values.name, sparse_init0.values.name
                    ),
                    sparse_init1.values.name,
                )
                self.assertEqual(
                    name_mapping.get(
                        sparse_init0.indices.name, sparse_init0.indices.name
                    ),
                    sparse_init1.indices.name,
                )

            for vi1, vi0 in zip(g_out.value_info, g_in.value_info):
                self.assertEqual(name_mapping.get(vi0.name, vi0.name), vi1.name)

            if rename_nodes:
                for n1, n0 in zip(g_out.node, g_in.node):
                    self.assertEqual(_prefixed(prefix, n0.name), n1.name)

    def test_add_prefix_nodes(self) -> None:
        """Tests renaming nodes only"""
        self._test_add_prefix(rename_nodes=True)

    def test_add_prefix_edges(self) -> None:
        """Tests prefixing nodes edges. This will also rename inputs/outputs, since the names are shared"""
        self._test_add_prefix(rename_edges=True)

    def test_add_prefix_inputs(self) -> None:
        """Tests prefixing graph inputs only. Relevant node edges should be renamed as well"""
        self._test_add_prefix(rename_inputs=True)

    def test_add_prefix_outputs(self) -> None:
        """Tests prefixing graph outputs only. Relevant node edges should be renamed as well"""
        self._test_add_prefix(rename_outputs=True)

    def test_add_prefix_attribute_subgraph(self) -> None:
        """Tests prefixing attribute's subgraph. Relevant subgraph should be renamed as well"""
        C = helper.make_tensor_value_info("C", TensorProto.BOOL, [1])
        X = helper.make_tensor_value_info("X", TensorProto.FLOAT, [None, 1])
        Y = helper.make_tensor_value_info("Y", TensorProto.FLOAT, [None, 1])
        Z = helper.make_tensor_value_info("Z", TensorProto.FLOAT, [None, 1])
        Out = helper.make_tensor_value_info("Out", TensorProto.FLOAT, [None, 1])

        XY = helper.make_node("Mul", inputs=["X", "Y"], outputs=["XY"])
        add = helper.make_node("Add", inputs=["XY", "Z"], outputs=["Out"])
        sub = helper.make_node("Sub", inputs=["XY", "Z"], outputs=["Out"])

        cond = helper.make_node(
            "If",
            inputs=["C"],
            outputs=["Out"],
            then_branch=helper.make_graph(
                nodes=[add], name="then", inputs=[], outputs=[Out]
            ),
            else_branch=helper.make_graph(
                nodes=[sub], name="else", inputs=[], outputs=[Out]
            ),
        )
        graph = helper.make_graph(
            nodes=[XY, cond], name="graph", inputs=[C, X, Y, Z], outputs=[Out]
        )
        prefix = "prefix."
        prefixed_graph = compose.add_prefix_graph(graph, prefix)
        checker.check_graph(prefixed_graph)
        for n1, n0 in zip(prefixed_graph.node, graph.node):
            self.assertEqual(_prefixed(prefix, n0.name), n1.name)
            for attribute1, attribute0 in zip(n1.attribute, n0.attribute):
                if attribute1.g:
                    for subgraph_n1, subgraph_n0 in zip(
                        attribute1.g.node, attribute0.g.node
                    ):
                        for input_n1, input_n0 in zip(
                            subgraph_n1.input, subgraph_n0.input
                        ):
                            self.assertEqual(_prefixed(prefix, input_n0), input_n1)
                        for output_n1, output_n0 in zip(
                            subgraph_n1.output, subgraph_n0.output
                        ):
                            self.assertEqual(_prefixed(prefix, output_n0), output_n1)

    def test_add_prefix_all(self) -> None:
        """Tests prefixing all names in the graph"""
        self._test_add_prefix(True, True, True, True, True, True)

    def test_add_prefix_inplace(self) -> None:
        """Tests prefixing inplace"""
        self._test_add_prefix(inplace=True)

    def test_expand_out_dim(self) -> None:
        """Tests expanding output dimensions. The resulting graph should have the same output names,

        but with one more dimension at the specified index.

        """
        m1 = _load_model(M1_DEF)

        def _check_model(m1: ModelProto, m2: ModelProto, dim_idx: int) -> None:
            for out_g2, out_g1 in zip(m2.graph.output, m1.graph.output):
                self.assertEqual(out_g2.name, out_g1.name)
                self.assertEqual(
                    out_g2.type.tensor_type.elem_type, out_g1.type.tensor_type.elem_type
                )
                expected_out_shape = _get_shape(out_g1)
                expected_out_shape.insert(dim_idx, 1)
                self.assertEqual(_get_shape(out_g2), expected_out_shape)

        for dim_idx in [0, 2, -1, -3]:
            m2 = compose.expand_out_dim(m1, dim_idx)
            _check_model(m1, m2, dim_idx)

        # Test inplace
        m2 = ModelProto()
        m2.CopyFrom(m1)
        dim_idx = 0
        compose.expand_out_dim(m2, dim_idx, inplace=True)
        _check_model(m1, m2, dim_idx)

    def _test_overlapping_names(

        self,

        inputs0: Sequence[str] = ("i0", "i1"),

        inputs1: Sequence[str] = ("i2", "i3"),

        outputs0: Sequence[str] = ("o0", "o1"),

        outputs1: Sequence[str] = ("o2", "o3"),

        value_info0: Sequence[str] = ("v0", "v1"),

        value_info1: Sequence[str] = ("v2", "v3"),

        initializer0: Sequence[str] = ("init0", "init1"),

        initializer1: Sequence[str] = ("init2", "init3"),

        sparse_initializer0: Sequence[str] = ("sparse_init0", "sparse_init1"),

        sparse_initializer1: Sequence[str] = ("sparse_init2", "sparse_init3"),

    ) -> None:
        n0 = [
            helper.make_node("Identity", inputs=[inputs0[i]], outputs=[outputs0[i]])
            for i in range(len(inputs0))
        ]
        i0 = [
            helper.make_tensor_value_info(inputs0[i], TensorProto.FLOAT, [])
            for i in range(len(inputs0))
        ]
        o0 = [
            helper.make_tensor_value_info(outputs0[i], TensorProto.FLOAT, [])
            for i in range(len(outputs0))
        ]
        vi0 = [
            helper.make_tensor_value_info(value_info0[i], TensorProto.FLOAT, [])
            for i in range(len(value_info0))
        ]
        init0 = [
            helper.make_tensor(
                name=initializer0[i], data_type=TensorProto.INT64, dims=(), vals=[1]
            )
            for i in range(len(initializer0))
        ]

        sparse_init0 = [
            _make_sparse_tensor(sparse_initializer0[i])
            for i in range(len(sparse_initializer0))
        ]

        n1 = [
            helper.make_node("Identity", inputs=[inputs1[i]], outputs=[outputs1[i]])
            for i in range(len(inputs1))
        ]
        i1 = [
            helper.make_tensor_value_info(inputs1[i], TensorProto.FLOAT, [])
            for i in range(len(inputs1))
        ]
        o1 = [
            helper.make_tensor_value_info(outputs1[i], TensorProto.FLOAT, [])
            for i in range(len(outputs1))
        ]
        vi1 = [
            helper.make_tensor_value_info(value_info1[i], TensorProto.FLOAT, [])
            for i in range(len(value_info1))
        ]
        init1 = [
            helper.make_tensor(
                name=initializer1[i], data_type=TensorProto.INT64, dims=(), vals=[1]
            )
            for i in range(len(initializer1))
        ]
        sparse_init1 = [
            _make_sparse_tensor(sparse_initializer1[i])
            for i in range(len(sparse_initializer1))
        ]

        ops = [helper.make_opsetid("", 10)]
        m0 = helper.make_model(
            helper.make_graph(
                nodes=n0,
                name="g0",
                inputs=i0,
                outputs=o0,
                value_info=vi0,
                initializer=init0,
                sparse_initializer=sparse_init0,
            ),
            producer_name="test",
            opset_imports=ops,
        )
        m1 = helper.make_model(
            helper.make_graph(
                nodes=n1,
                name="g1",
                inputs=i1,
                outputs=o1,
                value_info=vi1,
                initializer=init1,
                sparse_initializer=sparse_init1,
            ),
            producer_name="test",
            opset_imports=ops,
        )

        overlap = compose.check_overlapping_names(m0.graph, m1.graph)
        i = 0

        overlapping_inputs = list(set(inputs0) & set(inputs1))
        overlapping_outputs = list(set(outputs0) & set(outputs1))
        overlapping_edges = list(set(overlapping_inputs + overlapping_outputs))
        if overlapping_edges:
            self.assertEqual(overlap[i], ("edge", overlapping_edges))
            i += 1

        overlapping_vis = list(set(value_info0) & set(value_info1))
        if overlapping_vis:
            self.assertEqual(overlap[i], ("value_info", overlapping_vis))
            i += 1

        overlapping_init = list(set(initializer0) & set(initializer1))
        if overlapping_init:
            self.assertEqual(overlap[i], ("initializer", overlapping_init))
            i += 1

        overlapping_sparse_init = list(
            set(sparse_initializer0) & set(sparse_initializer1)
        )
        if overlapping_sparse_init:
            expected_overlap = []
            for overlapping_name in overlapping_sparse_init:
                expected_overlap.append(overlapping_name + "_values")
                expected_overlap.append(overlapping_name + "_idx")
            self.assertEqual(overlap[i], ("sparse_initializer", expected_overlap))
            i += 1

        m0_new = compose.add_prefix(m0, prefix="g0/")
        overlap = compose.check_overlapping_names(m0_new.graph, m1.graph)
        self.assertEqual(0, len(overlap))

    def test_overlapping_input_names(self) -> None:
        """Tests error checking when the name of the inputs overlaps"""
        self._test_overlapping_names(inputs0=["i0", "i1"], inputs1=["i1", "i2"])

    def test_overlapping_output_names(self) -> None:
        """Tests error checking when the name of the output overlaps"""
        self._test_overlapping_names(outputs0=["o0", "o1"], outputs1=["o1", "o2"])

    def test_overlapping_value_info_names(self) -> None:
        """Tests error checking when the name of value_info entries overlaps"""
        self._test_overlapping_names(
            value_info0=["vi0", "vi1"], value_info1=["vi1", "vi2"]
        )

    def test_overlapping_initializer_names(self) -> None:
        """Tests error checking when the name of initializer entries overlaps"""
        self._test_overlapping_names(
            initializer0=["init0", "init1"], initializer1=["init1", "init2"]
        )

    def test_overlapping_sparse_initializer_names(self) -> None:
        """Tests error checking when the name of sparse_initializer entries overlaps"""
        self._test_overlapping_names(
            sparse_initializer0=["sparse_init0", "sparse_init1"],
            sparse_initializer1=["sparse_init1", "sparse_init2"],
        )

    def test_overlapping_function_names(self) -> None:
        """Tests error checking when the name of local function entries overlaps"""
        ops = [helper.make_opsetid("", 10), helper.make_opsetid("local", 10)]

        def _make_function(

            domain: str,

            fname: str,

            inputs: List[str],

            outputs: List[str],

            nodes: List[NodeProto],

        ) -> FunctionProto:
            f = FunctionProto()
            f.domain = domain
            f.name = fname
            f.input.extend(inputs)
            f.output.extend(outputs)
            f.node.extend(nodes)
            f.opset_import.extend(ops)
            return f

        ops = [helper.make_opsetid("", 10), helper.make_opsetid("local", 10)]

        g = GraphProto()
        g.input.extend(
            [
                helper.make_tensor_value_info("x0", TensorProto.FLOAT, []),
                helper.make_tensor_value_info("x1", TensorProto.FLOAT, []),
            ]
        )
        g.output.extend(
            [
                helper.make_tensor_value_info("y", TensorProto.FLOAT, []),
            ]
        )
        g.node.extend(
            [helper.make_node("f1", domain="local", inputs=["x0", "x1"], outputs=["y"])]
        )

        g1 = GraphProto()
        g1.CopyFrom(g)
        g1.name = "g1"
        m1 = helper.make_model(g1, producer_name="test", opset_imports=ops)
        m1.functions.extend(
            [
                _make_function(
                    "local",
                    "f1",
                    ["x0", "x1"],
                    ["y"],
                    [helper.make_node("Add", inputs=["x0", "x1"], outputs=["y"])],
                )
            ]
        )
        checker.check_model(m1)

        g2 = GraphProto()
        g2.CopyFrom(g)
        g2.name = "g2"
        m2 = helper.make_model(g2, producer_name="test", opset_imports=ops)
        m2.functions.extend(
            [
                _make_function(
                    "local",
                    "f1",
                    ["x0", "x1"],
                    ["y"],
                    [helper.make_node("Mul", inputs=["x0", "x1"], outputs=["y"])],
                )
            ]
        )
        checker.check_model(m2)

        m = compose.merge_models(
            m1, m2, io_map=[("y", "x0"), ("y", "x1")], prefix1="m1/", prefix2="m2/"
        )
        checker.check_model(m)

        nodes = [n.op_type for n in m.graph.node]
        self.assertEqual(["m1/f1", "m2/f1"], nodes)

        functions = [f.name for f in m.functions]
        self.assertEqual(["m1/f1", "m2/f1"], functions)

        g3 = GraphProto()
        g3.CopyFrom(g)
        g3.name = "g3"
        g3.node[0].op_type = "f2"
        m3 = helper.make_model(g3, producer_name="test", opset_imports=ops)
        m3.functions.extend(
            [
                _make_function(
                    "local",
                    "f1",
                    ["x0", "x1"],
                    ["y"],
                    [
                        helper.make_node("Add", inputs=["x0", "x1"], outputs=["y0"]),
                        helper.make_node("Mul", inputs=["x0", "x1"], outputs=["y1"]),
                        helper.make_node("Add", inputs=["y0", "y1"], outputs=["y"]),
                    ],
                ),
                _make_function(
                    "local",
                    "f2",
                    ["x0", "x1"],
                    ["y"],
                    [
                        helper.make_node(
                            "f1", domain="local", inputs=["x0", "x1"], outputs=["y0"]
                        ),
                        helper.make_node("Mul", inputs=["x0", "x1"], outputs=["y1"]),
                        helper.make_node("Add", inputs=["y0", "y1"], outputs=["y"]),
                    ],
                ),
            ]
        )
        checker.check_model(m3)

        m = compose.merge_models(
            m1, m3, io_map=[("y", "x0"), ("y", "x1")], prefix1="m1/", prefix2="m3/"
        )
        checker.check_model(m)

        nodes = [n.op_type for n in m.graph.node]
        self.assertEqual(["m1/f1", "m3/f2"], nodes)

        functions = [f.name for f in m.functions]
        self.assertEqual(["m1/f1", "m3/f1", "m3/f2"], functions)

        self.assertEqual(["Add"], [n.op_type for n in m.functions[0].node])
        self.assertEqual(
            ["Add", "Mul", "Add"], [n.op_type for n in m.functions[1].node]
        )
        self.assertEqual(
            ["m3/f1", "Mul", "Add"], [n.op_type for n in m.functions[2].node]
        )

    def test_merge_drop_unnecessary_initializers_and_value_info(self) -> None:
        """Tests automatic removal of initializers when merging graphs"""
        ops = [helper.make_opsetid("", 10)]

        g = GraphProto()
        g.input.extend([helper.make_tensor_value_info("x", TensorProto.FLOAT, [])])
        g.output.extend([helper.make_tensor_value_info("y", TensorProto.FLOAT, [])])
        g.node.extend([helper.make_node("Identity", inputs=["x"], outputs=["y"])])

        g1 = GraphProto()
        g1.CopyFrom(g)
        g1.name = "g1"
        m1 = helper.make_model(g1, producer_name="test", opset_imports=ops)
        checker.check_model(m1)

        g2 = GraphProto()
        g2.CopyFrom(g)
        g2.name = "g2"
        g2.initializer.extend(
            [
                helper.make_tensor(
                    name="x", data_type=TensorProto.FLOAT, dims=(), vals=[0]
                )
            ]
        )
        m2 = helper.make_model(g2, producer_name="test", opset_imports=ops)
        checker.check_model(m2)

        g3 = GraphProto()
        g3.CopyFrom(g)
        g3.name = "g3"
        g3.sparse_initializer.extend([_make_sparse_tensor("x")])
        m3 = helper.make_model(g3, producer_name="test", opset_imports=ops)
        checker.check_model(m3)

        g4 = GraphProto()
        g4.CopyFrom(g)
        g4.name = "g3"
        g4.value_info.extend(
            [helper.make_tensor_value_info("x", TensorProto.FLOAT, [])]
        )
        m4 = helper.make_model(g4, producer_name="test", opset_imports=ops)
        checker.check_model(m4)

        # Initializer 'x' from m1 is removed, because there is no longer an input with that name
        out_m1 = compose.merge_models(m1, m2, prefix1="m1/", io_map=[("y", "x")])
        self.assertEqual(0, len(out_m1.graph.initializer))

        # Sparse initializer 'x' from m1 is removed, because there is no longer an input with that name
        out_m2 = compose.merge_models(m1, m3, prefix1="m1/", io_map=[("y", "x")])
        self.assertEqual(0, len(out_m2.graph.initializer))

        # Value info 'x' from m1 is removed, because there is no longer an input with that name
        out_m3 = compose.merge_models(m1, m4, prefix1="m1/", io_map=[("y", "x")])
        self.assertEqual(0, len(out_m3.graph.value_info))


if __name__ == "__main__":
    unittest.main()