File size: 13,487 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright (c) ONNX Project Contributors

# SPDX-License-Identifier: Apache-2.0


import numpy as np

from onnx.reference.op_run import OpRun


def _conv_implementation(  # type: ignore

    X, W, B, auto_pad, dilations, group, kernel_shape, pads, strides

):
    if dilations is None:
        dilations = [1 for s in X.shape[2:]]
    if kernel_shape is None:
        kernel_shape = W.shape[2:]
    if pads is None:
        pads = [0 for s in X.shape[2:]] * 2
    if strides is None:
        strides = [1 for s in X.shape[2:]]

    if X.shape[1] != W.shape[1] * group or W.shape[0] % group != 0:
        raise ValueError(
            f"Shape inconsistencies, X.shape={X.shape}, W.shape={W.shape}, group={group}, "
            f"W should be {(W.shape[0], X.shape[1] // group, np.prod(W.shape[1:]) // X.shape[1] * group)}."
        )
    if group > 1:
        res = []
        td = 0
        mg = W.shape[0] // group
        dw = W.shape[1]

        for b in range(X.shape[0]):
            for g in range(group):
                gx = X[b : b + 1, g * dw : (g + 1) * dw]
                gw = W[g * mg : (g + 1) * mg]
                try:
                    cv = _conv_implementation(
                        gx,
                        gw,
                        None,
                        auto_pad,
                        dilations,
                        1,
                        kernel_shape,
                        pads,
                        strides,
                    )
                except (ValueError, RuntimeError) as e:
                    raise ValueError(
                        f"Shape inconsistencies, X.shape={X.shape}, W.shape={W.shape}, group={g}/{group}, "
                        f"gx.shape={gx.shape}, gw.shape={gw.shape}, auto_pad={auto_pad}, "
                        f"dilations={dilations}, kernel_shape={kernel_shape}, pads={pads}, "
                        f"strides={strides}."
                    ) from e
                if b == 0:
                    td += cv.shape[1]
                res.append((b, cv))

        new_shape = [X.shape[0], *list(res[0][1].shape[1:])]
        new_shape[1] = td
        final = np.zeros(tuple(new_shape), dtype=res[0][1].dtype)
        p = 0
        for b, cv in res:
            final[b : b + 1, p : p + cv.shape[1]] = cv
            p += cv.shape[1]
            if p >= final.shape[1]:
                p = 0
        if B is not None:
            new_shape = [1 for s in final.shape]
            new_shape[1] = B.shape[0]
            b = B.reshape(tuple(new_shape))
            final += b
        return final

    if dilations[0] != 1 or min(dilations) != max(dilations):
        # Let's compute the dilated kernel.
        nd = len(dilations)
        new_kernel_shape = []
        new_shape = list(W.shape[:-nd])
        for i, d in enumerate(dilations):
            di = len(W.shape) - nd + i
            new_shape.append(W.shape[di] + (W.shape[di] - 1) * (d - 1))
            new_kernel_shape.append(kernel_shape[i] + (kernel_shape[i] - 1) * (d - 1))
        new_w = np.zeros(tuple(new_shape), dtype=W.dtype)
        indices = [slice(0, new_w.shape[0]), slice(0, new_w.shape[1])]
        for i, d in enumerate(dilations):
            di = len(W.shape) - nd + i
            indices.append(slice(0, new_w.shape[di], d))
        new_w[tuple(indices)] = W
        W = new_w
        kernel_shape = new_kernel_shape

    if auto_pad in {"SAME_LOWER", "SAME_UPPER", "VALID"}:
        head = []
        tail = []
        for i in range(len(X.shape) - 2):
            d = X.shape[i]
            target_size = (d + strides[i] - 1) // strides[i]
            pad_needed = (target_size - 1) * strides[i] + kernel_shape[i] - d
            if auto_pad == "SAME_LOWER":
                pad_head = (pad_needed + 1) // 2
            else:
                pad_head = pad_needed // 2
            pad_tail = pad_needed - pad_head
            head.append(pad_head)
            tail.append(pad_tail)
        pads = head + tail

    if len(X.shape) == 3:
        sN, sC, sH = X.shape
        # M, C_group, kH, kW = W.shape
        (kh,) = kernel_shape
        (sth,) = strides

        h_out = int(((sH - kh + pads[0] + pads[1]) / sth) + 1)

        h0 = pads[0]
        oh = -1 * (kh % 2)
        bh = -h0
        eh = h_out * sth
        res = np.zeros((X.shape[0], W.shape[0], h_out))  # type: ignore[assignment]
        if B is not None:
            res[:, :, :] += B.reshape((1, -1, 1))  # type: ignore

        for n in range(0, sN):
            for nw in range(W.shape[0]):
                for c in range(0, sC):
                    w = W[nw : nw + 1, c : c + 1]
                    for io in range(bh, eh, sth):
                        hr = (io - bh) // sth
                        if hr >= h_out:
                            continue
                        i = io + kh % 2
                        ih1, ih2 = max(0, i + oh), min(i + oh + kh, sH)
                        img = X[n : n + 1, c : c + 1, ih1:ih2]
                        if img.shape != w.shape:
                            jh1, jh2 = max(-oh - i, 0), min(kh, kh + sH - (i + oh + kh))
                            w_ = w[:1, :1, jh1:jh2]
                            if img.shape != w_.shape:
                                raise RuntimeError(
                                    f"Unexpected shape {img.shape} != {w_.shape}, oh={oh}, "
                                    f"i={i}, kh={kh}, sH={sH}, sth={sth}."
                                )
                            s = np.dot(img.reshape((1, -1)), w_.reshape((-1, 1)))[
                                0, 0
                            ]  # (img * w_).sum()
                        else:
                            s = np.dot(img.reshape((1, -1)), w.reshape((-1, 1)))[
                                0, 0
                            ]  # (img * w).sum()
                        res[n, nw, hr] += s  # type: ignore

        return res

    if len(X.shape) == 4:
        sN, sC, sH, sW = X.shape
        # M, C_group, kH, kW = W.shape
        kh, kw = kernel_shape
        sth, stw = strides

        h_out = int(((sH - kh + pads[0] + pads[2]) / sth) + 1)
        w_out = int(((sW - kw + pads[1] + pads[3]) / stw) + 1)

        h0, w0 = pads[0], pads[1]
        oh, ow = -1 * (kh % 2), -1 * (kw % 2)
        bh, bw = -h0, -w0
        eh, ew = h_out * sth, w_out * stw
        res = np.zeros((X.shape[0], W.shape[0], h_out, w_out))  # type: ignore[assignment]
        if B is not None:
            res[:, :, :, :] = B.reshape((1, -1, 1, 1))  # type: ignore

        for n in range(0, sN):
            for nw in range(W.shape[0]):
                for c in range(0, sC):
                    w = W[nw : nw + 1, c : c + 1]
                    for io in range(bh, eh, sth):
                        hr = (io - bh) // sth
                        if hr >= h_out:
                            continue
                        i = io + kh % 2
                        ih1, ih2 = max(0, i + oh), min(i + oh + kh, sH)
                        for jo in range(bw, ew, stw):
                            wr = (jo - bw) // stw
                            if wr >= w_out:
                                continue
                            j = jo + kw % 2
                            iw1, iw2 = max(0, j + ow), min(j + ow + kw, sW)
                            img = X[n : n + 1, c : c + 1, ih1:ih2, iw1:iw2]
                            if img.shape != w.shape:
                                jh1, jh2 = max(-oh - i, 0), min(
                                    kh, kh + sH - (i + oh + kh)
                                )
                                jw1, jw2 = max(-ow - j, 0), min(
                                    kw, kw + sW - (j + ow + kw)
                                )
                                w_ = w[:1, :1, jh1:jh2, jw1:jw2]
                                if img.shape != w_.shape:
                                    raise RuntimeError(
                                        f"Unexpected shape {img.shape} != {w_.shape}, oh={oh}, ow={ow}, "
                                        f"i={i}, j={j}, kh={kh}, kw={kw}, sH={sH}, sW={sW}, sth={sth}, stw={stw}."
                                    )
                                s = np.dot(img.reshape((1, -1)), w_.reshape((-1, 1)))[
                                    0, 0
                                ]  # (img * w_).sum()
                            else:
                                s = np.dot(img.reshape((1, -1)), w.reshape((-1, 1)))[
                                    0, 0
                                ]  # (img * w).sum()
                            res[n, nw, hr, wr] += s  # type: ignore

        return res

    if len(X.shape) == 5:
        sN, sC, sH, sW, sZ = X.shape
        kh, kw, kz = kernel_shape
        sth, stw, stz = strides

        h_out = int(((sH - kh + pads[0] + pads[3]) / sth) + 1)
        w_out = int(((sW - kw + pads[1] + pads[4]) / stw) + 1)
        z_out = int(((sZ - kz + pads[2] + pads[5]) / stz) + 1)

        h0, w0, z0 = pads[0], pads[1], pads[2]
        oh, ow, oz = -1 * (kh % 2), -1 * (kw % 2), -1 * (kz % 2)
        bh, bw, bz = -h0, -w0, -z0
        eh, ew, ez = h_out * sth, w_out * stw, z_out * stz
        res = np.zeros((X.shape[0], W.shape[0], h_out, w_out, z_out))  # type: ignore[assignment]
        if B is not None:
            res[:, :, :, :, :] = B.reshape((1, -1, 1, 1, 1))  # type: ignore

        for n in range(0, sN):
            for nw in range(W.shape[0]):
                for c in range(0, sC):
                    w = W[nw : nw + 1, c : c + 1]
                    for io in range(bh, eh, sth):
                        hr = (io - bh) // sth
                        if hr >= h_out:
                            continue
                        i = io + kh % 2
                        ih1, ih2 = max(0, i + oh), min(i + oh + kh, sH)
                        for jo in range(bw, ew, stw):
                            wr = (jo - bw) // stw
                            if wr >= w_out:
                                continue
                            j = jo + kw % 2
                            iw1, iw2 = max(0, j + ow), min(j + ow + kw, sW)
                            for zo in range(bz, ez, stz):
                                zr = (zo - bz) // stz
                                if zr >= z_out:
                                    continue
                                z = zo + kz % 2
                                iz1, iz2 = max(0, z + oz), min(z + oz + kz, sZ)
                                img = X[n : n + 1, c : c + 1, ih1:ih2, iw1:iw2, iz1:iz2]
                                if img.shape != w.shape:
                                    jh1, jh2 = max(-oh - i, 0), min(
                                        kh, kh + sH - (i + oh + kh)
                                    )
                                    jw1, jw2 = max(-ow - j, 0), min(
                                        kw, kw + sW - (j + ow + kw)
                                    )
                                    jz1, jz2 = max(-oz - z, 0), min(
                                        kz, kz + sZ - (z + oz + kz)
                                    )
                                    w_ = w[:1, :1, jh1:jh2, jw1:jw2, jz1:jz2]
                                    if img.shape != w_.shape:
                                        raise RuntimeError(
                                            f"Unexpected shape {img.shape} != {w_.shape}, oh={oh}, ow={ow}, oz={oz}, "
                                            f"i={i}, j={j}, z={z}, kh={kh}, kw={kw}, kz={kz}, "
                                            f"sH={sH}, sW={sW}, sZ={sZ}, sth={sth}, stw={stw}, stz={stz}."
                                        )
                                    s = np.dot(
                                        img.reshape((1, -1)), w_.reshape((-1, 1))
                                    )[
                                        0, 0
                                    ]  # (img * w_).sum()
                                else:
                                    s = np.dot(
                                        img.reshape((1, -1)), w.reshape((-1, 1))
                                    )[
                                        0, 0
                                    ]  # (img * w).sum()
                                res[n, nw, hr, wr, zr] += s  # type: ignore

        return res

    raise RuntimeError(
        f"The convolution for X.shape={X.shape}, W.shape={W.shape}, "
        f"kernel_shape={kernel_shape} is not implemented yet."
    )


class Conv(OpRun):
    def _run(  # type: ignore

        self,

        X,

        W,

        B=None,

        auto_pad=None,

        dilations=None,

        group=None,

        kernel_shape=None,

        pads=None,

        strides=None,

    ):
        if len(X.shape) < 3:
            raise ValueError(
                f"X must have at least 3 dimensions but its shape is {X.shape}."
            )
        return (
            # _conv_implementation(
            _conv_implementation(
                X, W, B, auto_pad, dilations, group, kernel_shape, pads, strides
            ).astype(X.dtype),
        )