File size: 29,425 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
# SPDX-License-Identifier: Apache-2.0


from __future__ import annotations

import abc
from typing import Any, ClassVar, Iterable

import numpy as np

from onnx import TensorProto
from onnx.defs import get_all_schemas_with_history, get_schema, onnx_opset_version
from onnx.helper import make_node, make_tensor_type_proto, np_dtype_to_tensor_dtype
from onnx.numpy_helper import to_array, unpack_int4
from onnx.onnx_pb import AttributeProto, GraphProto, NodeProto, TypeProto
from onnx.reference.custom_element_types import (
    bfloat16,
    float8e4m3fn,
    float8e4m3fnuz,
    float8e5m2,
    float8e5m2fnuz,
    int4,
    uint4,
)


def _split_class_name(name):  # type: ignore
    if "_" in name:
        prefix, vers = name.rsplit("_", maxsplit=1)
        try:
            v = int(vers)
        except ValueError:
            return name, None
        return prefix, v
    return name, None


class RuntimeTypeError(RuntimeError):
    """Raised when a type of a variable is unexpected."""


class RuntimeContextError(RuntimeError):
    """Raised when the context is missing but an context dependent implementation is defined for an operator."""


class RuntimeImplementationError(NotImplementedError):
    """Raised when no implementation was found for an operator."""


class DefaultNone:
    """Default value for parameters when the parameter is not set but the operator has a default behavior for it."""


class RefAttrName:
    """Implements a link between a parameter of a function and an attribute in node.



    Args:

        name: name of the input

    """

    def __init__(self, name: str):
        self.name = name

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}({self.name!r})"


def _build_schemas() -> dict[str, type]:
    res: dict[str, type] = {}
    for schema in get_all_schemas_with_history():
        # Multiple version can coexist. The last one is kept.
        if schema.name in res:
            if schema.domain != res[schema.name].domain:  # type: ignore
                raise NotImplementedError(
                    f"This function assumes every operator has a unique name {schema.name!r} "  # type: ignore
                    f"even accross multiple domains {schema.domain!r} and {res[schema.name].domain!r}."  # type: ignore
                )
            if schema.since_version > res[schema.name].since_version:  # type: ignore
                # We keep the most recent one.
                res[schema.name] = schema  # type: ignore
        else:
            res[schema.name] = schema  # type: ignore
        res[schema.name + "_" + str(schema.since_version)] = schema  # type: ignore
    return res


_schemas = _build_schemas()


class OnnxType:
    def __init__(self, type_proto: TypeProto):
        if not isinstance(type_proto, TypeProto):
            raise TypeError(f"type_proto {type(type_proto)} must be of type TypeProto.")
        self.type_proto = type_proto

    def __repr__(self) -> str:
        return f"OnnxType({self.type_proto!r})"


class SparseTensor:
    """Simple representation of a sparse tensor.

    It is based on numpy but does not require scipy.

    """

    def __init__(

        self, values: np.ndarray, indices: np.ndarray, shape: tuple[int]

    ) -> None:
        self.values = values
        self.indices = indices
        self.shape = shape

    @property
    def dtype(self) -> Any:
        return self.values.dtype


def to_sparse_tensor(att: AttributeProto) -> SparseTensor:
    """Hosts a sparse tensor."""
    shape = tuple(d for d in att.dims)  # type: ignore[attr-defined]
    return SparseTensor(to_array(att.values), to_array(att.indices), shape)  # type: ignore


def to_array_extended(tensor: TensorProto) -> np.ndarray:
    """Similar to :func:`to_array` but deals with non-numpy types bfloat16,

    float8e4m3fn, float8e4m3fnuz, float8e5m2, float8e5m2fnuz, uint4, int4.

    """
    elem_type = tensor.data_type
    if elem_type == TensorProto.BFLOAT16:
        data = tensor.int32_data
        shape = tuple(tensor.dims)
        y = np.empty(shape, dtype=bfloat16).ravel()
        for i, d in enumerate(data):
            y[i] = d
        return y.reshape(shape)

    if elem_type in (
        TensorProto.FLOAT8E4M3FN,
        TensorProto.FLOAT8E4M3FNUZ,
        TensorProto.FLOAT8E5M2,
        TensorProto.FLOAT8E5M2FNUZ,
    ):
        m = {
            TensorProto.FLOAT8E4M3FN: float8e4m3fn,
            TensorProto.FLOAT8E4M3FNUZ: float8e4m3fnuz,
            TensorProto.FLOAT8E5M2: float8e5m2,
            TensorProto.FLOAT8E5M2FNUZ: float8e5m2fnuz,
        }

        if tensor.HasField("raw_data"):
            data = tensor.raw_data  # type: ignore[assignment]
        else:
            data = tensor.int32_data
        shape = tuple(tensor.dims)
        y = np.empty(shape, dtype=m[elem_type]).ravel()  # type: ignore[index]
        for i, d in enumerate(data):
            y[i] = d
        return y.reshape(shape)
    if elem_type in (TensorProto.UINT4, TensorProto.INT4):
        if tensor.HasField("raw_data"):
            data = tensor.raw_data  # type: ignore[assignment]
        else:
            data = tensor.int32_data
        shape = tuple(tensor.dims)
        m = {TensorProto.INT4: int4, TensorProto.UINT4: uint4}
        dtype = m[elem_type]  # type: ignore[index]
        signed = elem_type == TensorProto.INT4
        y = np.empty(len(data), dtype=dtype).ravel()
        for i, d in enumerate(data):
            y[i] = d

        unpacked_data = unpack_int4(y, dims=shape, signed=signed)
        return unpacked_data.astype(dtype)
    return to_array(tensor)


class Graph:
    __slots__ = ("g",)

    def __init__(self, g: GraphProto) -> None:
        self.g = g


class OpRun(abc.ABC):
    """Ancestor to all operators in this subfolder.



    Args:

        onnx_node: `onnx` node

        run_params: additional parameters such as `verbose`, `opsets`

            (it can be more than one if the operator has a subgraph),

            `log` for a logging function

        schema: operator schema

    """

    op_domain = ""

    _attribute_conversion_functions: ClassVar[dict[Any, Any]] = {
        AttributeProto.FLOAT: lambda att: np.float32(att.f),
        AttributeProto.FLOATS: lambda att: [np.float32(f) for f in att.floats],
        AttributeProto.GRAPH: lambda att: Graph(att.g),
        AttributeProto.GRAPHS: lambda att: [Graph(g) for g in att.graphs],
        AttributeProto.INT: lambda att: int(att.i),
        AttributeProto.INTS: lambda att: [int(i) for i in att.ints],
        AttributeProto.SPARSE_TENSOR: lambda att: to_sparse_tensor(att.sparse_tensor),
        AttributeProto.SPARSE_TENSORS: lambda att: [
            to_sparse_tensor(t) for t in att.sparse_tensors
        ],
        AttributeProto.STRING: lambda att: att.s.decode("utf-8"),
        AttributeProto.STRINGS: lambda att: [s.decode("utf-8") for s in att.strings],
        AttributeProto.TENSOR: lambda att: to_array_extended(att.t),
        AttributeProto.TENSORS: lambda att: [to_array_extended(t) for t in att.tensors],
        AttributeProto.TYPE_PROTO: lambda att: OnnxType(att.tp),
        AttributeProto.TYPE_PROTOS: lambda att: [OnnxType(t) for t in att.type_protos],
    }

    def __init__(

        self, onnx_node: NodeProto, run_params: dict[str, Any], schema: Any = None

    ):
        if not isinstance(run_params, dict):
            raise TypeError(f"run_params must be a dictionary not {type(run_params)}.")
        for att in ["opsets", "new_ops"]:
            if att not in run_params:
                raise RuntimeError(
                    f"Attribute {att!r} must be in run_params, only "
                    f"{sorted(run_params)} was found."
                )
        if "log" not in run_params:
            raise KeyError("run_params must contains key 'log'.")
        self.onnx_node = onnx_node
        self.run_params = run_params
        if schema is None:
            if hasattr(self.__class__, "op_schema"):
                self._schema = self.__class__.op_schema
            elif self.__class__.__name__ in _schemas:
                self._schema = _schemas[self.__class__.__name__]
            elif onnx_node.op_type in _schemas:
                self._schema = _schemas[onnx_node.op_type]
            else:
                self._schema = None  # type: ignore
        else:
            self._schema = schema
        self.has_subgraph = False
        self._load_attributes()

    def _log(self, pattern, *args):  # type: ignore
        self.run_params["log"](pattern, *args)

    def _extract_attribute_value(

        self, att: AttributeProto, ref_att: AttributeProto | None = None

    ) -> Any:
        """Converts an attribute value into a python value."""
        if att.type == AttributeProto.GRAPH:
            new_ops = self.run_params.get("new_ops", None)
            if "existing_functions" in self.run_params:
                functions = list(self.run_params["existing_functions"].values())
            else:
                functions = None
            evaluator_cls = self.run_params.get("evaluator_cls", None)
            assert (
                evaluator_cls is not None
            ), f"evaluator_cls must be specified to evaluate att={att}"
            return evaluator_cls(
                att.g,
                opsets=self.run_params["opsets"],
                verbose=max(0, self.run_params.get("verbose", 0) - 2),
                new_ops=None if new_ops is None else list(new_ops.values()),
                functions=functions,
            )
        if att.type in OpRun._attribute_conversion_functions:
            return OpRun._attribute_conversion_functions[att.type](att)  # type: ignore
        if ref_att is None:
            raise AttributeError(
                f"Unable to convert attribute {att.name!r} type {att.type!r} "
                f"from node type {self.onnx_node.op_type!r}, "
                f"domain {self.onnx_node.domain!r}\n{att}."
            )
        raise AttributeError(
            f"Unable to convert default value for {ref_att.name!r} type {att.type!r} "
            f"from node type {self.onnx_node.op_type!r}, "
            f"domain {self.onnx_node.domain!r}\n{att}\n{ref_att}."
        )

    @staticmethod
    def _evaluate_subgraph(context, value, attributes):
        return value.run(None, context or {}, attributes=attributes)

    def _load_attributes(self) -> None:
        """Checks and loads attributes."""
        self.has_linked_attribute = False
        added_attributes = []
        for att in self.onnx_node.attribute:
            name = att.name
            if att.ref_attr_name:
                value = RefAttrName(att.ref_attr_name)
                self.has_linked_attribute = True
            else:
                value = self._extract_attribute_value(att)
            setattr(self, name, value)
            added_attributes.append(name)
            if att.type == AttributeProto.GRAPH:
                self.has_subgraph = True
                self.has_linked_attribute |= value.has_linked_attribute  # type: ignore
                setattr(
                    self,
                    f"_run_{att.name}",
                    lambda context, value=value, attributes=None: OpRun._evaluate_subgraph(
                        context, value, attributes
                    ),
                )

        if self._schema and self.onnx_node.op_type not in {"Constant"}:
            for k, v in self._schema.attributes.items():  # type: ignore
                if not hasattr(self, k):
                    if getattr(v, "required", True):
                        raise RuntimeError(
                            f"Attribute {k!r} is expected based on ONNX specifications "
                            f"for node {self.onnx_node.op_type!r}."
                        )
                    if hasattr(v, "default_value"):
                        if v.default_value.type == 0 or (
                            v.default_value.type == 4  # noqa: PLR2004
                            and v.default_value.t.data_type == 0
                        ):
                            # default value is undefined, it depends on the inputs
                            value = None  # type: ignore
                        else:
                            value = self._extract_attribute_value(v.default_value, v)
                        setattr(self, k, value)
                        added_attributes.append(k)
        self.attributes_names_ = set(added_attributes)

    @staticmethod
    def implicit_inputs(graph: GraphProto) -> list[str]:
        """Returns all varibles not registered as inputs and not produced by

        an node inside the graph. This inputs are part of the context

        existing in the graph calling this one.

        """
        if not isinstance(graph, GraphProto):
            raise TypeError(f"Unexpected type {type(graph)!r}.")
        local = set()
        known = set()
        for init in graph.initializer:
            known.add(init.name)
        for sparse_init in graph.sparse_initializer:
            known.add(sparse_init.name)  # type: ignore
        for inp in graph.input:
            known.add(inp.name)
        for node in graph.node:
            for o in node.output:
                known.add(o)
            for i in node.input:
                if i not in known:
                    local.add(i)
        return list(local)

    @property
    def input(self) -> Iterable[str]:
        """Returns node attribute `input`."""
        return self.onnx_node.input  # type: ignore

    @property
    def output(self) -> Iterable[str]:
        """Returns node attribute `output`."""
        return self.onnx_node.output  # type: ignore

    @property
    def op_type(self) -> str:
        """Returns node attribute `op_type`."""
        return self.onnx_node.op_type  # type: ignore

    @property
    def domain(self) -> str:
        """Returns node attribute `domain`."""
        return self.onnx_node.domain  # type: ignore

    def need_context(self) -> bool:
        """Tells the runtime if this node needs the context

        (all the results produced so far) as it may silently access

        one of them (operator Scan, If, Loop).

        The default answer is `False`.

        """
        return False

    def __str__(self) -> str:
        atts = [self.__class__.__name__ + "(", f"    op_type={self.onnx_node.op_type}"]
        for k, v in sorted(self.__dict__.items()):
            if k in {"desc", "onnx_node"}:
                continue
            if "a" <= k[0] <= "z" and k[-1] != "_":
                atts.append(f"    {k}={v},")
        atts.append(")")
        return "\n".join(atts)

    @abc.abstractmethod
    def _run(self, *args, **kwargs):  # type: ignore
        """Should be overwritten.



        Args:

            *args: operator inputs

            **kwargs: optional inputs and overriden attributes, an

                attribute may be overridden if it belongs to a function,

                in this case, the same instance of OpRun can be called

                with different values of the same attribute.



        Returns:

            outputs

        """
        raise NotImplementedError(
            f"Method '_run' must be overwritten for operator {self.__class__.__name__!r}."
        )

    def _check_and_fix_outputs(self, res: tuple[Any, ...]) -> tuple[Any, ...]:
        """Checks the output are from the expected type."""
        if not isinstance(res, tuple):
            raise TypeError(
                f"Method '_run' of class {self.__class__.__name__!r} does not return a tuple but '{type(res)}'."
            )
        if not res:
            raise ValueError(
                f"Method '_run' of class {self.__class__.__name__!r} does not return any result."
            )
        if any(isinstance(t, tuple) for t in res):
            dtypes = [type(t) for t in res]
            raise TypeError(
                f"One of the results returned by method '_run' of class {self.__class__.__name__!r} "
                f"is a tuple, this is no ONNX corresponding type (Map, List, Tensor, SparseTensor). "
                f"All returned types: {dtypes!r}."
            )
        res = tuple(  # type: ignore[assignment]
            (np.array(x) if np.isscalar(x) else x) for x in res
        )
        if any(
            not (isinstance(t, (np.ndarray, list, dict)) or hasattr(t, "todense"))
            for t in res
        ):
            dtypes = [type(t) for t in res]
            raise TypeError(
                f"One of the results returned by method '_run' of class {self.__class__.__name__!r} "
                f"has an unexpected type, this is no ONNX correponding type (Map, List, Tensor, SparseTensor). "
                f"All returned types: {dtypes!r}."
            )
        return res

    def run(self, *args, linked_attributes=None, context=None):  # type: ignore
        """Calls method ``_run``, catches exceptions,

        displays a longer error message.



        Args:

            *args: inputs

            linked_attributes: used if this has an attriute linked to

                the attribute of the function it belongs to

            context: if this node is part of the subgraph, `context` is

                a dictionary with the values this node may use



        Returns:

            tuple of results

        """
        if self.need_context():
            if context is None:
                raise RuntimeError(
                    f"This node if type {type(self)} needs context to be filled."
                )
        elif context is not None:
            raise RuntimeError(
                f"This node if type {type(self)} does not need any contextbut one is given."
            )
        if self.has_linked_attribute and linked_attributes is None:
            raise ValueError(
                f"This node {type(self)} has linked attributes but None are given in parameter 'linked_attributes'."
            )
        if not self.has_linked_attribute and linked_attributes is not None:
            raise ValueError(
                f"This node {type(self)} has no linked attribute but some are given in parameter "
                f"'linked_attributes' {set(linked_attributes)}."
            )
        overridden_attributes = {}
        if self.has_linked_attribute:
            if linked_attributes is None:
                raise AttributeError(
                    f"One attribute is linked but no linked value is provided, "
                    f"in class {type(self)}."
                )
            for att in self.attributes_names_:
                v = getattr(self, att)
                if isinstance(v, RefAttrName):
                    if v.name not in linked_attributes:
                        raise ValueError(
                            f"Unable to find a value for linked attribute {att!r} in {linked_attributes!r} "
                            f"in node {type(self)}."
                        )
                    overridden_attributes[att] = linked_attributes[v.name]

        self._log("-- begin %s.run(%d inputs)", self.__class__.__name__, len(args))
        kwargs = {}
        for att in self.attributes_names_:
            if att in overridden_attributes:
                continue
            if not hasattr(self, att):
                raise NameError(
                    f"Attribute {att!r} is missing in operator {self.__class__.__name__!r}."
                )
            kwargs[att] = getattr(self, att)
        if self.has_subgraph:
            if self.has_linked_attribute and not linked_attributes:
                raise RuntimeError(
                    f"A subgraph has linked attribute but none was given to {type(self)}."
                )
            kwargs["attributes"] = linked_attributes
        if context is not None:
            kwargs["context"] = context
        try:
            if overridden_attributes:
                res = self._run(*args, **overridden_attributes, **kwargs)
            else:
                res = self._run(*args, **kwargs)
        except (TypeError, AttributeError) as e:
            raise TypeError(
                f"Issues with types {[type(_) for _ in args]} and attributes "
                f"{sorted(kwargs)} and linked attributes={sorted(overridden_attributes)} "
                f"(operator {self.__class__.__name__!r})."
            ) from e
        self._log(
            "-- done %s.run -> %d outputs",
            self.__class__.__name__,
            len(res) if res is not None else 0,
        )
        return self._check_and_fix_outputs(res)

    @classmethod
    def infer_name(cls):
        name = cls.__name__
        if "_" not in name:
            return name, onnx_opset_version()
        name, vers = name.rsplit("_", 1)
        try:
            i_vers = int(vers)
        except ValueError:
            return cls.__name__, onnx_opset_version()
        return name, i_vers

    @classmethod
    def make_node(

        cls,

        n_inputs: int | None = None,

        n_outputs: int | None = None,

        **kwargs: Any,

    ) -> NodeProto:  # type: ignore
        """Creates an ONNX node for this class based on the given information.



        Args:

            n_inputs: number of inputs (default is defined by the

                operator schema)

            n_outputs: number of outputs (default is defined by the

                operator schema)

            verbose: verbosity

            **kwargs: node attributes



        Returns:

            NodeProto



        Method :meth:`eval <onnx.reference.op_run.OpRun.eval>` creates an onnx node

        returned by method :meth:`make_node <onnx.reference.op_run.OpRun.make_node>`.



        .. exec_code::



            import numpy as np

            from onnx.reference.ops._op_list import Celu



            onnx_node = Celu.make_node(alpha=0.5)

            print(onnx_node)

        """
        op_type, opset = cls.infer_name()
        domain = cls.op_domain
        schema = None
        if n_inputs is None:
            if schema is None:
                schema = get_schema(op_type, opset, domain)
            n_inputs = schema.min_input
        if n_outputs is None:
            if schema is None:
                schema = get_schema(op_type, opset, domain)
            n_outputs = schema.min_output

        names_in = [f"x{i}" for i in range(n_inputs)]
        names_out = [f"y{i}" for i in range(n_outputs)]
        node = make_node(op_type, names_in, names_out, **kwargs)
        return node

    @classmethod
    def create(

        cls,

        n_inputs: int | None = None,

        n_outputs: int | None = None,

        verbose: int = 0,

        **kwargs: Any,

    ) -> Any:
        """Instantiates this class based on the given information.



        Args:

            n_inputs: number of inputs (default is defined by the

                operator schema)

            n_outputs: number of outputs (default is defined by the

                operator schema)

            verbose: verbosity

            **kwargs: node attributes



        Returns:

            NodeProto

        """

        def log_function(pattern: str, *args: Any) -> None:
            if verbose > 1:
                print(pattern % tuple(args))

        node = cls.make_node(n_inputs, n_outputs, **kwargs)
        run_params = {
            "verbose": verbose,
            "log": log_function,
            "new_ops": None,
            "opsets": {"": onnx_opset_version()},
        }
        cl = cls(node, run_params)
        return cl

    @classmethod
    def eval(

        cls,

        *args: list[Any],

        n_outputs: int | None = None,

        verbose: int = 0,

        **kwargs: Any,

    ) -> Any:  # type: ignore
        """Evaluates this operator.



        Args:

            *args: inputs

            n_outputs: number of outputs (default is defined by the

                operator schema)

            verbose: verbosity

            **kwargs: node attributes



        Returns:

            NodeProto

        """
        inst = cls.create(len(args), n_outputs=n_outputs, verbose=verbose, **kwargs)
        res = inst.run(*args)
        if len(res) == 1:
            return res[0]
        return res


class OpRunExpand(OpRun):
    """Class any operator to avoid must inherit from."""

    def __init__(

        self, onnx_node: NodeProto, run_params: dict[str, Any], impl: Any = None

    ):
        raise RuntimeError(
            f"The reference implementation must not use this node ({type(self)})."
        )

    def _run(self, *inputs, **kwargs):
        raise RuntimeError(
            f"The reference implementation must not use this node ({type(self)})."
        )


class OpFunction(OpRun):
    """Runs a custom function."""

    def __init__(

        self,

        onnx_node: NodeProto,

        run_params: dict[str, Any] | None,

        impl: Any = None,

        attributes: dict[str, Any] | None = None,

    ):
        if impl is None:
            raise RuntimeError(
                f"impl cannot be None for node type {onnx_node.op_type!r} "
                f"from domain {onnx_node.domain!r}."
            )
        OpRun.__init__(self, onnx_node, run_params)  # type: ignore[arg-type]
        self.impl_ = impl
        # The function implementation is the same whenever the function is called
        # but the attributes may be different at every call.
        self.attributes_ = {
            name: getattr(self, name)
            for name in getattr(self.impl_, "attributes_", attributes)  # type: ignore[union-attr]
        }

    def _run(self, *inputs, **kwargs):  # type: ignore
        return self._run_impl(self.impl_, *inputs, **kwargs)

    def _run_impl(self, impl, *inputs, **kwargs):  # type: ignore
        if len(impl.input_names) != len(inputs):
            raise RuntimeError(
                f"Mismatch lengths between the number of inputs {len(inputs)} "
                f"and the expected number of inputs {len(impl.inputs)} "
                f"for node {self.op_type!r} from domain {self.domain!r}."
            )
        feeds = dict(zip(impl.input_names, inputs))
        attributes = self.attributes_.copy()
        attributes.update(kwargs)
        results = impl.run(None, feeds, attributes=attributes)
        if len(impl.output_names) != len(results):
            raise RuntimeError(
                f"Mismatch lengths between the number of outputs {len(results)} "
                f"and the expected number of outputs {len(impl.output_names)} "
                f"for node {self.op_type!r} from domain {self.domain!r}."
            )
        return tuple(results)


class OpFunctionContextDependant(OpFunction):
    """The function can be instantiated but only at execution time.

    An instance of OpFunction is created everytime to node is executed.

    This is needed when the schema of an operator defines a context dependant function.

    """

    def __init__(

        self,

        onnx_node: NodeProto,

        run_params: dict[str, Any] | None,

        parent: Any = None,

    ):
        OpFunction.__init__(self, onnx_node, run_params, impl=self, attributes={})
        self.parent = parent
        version = parent.opsets[onnx_node.domain]
        self.schema_ = get_schema(onnx_node.op_type, version, onnx_node.domain)

    def _run(self, *inputs, **kwargs):
        # Input types are known. They are used to properly
        # created the body for this operator.
        types = []
        for t in inputs:
            try:
                ttype = np_dtype_to_tensor_dtype(t.dtype)
            except KeyError as e:
                if t.dtype == float8e4m3fn:
                    ttype = TensorProto.FLOAT8E4M3FN  # type: ignore[attr-defined]
                elif t.dtype == float8e4m3fnuz:
                    ttype = TensorProto.FLOAT8E4M3FNUZ  # type: ignore[attr-defined]
                elif t.dtype == float8e5m2:
                    ttype = TensorProto.FLOAT8E5M2  # type: ignore[attr-defined]
                elif t.dtype == float8e5m2fnuz:
                    ttype = TensorProto.FLOAT8E5M2FNUZ  # type: ignore[attr-defined]
                elif t.dtype == bfloat16:
                    ttype = TensorProto.BLOFAT16  # type: ignore[attr-defined]
                elif t.dtype == uint4:
                    ttype = TensorProto.UINT4  # type: ignore[attr-defined]
                elif t.dtype == int4:
                    ttype = TensorProto.INT4  # type: ignore[attr-defined]
                else:
                    raise e
            types.append(make_tensor_type_proto(ttype, t.shape))
        cl = self.parent._load_impl(self.onnx_node, types)
        inst = cl(self.onnx_node, self.run_params)
        return self._run_impl(inst.impl_, *inputs, **kwargs)