Spaces:
Sleeping
Sleeping
File size: 4,682 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# @generated by protoc-gen-mypy.py. Do not edit!
# mypy: disable-error-code=override
from google.protobuf.message import ( # type: ignore
Message,
)
from typing import (
Iterable,
List,
Optional as OptionalType,
Tuple,
cast,
)
from google.protobuf.internal.containers import ( # type: ignore
RepeatedCompositeFieldContainer,
RepeatedScalarFieldContainer,
)
from onnx.onnx_ml_pb2 import (
SparseTensorProto,
TensorProto,
)
class SequenceProto(Message):
class DataType(int):
@classmethod
def Name(cls, number: int) -> str: ...
@classmethod
def Value(cls, name: str) -> int: ...
@classmethod
def keys(cls) -> List[str]: ...
@classmethod
def values(cls) -> List[int]: ...
@classmethod
def items(cls) -> List[Tuple[str, int]]: ...
UNDEFINED = cast(DataType, 0)
TENSOR = cast(DataType, 1)
SPARSE_TENSOR = cast(DataType, 2)
SEQUENCE = cast(DataType, 3)
MAP = cast(DataType, 4)
OPTIONAL = cast(DataType, 5)
name = ... # type: str
elem_type = ... # type: int
@property
def tensor_values(self) -> RepeatedCompositeFieldContainer[TensorProto]: ...
@property
def sparse_tensor_values(self) -> RepeatedCompositeFieldContainer[SparseTensorProto]: ...
@property
def sequence_values(self) -> RepeatedCompositeFieldContainer[SequenceProto]: ...
@property
def map_values(self) -> RepeatedCompositeFieldContainer[MapProto]: ...
@property
def optional_values(self) -> RepeatedCompositeFieldContainer[OptionalProto]: ...
def __init__(self,
name : OptionalType[str] = None,
elem_type : OptionalType[int] = None,
tensor_values : OptionalType[Iterable[TensorProto]] = None,
sparse_tensor_values : OptionalType[Iterable[SparseTensorProto]] = None,
sequence_values : OptionalType[Iterable[SequenceProto]] = None,
map_values : OptionalType[Iterable[MapProto]] = None,
optional_values : OptionalType[Iterable[OptionalProto]] = None,
) -> None: ...
@classmethod
def FromString(cls, s: bytes) -> SequenceProto: ...
def MergeFrom(self, other_msg: Message) -> None: ...
def CopyFrom(self, other_msg: Message) -> None: ...
class MapProto(Message):
name = ... # type: str
key_type = ... # type: int
keys = ... # type: RepeatedScalarFieldContainer[int]
string_keys = ... # type: RepeatedScalarFieldContainer[bytes]
@property
def values(self) -> SequenceProto: ...
def __init__(self,
name : OptionalType[str] = None,
key_type : OptionalType[int] = None,
keys : OptionalType[Iterable[int]] = None,
string_keys : OptionalType[Iterable[bytes]] = None,
values : OptionalType[SequenceProto] = None,
) -> None: ...
@classmethod
def FromString(cls, s: bytes) -> MapProto: ...
def MergeFrom(self, other_msg: Message) -> None: ...
def CopyFrom(self, other_msg: Message) -> None: ...
class OptionalProto(Message):
class DataType(int):
@classmethod
def Name(cls, number: int) -> str: ...
@classmethod
def Value(cls, name: str) -> int: ...
@classmethod
def keys(cls) -> List[str]: ...
@classmethod
def values(cls) -> List[int]: ...
@classmethod
def items(cls) -> List[Tuple[str, int]]: ...
UNDEFINED = cast(DataType, 0)
TENSOR = cast(DataType, 1)
SPARSE_TENSOR = cast(DataType, 2)
SEQUENCE = cast(DataType, 3)
MAP = cast(DataType, 4)
OPTIONAL = cast(DataType, 5)
name = ... # type: str
elem_type = ... # type: int
@property
def tensor_value(self) -> TensorProto: ...
@property
def sparse_tensor_value(self) -> SparseTensorProto: ...
@property
def sequence_value(self) -> SequenceProto: ...
@property
def map_value(self) -> MapProto: ...
@property
def optional_value(self) -> OptionalProto: ...
def __init__(self,
name : OptionalType[str] = None,
elem_type : OptionalType[int] = None,
tensor_value : OptionalType[TensorProto] = None,
sparse_tensor_value : OptionalType[SparseTensorProto] = None,
sequence_value : OptionalType[SequenceProto] = None,
map_value : OptionalType[MapProto] = None,
optional_value : OptionalType[OptionalProto] = None,
) -> None: ...
@classmethod
def FromString(cls, s: bytes) -> OptionalProto: ...
def MergeFrom(self, other_msg: Message) -> None: ...
def CopyFrom(self, other_msg: Message) -> None: ...
|