File size: 4,682 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# @generated by protoc-gen-mypy.py.  Do not edit!
# mypy: disable-error-code=override
from google.protobuf.message import (  # type: ignore
    Message,
)

from typing import (
    Iterable,
    List,
    Optional as OptionalType,
    Tuple,
    cast,
)

from google.protobuf.internal.containers import (  # type: ignore
    RepeatedCompositeFieldContainer,
    RepeatedScalarFieldContainer,
)

from onnx.onnx_ml_pb2 import (
    SparseTensorProto,
    TensorProto,
)

class SequenceProto(Message):
    class DataType(int):
        @classmethod
        def Name(cls, number: int) -> str: ...
        @classmethod
        def Value(cls, name: str) -> int: ...
        @classmethod
        def keys(cls) -> List[str]: ...
        @classmethod
        def values(cls) -> List[int]: ...
        @classmethod
        def items(cls) -> List[Tuple[str, int]]: ...
    UNDEFINED = cast(DataType, 0)
    TENSOR = cast(DataType, 1)
    SPARSE_TENSOR = cast(DataType, 2)
    SEQUENCE = cast(DataType, 3)
    MAP = cast(DataType, 4)
    OPTIONAL = cast(DataType, 5)
    
    name = ... # type: str
    elem_type = ... # type: int
    
    @property
    def tensor_values(self) -> RepeatedCompositeFieldContainer[TensorProto]: ...
    
    @property
    def sparse_tensor_values(self) -> RepeatedCompositeFieldContainer[SparseTensorProto]: ...
    
    @property
    def sequence_values(self) -> RepeatedCompositeFieldContainer[SequenceProto]: ...
    
    @property
    def map_values(self) -> RepeatedCompositeFieldContainer[MapProto]: ...
    
    @property
    def optional_values(self) -> RepeatedCompositeFieldContainer[OptionalProto]: ...
    
    def __init__(self,
        name : OptionalType[str] = None,
        elem_type : OptionalType[int] = None,
        tensor_values : OptionalType[Iterable[TensorProto]] = None,
        sparse_tensor_values : OptionalType[Iterable[SparseTensorProto]] = None,
        sequence_values : OptionalType[Iterable[SequenceProto]] = None,
        map_values : OptionalType[Iterable[MapProto]] = None,
        optional_values : OptionalType[Iterable[OptionalProto]] = None,
        ) -> None: ...
    @classmethod
    def FromString(cls, s: bytes) -> SequenceProto: ...
    def MergeFrom(self, other_msg: Message) -> None: ...
    def CopyFrom(self, other_msg: Message) -> None: ...

class MapProto(Message):
    name = ... # type: str
    key_type = ... # type: int
    keys = ... # type: RepeatedScalarFieldContainer[int]
    string_keys = ... # type: RepeatedScalarFieldContainer[bytes]
    
    @property
    def values(self) -> SequenceProto: ...
    
    def __init__(self,
        name : OptionalType[str] = None,
        key_type : OptionalType[int] = None,
        keys : OptionalType[Iterable[int]] = None,
        string_keys : OptionalType[Iterable[bytes]] = None,
        values : OptionalType[SequenceProto] = None,
        ) -> None: ...
    @classmethod
    def FromString(cls, s: bytes) -> MapProto: ...
    def MergeFrom(self, other_msg: Message) -> None: ...
    def CopyFrom(self, other_msg: Message) -> None: ...

class OptionalProto(Message):
    class DataType(int):
        @classmethod
        def Name(cls, number: int) -> str: ...
        @classmethod
        def Value(cls, name: str) -> int: ...
        @classmethod
        def keys(cls) -> List[str]: ...
        @classmethod
        def values(cls) -> List[int]: ...
        @classmethod
        def items(cls) -> List[Tuple[str, int]]: ...
    UNDEFINED = cast(DataType, 0)
    TENSOR = cast(DataType, 1)
    SPARSE_TENSOR = cast(DataType, 2)
    SEQUENCE = cast(DataType, 3)
    MAP = cast(DataType, 4)
    OPTIONAL = cast(DataType, 5)
    
    name = ... # type: str
    elem_type = ... # type: int
    
    @property
    def tensor_value(self) -> TensorProto: ...
    
    @property
    def sparse_tensor_value(self) -> SparseTensorProto: ...
    
    @property
    def sequence_value(self) -> SequenceProto: ...
    
    @property
    def map_value(self) -> MapProto: ...
    
    @property
    def optional_value(self) -> OptionalProto: ...
    
    def __init__(self,
        name : OptionalType[str] = None,
        elem_type : OptionalType[int] = None,
        tensor_value : OptionalType[TensorProto] = None,
        sparse_tensor_value : OptionalType[SparseTensorProto] = None,
        sequence_value : OptionalType[SequenceProto] = None,
        map_value : OptionalType[MapProto] = None,
        optional_value : OptionalType[OptionalProto] = None,
        ) -> None: ...
    @classmethod
    def FromString(cls, s: bytes) -> OptionalProto: ...
    def MergeFrom(self, other_msg: Message) -> None: ...
    def CopyFrom(self, other_msg: Message) -> None: ...