File size: 8,457 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0

import warnings
from typing import Any, Dict, NamedTuple, Union, cast

import numpy as np

from onnx import OptionalProto, SequenceProto, TensorProto


class TensorDtypeMap(NamedTuple):
    np_dtype: np.dtype
    storage_dtype: int
    name: str


# tensor_dtype: (numpy type, storage type, string name)
TENSOR_TYPE_MAP = {
    int(TensorProto.FLOAT): TensorDtypeMap(
        np.dtype("float32"), int(TensorProto.FLOAT), "TensorProto.FLOAT"
    ),
    int(TensorProto.UINT8): TensorDtypeMap(
        np.dtype("uint8"), int(TensorProto.INT32), "TensorProto.UINT8"
    ),
    int(TensorProto.INT8): TensorDtypeMap(
        np.dtype("int8"), int(TensorProto.INT32), "TensorProto.INT8"
    ),
    int(TensorProto.UINT16): TensorDtypeMap(
        np.dtype("uint16"), int(TensorProto.INT32), "TensorProto.UINT16"
    ),
    int(TensorProto.INT16): TensorDtypeMap(
        np.dtype("int16"), int(TensorProto.INT32), "TensorProto.INT16"
    ),
    int(TensorProto.INT32): TensorDtypeMap(
        np.dtype("int32"), int(TensorProto.INT32), "TensorProto.INT32"
    ),
    int(TensorProto.INT64): TensorDtypeMap(
        np.dtype("int64"), int(TensorProto.INT64), "TensorProto.INT64"
    ),
    int(TensorProto.BOOL): TensorDtypeMap(
        np.dtype("bool"), int(TensorProto.INT32), "TensorProto.BOOL"
    ),
    int(TensorProto.FLOAT16): TensorDtypeMap(
        np.dtype("float16"), int(TensorProto.UINT16), "TensorProto.FLOAT16"
    ),
    # Native numpy does not support bfloat16 so now use float32.
    int(TensorProto.BFLOAT16): TensorDtypeMap(
        np.dtype("float32"), int(TensorProto.UINT16), "TensorProto.BFLOAT16"
    ),
    int(TensorProto.DOUBLE): TensorDtypeMap(
        np.dtype("float64"), int(TensorProto.DOUBLE), "TensorProto.DOUBLE"
    ),
    int(TensorProto.COMPLEX64): TensorDtypeMap(
        np.dtype("complex64"), int(TensorProto.FLOAT), "TensorProto.COMPLEX64"
    ),
    int(TensorProto.COMPLEX128): TensorDtypeMap(
        np.dtype("complex128"), int(TensorProto.DOUBLE), "TensorProto.COMPLEX128"
    ),
    int(TensorProto.UINT32): TensorDtypeMap(
        np.dtype("uint32"), int(TensorProto.UINT32), "TensorProto.UINT32"
    ),
    int(TensorProto.UINT64): TensorDtypeMap(
        np.dtype("uint64"), int(TensorProto.UINT64), "TensorProto.UINT64"
    ),
    int(TensorProto.STRING): TensorDtypeMap(
        np.dtype("object"), int(TensorProto.STRING), "TensorProto.STRING"
    ),
    # Native numpy does not support float8 types, so now use float32 for these types.
    int(TensorProto.FLOAT8E4M3FN): TensorDtypeMap(
        np.dtype("float32"), int(TensorProto.UINT8), "TensorProto.FLOAT8E4M3FN"
    ),
    int(TensorProto.FLOAT8E4M3FNUZ): TensorDtypeMap(
        np.dtype("float32"), int(TensorProto.UINT8), "TensorProto.FLOAT8E4M3FNUZ"
    ),
    int(TensorProto.FLOAT8E5M2): TensorDtypeMap(
        np.dtype("float32"), int(TensorProto.UINT8), "TensorProto.FLOAT8E5M2"
    ),
    int(TensorProto.FLOAT8E5M2FNUZ): TensorDtypeMap(
        np.dtype("float32"), int(TensorProto.UINT8), "TensorProto.FLOAT8E5M2FNUZ"
    ),
    # Native numpy does not support uint4/int4 so now use uint8/int8 for these types.
    int(TensorProto.UINT4): TensorDtypeMap(
        np.dtype("uint8"), int(TensorProto.INT32), "TensorProto.UINT4"
    ),
    int(TensorProto.INT4): TensorDtypeMap(
        np.dtype("int8"), int(TensorProto.INT32), "TensorProto.INT4"
    ),
}


class DeprecatedWarningDict(dict):  # type: ignore
    def __init__(

        self,

        dictionary: Dict[int, Union[int, str, np.dtype]],

        original_function: str,

        future_function: str = "",

    ) -> None:
        super().__init__(dictionary)
        self._origin_function = original_function
        self._future_function = future_function

    def __eq__(self, other: object) -> bool:
        if not isinstance(other, DeprecatedWarningDict):
            return False
        return (
            self._origin_function == other._origin_function
            and self._future_function == other._future_function
        )

    def __getitem__(self, key: Union[int, str, np.dtype]) -> Any:
        if not self._future_function:
            warnings.warn(
                str(
                    f"`mapping.{self._origin_function}` is now deprecated and will be removed in a future release."
                    "To silence this warning, please simply use if-else statement to get the corresponding value."
                ),
                DeprecationWarning,
                stacklevel=2,
            )
        else:
            warnings.warn(
                str(
                    f"`mapping.{self._origin_function}` is now deprecated and will be removed in a future release."
                    f"To silence this warning, please use `helper.{self._future_function}` instead."
                ),
                DeprecationWarning,
                stacklevel=2,
            )
        return super().__getitem__(key)


# This map is used for converting TensorProto values into numpy arrays
TENSOR_TYPE_TO_NP_TYPE = DeprecatedWarningDict(
    {tensor_dtype: value.np_dtype for tensor_dtype, value in TENSOR_TYPE_MAP.items()},
    "TENSOR_TYPE_TO_NP_TYPE",
    "tensor_dtype_to_np_dtype",
)
# This is only used to get keys into STORAGE_TENSOR_TYPE_TO_FIELD.
# TODO(https://github.com/onnx/onnx/issues/4554): Move these variables into _mapping.py

TENSOR_TYPE_TO_STORAGE_TENSOR_TYPE = DeprecatedWarningDict(
    {
        tensor_dtype: value.storage_dtype
        for tensor_dtype, value in TENSOR_TYPE_MAP.items()
    },
    "TENSOR_TYPE_TO_STORAGE_TENSOR_TYPE",
    "tensor_dtype_to_storage_tensor_dtype",
)

# NP_TYPE_TO_TENSOR_TYPE will be eventually removed in the future
# and _NP_TYPE_TO_TENSOR_TYPE will only be used internally
_NP_TYPE_TO_TENSOR_TYPE = {
    v: k
    for k, v in TENSOR_TYPE_TO_NP_TYPE.items()
    if k
    not in (
        TensorProto.BFLOAT16,
        TensorProto.FLOAT8E4M3FN,
        TensorProto.FLOAT8E4M3FNUZ,
        TensorProto.FLOAT8E5M2,
        TensorProto.FLOAT8E5M2FNUZ,
        TensorProto.UINT4,
        TensorProto.INT4,
    )
}

# Currently native numpy does not support bfloat16 so TensorProto.BFLOAT16 is ignored for now
# Numpy float32 array is only reversed to TensorProto.FLOAT
NP_TYPE_TO_TENSOR_TYPE = DeprecatedWarningDict(
    cast(Dict[int, Union[int, str, Any]], _NP_TYPE_TO_TENSOR_TYPE),
    "NP_TYPE_TO_TENSOR_TYPE",
    "np_dtype_to_tensor_dtype",
)

# STORAGE_TENSOR_TYPE_TO_FIELD will be eventually removed in the future
# and _STORAGE_TENSOR_TYPE_TO_FIELD will only be used internally
_STORAGE_TENSOR_TYPE_TO_FIELD = {
    int(TensorProto.FLOAT): "float_data",
    int(TensorProto.INT32): "int32_data",
    int(TensorProto.INT64): "int64_data",
    int(TensorProto.UINT8): "int32_data",
    int(TensorProto.UINT16): "int32_data",
    int(TensorProto.DOUBLE): "double_data",
    int(TensorProto.COMPLEX64): "float_data",
    int(TensorProto.COMPLEX128): "double_data",
    int(TensorProto.UINT32): "uint64_data",
    int(TensorProto.UINT64): "uint64_data",
    int(TensorProto.STRING): "string_data",
    int(TensorProto.BOOL): "int32_data",
}

STORAGE_TENSOR_TYPE_TO_FIELD = DeprecatedWarningDict(
    cast(Dict[int, Union[int, str, Any]], _STORAGE_TENSOR_TYPE_TO_FIELD),
    "STORAGE_TENSOR_TYPE_TO_FIELD",
)


# This map will be removed and there is no replacement for it
STORAGE_ELEMENT_TYPE_TO_FIELD = DeprecatedWarningDict(
    {
        int(SequenceProto.TENSOR): "tensor_values",
        int(SequenceProto.SPARSE_TENSOR): "sparse_tensor_values",
        int(SequenceProto.SEQUENCE): "sequence_values",
        int(SequenceProto.MAP): "map_values",
        int(OptionalProto.OPTIONAL): "optional_value",
    },
    "STORAGE_ELEMENT_TYPE_TO_FIELD",
)


# This map will be removed and there is no replacement for it
OPTIONAL_ELEMENT_TYPE_TO_FIELD = DeprecatedWarningDict(
    {
        int(OptionalProto.TENSOR): "tensor_value",
        int(OptionalProto.SPARSE_TENSOR): "sparse_tensor_value",
        int(OptionalProto.SEQUENCE): "sequence_value",
        int(OptionalProto.MAP): "map_value",
        int(OptionalProto.OPTIONAL): "optional_value",
    },
    "OPTIONAL_ELEMENT_TYPE_TO_FIELD",
)