File size: 28,509 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/*

 * SPDX-License-Identifier: Apache-2.0

 */

#include <algorithm>
#include <cmath>

#include "onnx/defs/function.h"
#include "onnx/defs/schema.h"

namespace ONNX_NAMESPACE {

static const char* Gradient_ver1_doc = R"DOC(

Gradient operator computes the partial derivatives of a specific tensor w.r.t.

some other tensors. This operator is widely used in gradient-based training

algorithms. To illustrate its use, let's consider a computation graph,



```

X -----.

       |

       v

W --> Conv --> H --> Gemm --> Y

                      ^

                      |

                      Z

```



, where W and Z are trainable tensors. Note that operators' attributes are

omitted for the sake of simplicity. Let dY/dW (dY/dZ) be the gradient of

Y with respect to W (Z). The user can compute gradient by inserting Gradient

operator to form another graph shown below.



```

W --> Conv --> H --> Gemm --> Y

|      ^              ^

|      |              |

|      X              Z

|      |              |

|      |   .----------'

|      |   |  (W/Z/X is the 1st/2nd/3rd input of Gradient as shown in

|      |   |   "xs" followed by "zs")

|      v   v

'---> Gradient(xs=["W", "Z"], zs=["X"], y="Y")

       |   |

       |   '-----------------------------------> dY/dW (1st output of Gradient)

       |

       '---------------------------------------> dY/dZ (2nd output of Gradient)

```



By definition, the tensor "y" is a function of independent variables in "xs"

and "zs". Since we only compute the gradient of "y" w.r.t. the differentiable

variables in "xs", this Gradient only outputs dY/dW and dY/dZ. Note that "H"

cannot appear in "xs" and "zs". The reason is that "H" can be determined by

tensors "W" and "X" and therefore "H" is not an independent variable.



All outputs are optional. If needed, for example, user can assign an empty

string to the 1st output name of that Gradient to skip the generation of dY/dW.

Note that the concept of optional outputs can also be found in ONNX's RNN, GRU,

and LSTM.



Gradient operator can compute derivative against intermediate tensors. For

example, the gradient of Y with respect to H can be done via



```

W --> Conv --> H --> Gemm --> Y

       ^       |      ^

       |       |      |

       X       |      Z

       .-------'      |

       |   .----------'

       |   | (H/Z is the 1st/2nd input of Gradient as shown in "xs")

       v   v

      Gradient(xs=["H", "Z"], y="Y")

       |   |

       |   '-----------------------------------> dY/dH (1st output of Gradient)

       |

       '---------------------------------------> dY/dZ (2nd output of Gradient)

```



It is possible to represent high-order differentiation using Gradient operators.

For example, given the following linear model:



```

W --> Gemm --> Y --> Loss --> O

       ^              ^

       |              |

       X              L

```



To compute the 2nd order derivative of O with respect to W (denoted by

d^2O/dW^2), one can do



```

W --> Gemm --> Y --> Loss --> O

|      ^              ^

|      |              |

|      X .------------L

|      | |            |

|      | |            v

+------+-+> Gradient(xs=["X", "W"], zs=["L"], y="O") ---> dO/dX (1st output of Gradient)

|      | |    |

|      | |    '---> dO/dW (2nd output of Gradient)

|      v v

'---> Gradient(xs=["X", "W"], zs=["L"], y="dO/dW") ---> d(dO/dW)dX (1st output of

       |                                                  Gradient)

       |

       |

       '---> d^2O/dW^2 (2nd output of Gradient)

```



The tensors named in attributes "xs", "zs", and "y" define the differentiated

computation graph, and the inputs to Gradient node define the values at

which the gradient is computed. We can feed different tensors to the identified

graph. For example, one can compute the gradient of Y with respect to H at

a specific value of H, H_1, by providing that value as an input to the Gradient

node.



```

W --> Conv --> H --> Gemm --> Y

       ^              ^

       |              |

       X              Z



          Z_1 (2nd input of Gradient)

           |

           v

H_1 --> Gradient(xs=["H", "Z"], y="Y") ---> dY/dH when H = H_1 and Y = Y_1.

           |

           '------------------------------> dY/dZ (2nd output of Gradient)

```



When the inputs of Gradient are the tensors named in "xs" and "zs", the

computation can be optimized. More specifically, intermediate variables in

forward pass can be reused if the gradient is computed via reverse-mode

auto-differentiation.



)DOC";

ONNX_PREVIEW_TRAINING_OPERATOR_SET_SCHEMA(
    Gradient,
    1,
    OpSchema()
        .SetDoc(Gradient_ver1_doc)
        .Input(
            0,
            "Inputs",
            "The values fed into graph identified by the attributes. "
            "The i-th input is the value of the i-th tensor specified in the "
            "concatenated list of the attribute \"xs\" and the attribute "
            " \"zs\". For example, if xs=[\"A\", \"B\"] and zs=[\"C\"], the "
            "first input is used as the value of symbol \"A\" and the 3rd "
            "input is substituted for all the occurrences of \"C\".",
            "T1",
            OpSchema::Variadic,
            false)
        .Output(
            0,
            "Outputs",
            "The gradient of the tensor specified by the attribute \"y\" "
            "with respect to each of tensors specified in the "
            "attribute \"xs\". The i-th output is the gradient of \"y\" with "
            "respect to the i-th tensor specified in the attribute \"xs\".",
            "T2",
            OpSchema::Variadic,
            false)
        .Attr(
            "xs",
            "Input tensor names of the differentiated sub-graph. It "
            "contains only the necessary differentiated "
            "inputs of a (sub-)graph. Variables (usually called "
            "intermediate variables) that can be generated from inputs "
            "cannot be included in this attribute.",
            AttributeProto::STRINGS)
        .Attr(
            "zs",
            "Input tensor names of the differentiated sub-graph. It "
            "contains only the necessary non-differentiated "
            "inputs of a (sub-)graph. Variables (usually called "
            "intermediate variables) that can be generated from inputs "
            "cannot be included in this attribute.",
            AttributeProto::STRINGS,
            OPTIONAL_VALUE)
        .Attr(
            "y",
            "The targeted tensor. It can be viewed as the output of the "
            "differentiated function. The attribute \"xs\" and attribute "
            "\"zs\" are the minimal independent variable set that determines "
            "the value of \"y\".",
            AttributeProto::STRING)
        .TypeConstraint("T1", OpSchema::all_tensor_types(), "Allow outputs to be any kind of tensor.")
        .TypeConstraint(
            "T2",
            {"tensor(float16)", "tensor(float)", "tensor(double)"},
            "Allow inputs to be any kind of floating-point tensor."));

static const char* Adagrad_ver1_doc = R"DOC(

    Compute one iteration of ADAGRAD, a stochastic gradient based optimization

    algorithm. This operator can conduct the optimization of multiple tensor variables.



    Let's define the behavior of this operator. As you can imagine, ADAGRAD requires

    some parameters:



     - The initial learning-rate "R".

     - The update count "T". That is, the number of training iterations conducted.

     - A L2-norm regularization coefficient "norm_coefficient".

     - A learning-rate decay factor "decay_factor".

     - A small constant "epsilon" to avoid dividing-by-zero.



    At each ADAGRAD iteration, the optimized tensors are moved along a direction

    computed based on their estimated gradient and accumulated squared gradient. Assume

    that only a single tensor "X" is updated by this operator. We need the value of "X",

    its gradient "G", and its accumulated squared gradient "H". Therefore, variables in

    this operator's input list are sequentially "R", "T", "X", "G", and "H". Other

    parameters are given as attributes because they are usually constants. Also, the

    corresponding output tensors are the new value of "X" (called "X_new"), and then

    the new accumulated squared gradient (called "H_new"). Those outputs are computed

    from the given inputs following the pseudo code below.



    Let "+", "-", "*", and "/" are all element-wise arithmetic operations with

    numpy-style broadcasting support. The pseudo code to compute those outputs is:



      // Compute a scalar learning-rate factor. At the first update of X, T is generally

      // 0 (0-based update index) or 1 (1-based update index).

      r = R / (1 + T * decay_factor);



      // Add gradient of 0.5 * norm_coefficient * ||X||_2^2, where ||X||_2 is the 2-norm.

      G_regularized = norm_coefficient * X + G;



      // Compute new accumulated squared gradient.

      H_new = H + G_regularized * G_regularized;



      // Compute the adaptive part of per-coordinate learning rate. Note that Sqrt(...)

      // computes element-wise square-root.

      H_adaptive = Sqrt(H_new) + epsilon



      // Compute the new value of "X".

      X_new = X - r * G_regularized / H_adaptive;



    If one assign this operators to optimize multiple inputs, for example, "X_1" and "X_2", the same

    pseudo code may be extended to handle all tensors jointly. More specifically, we can view "X" as a

    concatenation of "X_1" and "X_2" (of course, their gradient and accumulate gradient should

    be concatenated too) and then just reuse the entire pseudo code.



    Note that ADAGRAD was first proposed in http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf.

    In that reference paper, this operator is a special case of the Figure 1's composite mirror

    descent update.

)DOC";

ONNX_PREVIEW_TRAINING_OPERATOR_SET_SCHEMA(
    Adagrad,
    1,
    OpSchema()
        .SetDoc(Adagrad_ver1_doc)
        .Input(0, "R", "The initial learning rate.", "T1")
        .Input(1, "T", "The update count of \"X\". It should be a scalar.", "T2")
        .Input(
            2,
            "inputs",
            "The current values of optimized tensors, followed by their "
            "respective gradients, followed by their respective accumulated squared gradients."
            "For example, if two tensor \"X_1\" and \"X_2\" "
            "are optimized, "
            "The input list would be "
            "[\"X_1\", \"X_2\", "
            "gradient of \"X_1\", "
            "gradient of \"X_2\", "
            "accumulated squared gradient of \"X_1\", "
            "accumulated squared gradient of \"X_2\"].",
            "T3",
            OpSchema::Variadic,
            false)
        .Output(
            0,
            "outputs",
            "Updated values of optimized tensors, followed by their updated "
            "values of accumulated squared gradients. For example, "
            "if two tensor \"X_1\" and \"X_2\" are "
            "optimized, the output list would be [new value of \"X_1,\" new value of \"X_2\" "
            "new accumulated squared gradient of \"X_1\", new accumulated squared gradient of \"X_2\"].",
            "T3",
            OpSchema::Variadic,
            false)
        .Attr("epsilon", "Small scalar to avoid dividing by zero.", AttributeProto::FLOAT, 1e-6f)
        .Attr(
            "decay_factor",
            "The decay factor of learning rate after one update."
            "The effective learning rate is computed by r = R / (1 + T * decay_factor). "
            "Default to 0 so that increasing update counts doesn't reduce the learning rate.",
            AttributeProto::FLOAT,
            0.0f)
        .Attr(
            "norm_coefficient",
            "Regularization coefficient in 0.5 * norm_coefficient * ||X||_2^2. Default to 0, "
            "which means no regularization.",
            AttributeProto::FLOAT,
            0.0f)
        .TypeConstraint("T1", {"tensor(float)", "tensor(double)"}, "Constrain input types to float scalars.")
        .TypeConstraint("T2", {"tensor(int64)"}, "Constrain input types to 64-bit integer scalars.")
        .TypeConstraint("T3", {"tensor(float)", "tensor(double)"}, "Constrain input and output types to float tensors.")
        .TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
          // In comments below, we assume that the input list is
          // [R, T, X1, X2, G1, G2, H1, H2] and the output list is
          // [X1_new, X2_new, H1_new, H2_new].

          // Compute the number of tuples (X, G, H).
          auto num_optimized_tensors = (ctx.getNumInputs() - 2) / 3;
          for (size_t i = 0; i < num_optimized_tensors; ++i) {
            // Pass X1's and X2's shapes to X1_new and X2_new, respectively.
            size_t i_in = 2 + i;
            size_t i_out = i;
            propagateElemTypeFromInputToOutput(ctx, i_in, i_out);
            propagateShapeFromInputToOutput(ctx, i_in, i_out);

            // Pass H1's and H2's shapes to H1_new and H2_new, respectively.
            i_in = 2 + 2 * num_optimized_tensors + i;
            i_out = i + num_optimized_tensors;
            propagateElemTypeFromInputToOutput(ctx, i_in, i_out);
            propagateShapeFromInputToOutput(ctx, i_in, i_out);
          }
        }));

static const char* Momentum_ver1_doc = R"DOC(

    Compute one iteration of stochastic gradient update with momentum.

    This operator can conduct the optimization of multiple tensor variables.



    Let's define the behavior of this operator. As you can imagine, SG with momentum requires

    several parameters:



     - The learning-rate "R".

     - The update count "T". That is, the number of conducted training iterations. It should

       be zero in the first training iteration.

     - A L2-norm regularization coefficient "norm_coefficient".

     - A decay coefficient of previous accumulated gradient (i.e., momentum) "alpha".

     - The scaling coefficient of current gradient "beta".

     - An attribute to choose either standard momentum or Nesterov's momentum "mode" should

       be used.



    For the sake of simplicity, assume that there is only one tensor (called "X") to be optimized.

    Other necessary inputs are "X"'s gradient (called "G") and "X"'s momentum (called "V"). This

    Momentum operator maps all these inputs to the new value of "X" (called "X_new") and its new

    momentum (called "V_new").



    This operator supports two different momentum algorithms. Set the attribute "mode" to

    "nesterov" if Nesterov's momentum is desired. Otherwise, set the attribute "model" to

    "standard" to use standard momentum. Computation details are described subsequently.



    Let "+", "-", "*", and "/" are all element-wise operations with numpy-style broadcasting.



    Pseudo code for SG with standard momentum:



      // Add gradient of 0.5 * norm_coefficient * ||X||^2, where ||X|| is the sum of squared

      // values of all elements in X.

      G_regularized = norm_coefficient * X + G



      // In the first training iteration, beta should always be 1.

      beta_adjusted = T > 0 ? beta : 1



      // Compute the current momentum based on previous momentum and the current gradient.

      V_new = alpha * V + beta_adjusted * G_regularized



      // Update X.

      X_new = X - R * V_new



    Pseudo code for SG with Nesterov's momentum:



      // Add gradient of 0.5 * norm_coefficient * ||X||^2, where ||X|| is the sum of squared

      // values of all elements in X.

      G_regularized = norm_coefficient * X + G;



      // In the first training iteration, beta should always be 1.

      beta_adjusted = T > 0 ? beta : 1



      // Compute the current momentum based on previous momentum and the current gradient.

      V_new = alpha * V + beta_adjusted * G_regularized;



      // Compute final update direction and then update X.

      X_new = X - R * (G_regularized + alpha * V_new)



    If one assign this operators to optimize multiple inputs, for example, "X_1" and "X_2". The same

    pseudo code would be extended to handle all tensors jointly. More specifically, we can view "X" as a

    concatenation of "X_1" and "X_2" (of course, their gradient and accumulate gradient should

    be concatenated too) and then our pseudo code becomes applicable.

)DOC";

ONNX_PREVIEW_TRAINING_OPERATOR_SET_SCHEMA(
    Momentum,
    1,
    OpSchema()
        .SetDoc(Momentum_ver1_doc)
        .Input(0, "R", "The learning rate.", "T1")
        .Input(1, "T", "Update count of \"X\". It should be a scalar.", "T2")
        .Input(
            2,
            "inputs",
            "It sequentially contains the current values of optimized tensors, then their "
            "gradient tensors, and finally their momentum tensors. For example, if two tensors "
            "\"X_1\" and \"X_2\" are optimized, The expected input list would be "
            "[\"X_1\", \"X_2\", gradient of \"X_1\", gradient of \"X_2\", momentum of \"X_1\", momentum of \"X_2\"].",
            "T3",
            OpSchema::Variadic,
            false)
        .Output(
            0,
            "outputs",
            "It sequentially contains the new values of optimized tensors and then the new "
            "values of their momentum tensors. For example, if two tensors \"X_1\" and \"X_2\" are "
            "optimized, the output list would be [new value of \"X_1,\" new value of \"X_2\" "
            "new momentum of \"X_1\", new momentum of \"X_2\"].",
            "T3",
            OpSchema::Variadic,
            false)
        .Attr("alpha", "The decay factor of momentum. It should be a scalar.", AttributeProto::FLOAT)
        .Attr(
            "beta",
            "The coefficient of gradient in computing new momentum. It should be a scalar.",
            AttributeProto::FLOAT)
        .Attr("norm_coefficient", "Coefficient of 0.5 * norm_coefficient * ||X||^2.", AttributeProto::FLOAT)
        .Attr(
            "mode",
            "Its value should be either \"nesterov\" or \"standard\". The value \"nesterov\" leads "
            "to the use of Nesterov's momentum while \"standard\" invokes stochastic gradient method "
            "using standard momentum",
            AttributeProto::STRING)
        .TypeConstraint("T1", {"tensor(float)", "tensor(double)"}, "Constrain input types to float scalars.")
        .TypeConstraint("T2", {"tensor(int64)"}, "Constrain input types to 64-bit integer scalars.")
        .TypeConstraint("T3", {"tensor(float)", "tensor(double)"}, "Constrain input types to float tensors.")
        .TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
          // Assume that the input list is [R, T, X1, X2, G1, G2, V1, V2] and
          // output list is [X1_new, X2_new, V1_new, V2_new] for explaining
          // the code below in a simpler way.

          // The count of input tensors excluding "R" and "T".
          auto num_adjustable_tensors = ctx.getNumInputs() - 2;

          // Check number of (optimized tensor, gradient, momentum) tuples.
          if (num_adjustable_tensors % 3 != 0) {
            fail_shape_inference(
                "The sum of optimized tensor count and momentum tensor count ",
                "should be a multiple of 2 in the input list of Momentum operator");
          }

          // The count of "X1" and "X2".
          auto num_optimized_tensors = num_adjustable_tensors / 3;
          for (size_t i = 0; i < num_optimized_tensors; ++i) {
            // Pass X1's/X2's shapes to X1_new/X2_new.
            size_t i_in = 2 + i;
            size_t i_out = i;
            propagateElemTypeFromInputToOutput(ctx, i_in, i_out);
            propagateShapeFromInputToOutput(ctx, i_in, i_out);
            // Pass V1's/V2's shapes to V1_new/V2_new.
            i_in = 2 + 2 * num_optimized_tensors + i;
            i_out = i + num_optimized_tensors;
            propagateElemTypeFromInputToOutput(ctx, i_in, i_out);
            propagateShapeFromInputToOutput(ctx, i_in, i_out);
          }
        }));

static const char* Adam_ver1_doc = R"DOC(

    Compute one iteration of Adam, a stochastic gradient based optimization

    algorithm. This operator can conduct the optimization of multiple tensor variables.



    Let's define the behavior of this operator. First of all, Adam requires

    some parameters:



     - The learning-rate "R".

     - The update count "T". That is, the number of training iterations conducted.

     - A L2-norm regularization coefficient "norm_coefficient".

     - A small constant "epsilon" to avoid dividing-by-zero.

     - Two coefficients, "alpha" and "beta".



    At each Adam iteration, the optimized tensors are moved along a direction

    computed based on their exponentially-averaged historical gradient and

    exponentially-averaged historical squared gradient. Assume that only a tensor

    "X" is being optimized. The rest of required information is



     - the value of "X",

     - "X"'s gradient (denoted by "G"),

     - "X"'s exponentially-averaged historical gradient (denoted by "V"), and

     - "X"'s exponentially-averaged historical squared gradient (denoted by "H").



    Some of those parameters are passed into this operator as input tensors and others

    are stored as this operator's attributes. Specifically, this operator's input tensor

    list is ["R", "T", "X", "G", "V", "H"]. That is, "R" is the first input, "T" is

    the second input, and so on. Other parameters are given as attributes because they

    are constants. Moreover, the corresponding output tensors are



     - the new value of "X" (called "X_new"),

     - the new exponentially-averaged historical gradient (denoted by "V_new"), and

     - the new exponentially-averaged historical squared gradient (denoted by "H_new").



    Those outputs are computed following the pseudo code below.



    Let "+", "-", "*", and "/" are all element-wise arithmetic operations with

    numpy-style broadcasting support. The pseudo code to compute those outputs is:



      // Add gradient of 0.5 * norm_coefficient * ||X||_2^2, where ||X||_2 is the 2-norm.

      G_regularized = norm_coefficient * X + G



      // Update exponentially-averaged historical gradient.

      V_new = alpha * V + (1 - alpha) * G_regularized



      // Update exponentially-averaged historical squared gradient.

      H_new = beta * H + (1 - beta) * G_regularized * G_regularized



      // Compute the element-wise square-root of H_new. V_new will be element-wisely

      // divided by H_sqrt for a better update direction.

      H_sqrt = Sqrt(H_new) + epsilon



      // Compute learning-rate. Note that "alpha**T"/"beta**T" is alpha's/beta's T-th power.

      R_adjusted = T > 0 ? R * Sqrt(1 - beta**T) / (1 - alpha**T) : R



      // Compute new value of "X".

      X_new = X - R_adjusted * V_new / H_sqrt



      // Post-update regularization.

      X_final = (1 - norm_coefficient_post) * X_new



    If there are multiple inputs to be optimized, the pseudo code will be applied

    independently to each of them.

)DOC";

ONNX_PREVIEW_TRAINING_OPERATOR_SET_SCHEMA(
    Adam,
    1,
    OpSchema()
        .SetDoc(Adam_ver1_doc)
        .Input(0, "R", "The initial learning rate.", "T1")
        .Input(1, "T", "The update count of \"X\". It should be a scalar.", "T2")
        .Input(
            2,
            "inputs",
            "The tensors to be optimized, followed by their respective gradients, "
            "followed by their respective accumulated gradients (aka momentum), "
            "followed by their respective accumulated squared gradients. For example, "
            "to optimize tensors \"X_1\" and \"X_2,\", the input list would be "
            "[\"X_1\", \"X_2\", "
            "gradient of \"X_1\", gradient of \"X_2\", "
            "accumulated gradient of \"X_1\", accumulated gradient of \"X_2\", "
            "accumulated squared gradient of \"X_1\", accumulated squared gradient of \"X_2\"].",
            "T3",
            OpSchema::Variadic,
            false)
        .Output(
            0,
            "outputs",
            "New values of optimized tensors, "
            "followed by their respective new accumulated gradients, "
            "followed by their respective new accumulated squared gradients. "
            "For example, if two tensors \"X_1\" and \"X_2\" are optimized, "
            "the outputs list would be "
            "[new value of \"X_1\", new value of \"X_2\", "
            "new accumulated gradient of \"X_1\", "
            "new accumulated gradient of \"X_2\", "
            "new accumulated squared gradient of \"X_1\", "
            "new accumulated squared gradient of \"X_2\"].",
            "T3",
            OpSchema::Variadic,
            false)
        .Attr(
            "alpha",
            "Coefficient of previously accumulated gradient in running average. Default to 0.9.",
            AttributeProto::FLOAT,
            0.9f)
        .Attr(
            "beta",
            "Coefficient of previously accumulated squared-gradient in running average. Default to 0.999.",
            AttributeProto::FLOAT,
            0.999f)
        .Attr(
            "norm_coefficient",
            "Regularization coefficient of 0.5 * norm_coefficient * ||X||_2^2. Default to 0, "
            "which means no regularization.",
            AttributeProto::FLOAT,
            0.0f)
        .Attr(
            "norm_coefficient_post",
            "Regularization coefficient of 0.5 * norm_coefficient * ||X||_2^2. Default to 0, "
            "which means no regularization.",
            AttributeProto::FLOAT,
            0.0f)
        .Attr("epsilon", "Small scalar to avoid dividing by zero.", AttributeProto::FLOAT, 1e-6f)
        .TypeConstraint("T1", {"tensor(float)", "tensor(double)"}, "Constrain input types to float scalars.")
        .TypeConstraint("T2", {"tensor(int64)"}, "Constrain input types to 64-bit integer scalars.")
        .TypeConstraint("T3", {"tensor(float)", "tensor(double)"}, "Constrain input and output types to float tensors.")
        .TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
          // Assume that the input list is [R, T, X1, X2, G1, G2, V1, V2, H1, H2] and
          // output list is [X1_new, X2_new, V1_new, V2_new, H1_new, H2_new] for explaining
          // the code below in a simpler way.

          // The count of input tensors excluding "R" and "T".
          auto num_adjustable_tensors = ctx.getNumInputs() - 2;

          // Check number of (optimized tensor, gradient, momentum) tuples.
          if (num_adjustable_tensors % 4 != 0) {
            fail_shape_inference(
                "The sum of optimized tensor count, gradient tensor count, momentum tensor count, ",
                "accumulated squared-gradient tensor count should be a multiple of 4 in the ",
                "\"inputs\" of Adam operator.");
          }

          // The count of "X1" and "X2".
          auto num_optimized_tensors = num_adjustable_tensors / 4;
          for (size_t i = 0; i < num_optimized_tensors; ++i) {
            // Pass X1's/X2's shapes to X1_new/X2_new.
            size_t i_in = 2 + i;
            size_t i_out = i;
            propagateElemTypeFromInputToOutput(ctx, i_in, i_out);
            propagateShapeFromInputToOutput(ctx, i_in, i_out);

            // Pass V1's/V2's shapes to V1_new/V2_new.
            i_in = 2 + 2 * num_optimized_tensors + i;
            i_out = num_optimized_tensors + i;
            propagateElemTypeFromInputToOutput(ctx, i_in, i_out);
            propagateShapeFromInputToOutput(ctx, i_in, i_out);

            // Pass H1's/H2's shapes to H1_new/H2_new.
            i_in = 2 + 3 * num_optimized_tensors + i;
            i_out = 2 * num_optimized_tensors + i;
            propagateElemTypeFromInputToOutput(ctx, i_in, i_out);
            propagateShapeFromInputToOutput(ctx, i_in, i_out);
          }
        }));

} // namespace ONNX_NAMESPACE