Spaces:
Sleeping
Sleeping
File size: 34,571 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 |
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include "onnx/defs/schema.h"
#ifdef ONNX_ML
namespace ONNX_NAMESPACE {
static const char* LabelEncoder_ver1_doc = R"DOC(
Converts strings to integers and vice versa.<br>
If the string default value is set, it will convert integers to strings.
If the int default value is set, it will convert strings to integers.<br>
Each operator converts either integers to strings or strings to integers, depending
on which default value attribute is provided. Only one default value attribute
should be defined.<br>
When converting from integers to strings, the string is fetched from the
'classes_strings' list, by simple indexing.<br>
When converting from strings to integers, the string is looked up in the list
and the index at which it is found is used as the converted value.
)DOC";
ONNX_ML_OPERATOR_SET_SCHEMA(
LabelEncoder,
1,
OpSchema()
.SetDoc(LabelEncoder_ver1_doc)
.Input(0, "X", "Input data.", "T1")
.Output(0, "Y", "Output data. If strings are input, the output values are integers, and vice versa.", "T2")
.TypeConstraint(
"T1",
{"tensor(string)", "tensor(int64)"},
"The input type must be a tensor of integers or strings, of any shape.")
.TypeConstraint(
"T2",
{"tensor(string)", "tensor(int64)"},
"The output type will be a tensor of strings or integers, and will have the same shape as the input.")
.Attr("classes_strings", "A list of labels.", AttributeProto::STRINGS, OPTIONAL_VALUE)
.Attr(
"default_int64",
"An integer to use when an input string value is not found in the map.<br>One and only one of the "
"'default_*' attributes must be defined.",
AttributeProto::INT,
static_cast<int64_t>(-1))
.Attr(
"default_string",
"A string to use when an input integer value is not found in the map.<br>One and only one of the "
"'default_*' attributes must be defined.",
AttributeProto::STRING,
std::string("_Unused"))
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
auto input_elem_type = ctx.getInputType(0)->tensor_type().elem_type();
auto output_elem_type = ctx.getOutputType(0)->mutable_tensor_type();
if (TensorProto::STRING == input_elem_type) {
output_elem_type->set_elem_type(TensorProto::INT64);
} else if (TensorProto::INT64 == input_elem_type) {
output_elem_type->set_elem_type(TensorProto::STRING);
}
}));
static const char* TreeEnsembleClassifier_ver1_doc = R"DOC(
Tree Ensemble classifier. Returns the top class for each of N inputs.<br>
The attributes named 'nodes_X' form a sequence of tuples, associated by
index into the sequences, which must all be of equal length. These tuples
define the nodes.<br>
Similarly, all fields prefixed with 'class_' are tuples of votes at the leaves.
A leaf may have multiple votes, where each vote is weighted by
the associated class_weights index.<br>
One and only one of classlabels_strings or classlabels_int64s
will be defined. The class_ids are indices into this list.
)DOC";
ONNX_ML_OPERATOR_SET_SCHEMA(
TreeEnsembleClassifier,
1,
OpSchema()
.SetDoc(TreeEnsembleClassifier_ver1_doc)
.Input(0, "X", "Input of shape [N,F]", "T1")
.Output(0, "Y", "N, Top class for each point", "T2")
.Output(1, "Z", "The class score for each class, for each point, a tensor of shape [N,E].", "tensor(float)")
.TypeConstraint(
"T1",
{"tensor(float)", "tensor(double)", "tensor(int64)", "tensor(int32)"},
"The input type must be a tensor of a numeric type.")
.TypeConstraint(
"T2",
{"tensor(string)", "tensor(int64)"},
"The output type will be a tensor of strings or integers, depending on which of the classlabels_* "
"attributes is used.")
.Attr("nodes_treeids", "Tree id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_nodeids",
"Node id for each node. Ids may restart at zero for each tree, but it not required to.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("nodes_featureids", "Feature id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_values",
"Thresholds to do the splitting on for each node.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_hitrates",
"Popularity of each node, used for performance and may be omitted.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_modes",
"The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf "
"node.<br>One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("nodes_truenodeids", "Child node if expression is true.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("nodes_falsenodeids", "Child node if expression is false.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_missing_value_tracks_true",
"For each node, define what to do in the presence of a missing value: if a value is missing (NaN), use the "
"'true' or 'false' branch based on the value in this array.<br>This attribute may be left undefined, and "
"the default value is false (0) for all nodes.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("class_treeids", "The id of the tree that this node is in.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("class_nodeids", "node id that this weight is for.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("class_ids", "The index of the class list that each weight is for.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("class_weights", "The weight for the class in class_id.", AttributeProto::FLOATS, OPTIONAL_VALUE)
.Attr(
"classlabels_strings",
"Class labels if using string labels.<br>One and only one of the 'classlabels_*' attributes must be "
"defined.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr(
"classlabels_int64s",
"Class labels if using integer labels.<br>One and only one of the 'classlabels_*' attributes must be "
"defined.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr(
"post_transform",
"Indicates the transform to apply to the score. <br> One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' "
"or 'PROBIT.'",
AttributeProto::STRING,
std::string("NONE"))
.Attr(
"base_values",
"Base values for classification, added to final class score; the size must be the same as the classes or "
"can be left unassigned (assumed 0)",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
std::vector<std::string> label_strs;
auto result = getRepeatedAttribute(ctx, "classlabels_strings", label_strs);
bool using_strings = (result && !label_strs.empty());
auto output_elem_type = ctx.getOutputType(0)->mutable_tensor_type();
if (using_strings) {
output_elem_type->set_elem_type(TensorProto::STRING);
} else {
output_elem_type->set_elem_type(TensorProto::INT64);
}
}));
static const char* TreeEnsembleClassifier_ver3_doc = R"DOC(
Tree Ensemble classifier. Returns the top class for each of N inputs.<br>
The attributes named 'nodes_X' form a sequence of tuples, associated by
index into the sequences, which must all be of equal length. These tuples
define the nodes.<br>
Similarly, all fields prefixed with 'class_' are tuples of votes at the leaves.
A leaf may have multiple votes, where each vote is weighted by
the associated class_weights index.<br>
One and only one of classlabels_strings or classlabels_int64s
will be defined. The class_ids are indices into this list.
All fields ending with <i>_as_tensor</i> can be used instead of the
same parameter without the suffix if the element type is double and not float.
)DOC";
ONNX_ML_OPERATOR_SET_SCHEMA(
TreeEnsembleClassifier,
3,
OpSchema()
.SetDoc(TreeEnsembleClassifier_ver3_doc)
.Input(0, "X", "Input of shape [N,F]", "T1")
.Output(0, "Y", "N, Top class for each point", "T2")
.Output(1, "Z", "The class score for each class, for each point, a tensor of shape [N,E].", "tensor(float)")
.TypeConstraint(
"T1",
{"tensor(float)", "tensor(double)", "tensor(int64)", "tensor(int32)"},
"The input type must be a tensor of a numeric type.")
.TypeConstraint(
"T2",
{"tensor(string)", "tensor(int64)"},
"The output type will be a tensor of strings or integers, depending on which of the classlabels_* "
"attributes is used.")
.Attr("nodes_treeids", "Tree id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_nodeids",
"Node id for each node. Ids may restart at zero for each tree, but it not required to.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("nodes_featureids", "Feature id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_values",
"Thresholds to do the splitting on for each node.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_values_as_tensor",
"Thresholds to do the splitting on for each node.",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.Attr(
"nodes_hitrates",
"Popularity of each node, used for performance and may be omitted.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_hitrates_as_tensor",
"Popularity of each node, used for performance and may be omitted.",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.Attr(
"nodes_modes",
"The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf "
"node.<br>One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("nodes_truenodeids", "Child node if expression is true.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("nodes_falsenodeids", "Child node if expression is false.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_missing_value_tracks_true",
"For each node, define what to do in the presence of a missing value: if a value is missing (NaN), use the "
"'true' or 'false' branch based on the value in this array.<br>This attribute may be left undefined, and "
"the default value is false (0) for all nodes.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("class_treeids", "The id of the tree that this node is in.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("class_nodeids", "node id that this weight is for.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("class_ids", "The index of the class list that each weight is for.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("class_weights", "The weight for the class in class_id.", AttributeProto::FLOATS, OPTIONAL_VALUE)
.Attr(
"class_weights_as_tensor",
"The weight for the class in class_id.",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.Attr(
"classlabels_strings",
"Class labels if using string labels.<br>One and only one of the 'classlabels_*' attributes must be "
"defined.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr(
"classlabels_int64s",
"Class labels if using integer labels.<br>One and only one of the 'classlabels_*' attributes must be "
"defined.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr(
"post_transform",
"Indicates the transform to apply to the score. <br> One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' "
"or 'PROBIT.'",
AttributeProto::STRING,
std::string("NONE"))
.Attr(
"base_values",
"Base values for classification, added to final class score; the size must be the same as the classes or "
"can be left unassigned (assumed 0)",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"base_values_as_tensor",
"Base values for classification, added to final class score; the size must be the same as the classes or "
"can be left unassigned (assumed 0)",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
auto* nodes_values = ctx.getAttribute("nodes_values");
auto* nodes_values_as_tensor = ctx.getAttribute("nodes_values_as_tensor");
auto* nodes_hitrates = ctx.getAttribute("nodes_hitrates");
auto* nodes_hitrates_as_tensor = ctx.getAttribute("nodes_hitrates_as_tensor");
auto* class_weights = ctx.getAttribute("class_weights");
auto* class_weights_as_tensor = ctx.getAttribute("class_weights_as_tensor");
auto* base_values = ctx.getAttribute("base_values");
auto* base_values_as_tensor = ctx.getAttribute("base_values_as_tensor");
if (nullptr != nodes_values && nullptr != nodes_values_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'nodes_values', 'nodes_values_as_tensor' should be specified.");
}
if (nullptr != nodes_hitrates && nullptr != nodes_hitrates_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'nodes_hitrates', 'nodes_hitrates_as_tensor' should be specified.");
}
if (nullptr != class_weights && nullptr != class_weights_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'class_weights', 'class_weights_as_tensor' should be specified.");
}
if (nullptr != base_values && nullptr != base_values_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'base_values', 'base_values_as_tensor' should be specified.");
}
std::vector<std::string> classlabels_strings;
auto result = getRepeatedAttribute(ctx, "classlabels_strings", classlabels_strings);
bool using_strings = (result && !classlabels_strings.empty());
if (using_strings) {
updateOutputElemType(ctx, 0, TensorProto::STRING);
} else {
updateOutputElemType(ctx, 0, TensorProto::INT64);
}
updateOutputElemType(ctx, 1, TensorProto::FLOAT);
checkInputRank(ctx, 0, 2);
Dim N, E;
unifyInputDim(ctx, 0, 0, N);
if (using_strings) {
unifyDim(E, classlabels_strings.size());
} else {
std::vector<int64_t> classlabels_int64s;
result = getRepeatedAttribute(ctx, "classlabels_int64s", classlabels_int64s);
if (!result || classlabels_int64s.empty()) {
fail_shape_inference("Non of classlabels_int64s or classlabels_strings is set.");
}
unifyDim(E, classlabels_int64s.size());
}
updateOutputShape(ctx, 0, {N});
updateOutputShape(ctx, 1, {N, E});
}));
static const char* TreeEnsembleRegressor_ver1_doc = R"DOC(
Tree Ensemble regressor. Returns the regressed values for each input in N.<br>
All args with nodes_ are fields of a tuple of tree nodes, and
it is assumed they are the same length, and an index i will decode the
tuple across these inputs. Each node id can appear only once
for each tree id.<br>
All fields prefixed with target_ are tuples of votes at the leaves.<br>
A leaf may have multiple votes, where each vote is weighted by
the associated target_weights index.<br>
All trees must have their node ids start at 0 and increment by 1.<br>
Mode enum is BRANCH_LEQ, BRANCH_LT, BRANCH_GTE, BRANCH_GT, BRANCH_EQ, BRANCH_NEQ, LEAF
)DOC";
ONNX_ML_OPERATOR_SET_SCHEMA(
TreeEnsembleRegressor,
1,
OpSchema()
.SetDoc(TreeEnsembleRegressor_ver1_doc)
.Input(0, "X", "Input of shape [N,F]", "T")
.Output(0, "Y", "N classes", "tensor(float)")
.TypeConstraint(
"T",
{"tensor(float)", "tensor(double)", "tensor(int64)", "tensor(int32)"},
"The input type must be a tensor of a numeric type.")
.Attr("nodes_treeids", "Tree id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_nodeids",
"Node id for each node. Node ids must restart at zero for each tree and increase sequentially.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("nodes_featureids", "Feature id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_values",
"Thresholds to do the splitting on for each node.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_hitrates",
"Popularity of each node, used for performance and may be omitted.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_modes",
"The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf "
"node.<br>One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("nodes_truenodeids", "Child node if expression is true", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("nodes_falsenodeids", "Child node if expression is false", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_missing_value_tracks_true",
"For each node, define what to do in the presence of a NaN: use the 'true' (if the attribute value is 1) "
"or 'false' (if the attribute value is 0) branch based on the value in this array.<br>This attribute may "
"be left undefined and the default value is false (0) for all nodes.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("target_treeids", "The id of the tree that each node is in.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("target_nodeids", "The node id of each weight", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("target_ids", "The index of the target that each weight is for", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("target_weights", "The weight for each target", AttributeProto::FLOATS, OPTIONAL_VALUE)
.Attr("n_targets", "The total number of targets.", AttributeProto::INT, OPTIONAL_VALUE)
.Attr(
"post_transform",
"Indicates the transform to apply to the score. <br>One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' "
"or 'PROBIT'",
AttributeProto::STRING,
std::string("NONE"))
.Attr(
"aggregate_function",
"Defines how to aggregate leaf values within a target. <br>One of 'AVERAGE,' 'SUM,' 'MIN,' 'MAX.'",
AttributeProto::STRING,
std::string("SUM"))
.Attr(
"base_values",
"Base values for classification, added to final class score; the size must be the same as the classes or "
"can be left unassigned (assumed 0)",
AttributeProto::FLOATS,
OPTIONAL_VALUE));
static const char* TreeEnsembleRegressor_ver3_doc = R"DOC(
Tree Ensemble regressor. Returns the regressed values for each input in N.<br>
All args with nodes_ are fields of a tuple of tree nodes, and
it is assumed they are the same length, and an index i will decode the
tuple across these inputs. Each node id can appear only once
for each tree id.<br>
All fields prefixed with target_ are tuples of votes at the leaves.<br>
A leaf may have multiple votes, where each vote is weighted by
the associated target_weights index.<br>
All fields ending with <i>_as_tensor</i> can be used instead of the
same parameter without the suffix if the element type is double and not float.
All trees must have their node ids start at 0 and increment by 1.<br>
Mode enum is BRANCH_LEQ, BRANCH_LT, BRANCH_GTE, BRANCH_GT, BRANCH_EQ, BRANCH_NEQ, LEAF
)DOC";
ONNX_ML_OPERATOR_SET_SCHEMA(
TreeEnsembleRegressor,
3,
OpSchema()
.SetDoc(TreeEnsembleRegressor_ver3_doc)
.Input(0, "X", "Input of shape [N,F]", "T")
.Output(0, "Y", "N classes", "tensor(float)")
.TypeConstraint(
"T",
{"tensor(float)", "tensor(double)", "tensor(int64)", "tensor(int32)"},
"The input type must be a tensor of a numeric type.")
.Attr("nodes_treeids", "Tree id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_nodeids",
"Node id for each node. Node ids must restart at zero for each tree and increase sequentially.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("nodes_featureids", "Feature id for each node.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_values",
"Thresholds to do the splitting on for each node.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_values_as_tensor",
"Thresholds to do the splitting on for each node.",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.Attr(
"nodes_hitrates",
"Popularity of each node, used for performance and may be omitted.",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"nodes_hitrates_as_tensor",
"Popularity of each node, used for performance and may be omitted.",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.Attr(
"nodes_modes",
"The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf "
"node.<br>One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("nodes_truenodeids", "Child node if expression is true", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("nodes_falsenodeids", "Child node if expression is false", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr(
"nodes_missing_value_tracks_true",
"For each node, define what to do in the presence of a NaN: use the 'true' (if the attribute value is 1) "
"or 'false' (if the attribute value is 0) branch based on the value in this array.<br>This attribute may "
"be left undefined and the default value is false (0) for all nodes.",
AttributeProto::INTS,
OPTIONAL_VALUE)
.Attr("target_treeids", "The id of the tree that each node is in.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("target_nodeids", "The node id of each weight", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("target_ids", "The index of the target that each weight is for", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("target_weights", "The weight for each target", AttributeProto::FLOATS, OPTIONAL_VALUE)
.Attr("target_weights_as_tensor", "The weight for each target", AttributeProto::TENSOR, OPTIONAL_VALUE)
.Attr("n_targets", "The total number of targets.", AttributeProto::INT, OPTIONAL_VALUE)
.Attr(
"post_transform",
"Indicates the transform to apply to the score. <br>One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' "
"or 'PROBIT'",
AttributeProto::STRING,
std::string("NONE"))
.Attr(
"aggregate_function",
"Defines how to aggregate leaf values within a target. <br>One of 'AVERAGE,' 'SUM,' 'MIN,' 'MAX.'",
AttributeProto::STRING,
std::string("SUM"))
.Attr(
"base_values",
"Base values for regression, added to final prediction after applying aggregate_function; the size must be "
"the same as the classes or can be left unassigned (assumed 0)",
AttributeProto::FLOATS,
OPTIONAL_VALUE)
.Attr(
"base_values_as_tensor",
"Base values for regression, added to final prediction after applying aggregate_function; the size must be "
"the same as the classes or can be left unassigned (assumed 0)",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
auto* nodes_values = ctx.getAttribute("nodes_values");
auto* nodes_values_as_tensor = ctx.getAttribute("nodes_values_as_tensor");
auto* nodes_hitrates = ctx.getAttribute("nodes_hitrates");
auto* nodes_hitrates_as_tensor = ctx.getAttribute("nodes_hitrates_as_tensor");
auto* target_weights = ctx.getAttribute("target_weights");
auto* target_weights_as_tensor = ctx.getAttribute("target_weights_as_tensor");
auto* base_values = ctx.getAttribute("base_values");
auto* base_values_as_tensor = ctx.getAttribute("base_values_as_tensor");
if (nullptr != nodes_values && nullptr != nodes_values_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'nodes_values', 'nodes_values_as_tensor' should be specified.");
}
if (nullptr != nodes_hitrates && nullptr != nodes_hitrates_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'nodes_hitrates', 'nodes_hitrates_as_tensor' should be specified.");
}
if (nullptr != target_weights && nullptr != target_weights_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'target_weights', 'target_weights_as_tensor' should be specified.");
}
if (nullptr != base_values && nullptr != base_values_as_tensor) {
fail_shape_inference(
"Only one of the attributes 'base_values', 'base_values_as_tensor' should be specified.");
}
checkInputRank(ctx, 0, 2);
Dim N, E;
unifyInputDim(ctx, 0, 0, N);
if (nullptr != ctx.getAttribute("n_targets")) {
unifyDim(E, ctx.getAttribute("n_targets")->i());
}
updateOutputElemType(ctx, 0, TensorProto::FLOAT);
updateOutputShape(ctx, 0, {N, E});
}));
static const char* LabelEncoder_ver2_doc = R"DOC(
Maps each element in the input tensor to another value.<br>
The mapping is determined by the two parallel attributes, 'keys_*' and
'values_*' attribute. The i-th value in the specified 'keys_*' attribute
would be mapped to the i-th value in the specified 'values_*' attribute. It
implies that input's element type and the element type of the specified
'keys_*' should be identical while the output type is identical to the
specified 'values_*' attribute. If an input element can not be found in the
specified 'keys_*' attribute, the 'default_*' that matches the specified
'values_*' attribute may be used as its output value.<br>
Let's consider an example which maps a string tensor to an integer tensor.
Assume and 'keys_strings' is ["Amy", "Sally"], 'values_int64s' is [5, 6],
and 'default_int64' is '-1'. The input ["Dori", "Amy", "Amy", "Sally",
"Sally"] would be mapped to [-1, 5, 5, 6, 6].<br>
Since this operator is an one-to-one mapping, its input and output shapes
are the same. Notice that only one of 'keys_*'/'values_*' can be set.<br>
For key look-up, bit-wise comparison is used so even a float NaN can be
mapped to a value in 'values_*' attribute.<br>
)DOC";
ONNX_ML_OPERATOR_SET_SCHEMA(
LabelEncoder,
2,
OpSchema()
.SetDoc(LabelEncoder_ver2_doc)
.Input(0, "X", "Input data. It can be either tensor or scalar.", "T1")
.Output(0, "Y", "Output data.", "T2")
.TypeConstraint(
"T1",
{"tensor(string)", "tensor(int64)", "tensor(float)"},
"The input type is a tensor of any shape.")
.TypeConstraint(
"T2",
{"tensor(string)", "tensor(int64)", "tensor(float)"},
"Output type is determined by the specified 'values_*' attribute.")
.Attr(
"keys_strings",
"A list of strings. One and only one of 'keys_*'s should be set.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("keys_int64s", "A list of ints.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("keys_floats", "A list of floats.", AttributeProto::FLOATS, OPTIONAL_VALUE)
.Attr(
"values_strings",
"A list of strings. One and only one of 'value_*'s should be set.",
AttributeProto::STRINGS,
OPTIONAL_VALUE)
.Attr("values_int64s", "A list of ints.", AttributeProto::INTS, OPTIONAL_VALUE)
.Attr("values_floats", "A list of floats.", AttributeProto::FLOATS, OPTIONAL_VALUE)
.Attr("default_string", "A string.", AttributeProto::STRING, std::string("_Unused"))
.Attr("default_int64", "An integer.", AttributeProto::INT, static_cast<int64_t>(-1))
.Attr("default_float", "A float.", AttributeProto::FLOAT, -0.f)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// Label encoder is one-to-one mapping.
if (ctx.getNumInputs() != 1) {
fail_shape_inference("Label encoder has only one input.");
}
if (ctx.getNumOutputs() != 1) {
fail_shape_inference("Label encoder has only one output.");
}
// Load all key_* attributes.
std::vector<std::string> keys_strings;
bool keys_strings_result = getRepeatedAttribute(ctx, "keys_strings", keys_strings);
std::vector<int64_t> keys_int64s;
bool keys_int64s_result = getRepeatedAttribute(ctx, "keys_int64s", keys_int64s);
std::vector<float> keys_floats;
bool keys_floats_result = getRepeatedAttribute(ctx, "keys_floats", keys_floats);
// Check if only one keys_* attribute is set.
if (static_cast<int>(keys_strings_result) + static_cast<int>(keys_int64s_result) +
static_cast<int>(keys_floats_result) !=
1) {
fail_shape_inference("Only one of keys_*'s can be set in label encoder.");
}
// Check if the specified keys_* matches input type.
auto input_elem_type = ctx.getInputType(0)->tensor_type().elem_type();
if (keys_strings_result && input_elem_type != TensorProto::STRING) {
fail_shape_inference("Input type is not string tensor but key_strings is set");
}
if (keys_int64s_result && input_elem_type != TensorProto::INT64) {
fail_shape_inference("Input type is not int64 tensor but keys_int64s is set");
}
if (keys_floats_result && input_elem_type != TensorProto::FLOAT) {
fail_shape_inference("Input type is not float tensor but keys_floats is set");
}
// Load all values_* attributes.
std::vector<std::string> values_strings;
bool values_strings_result = getRepeatedAttribute(ctx, "values_strings", values_strings);
std::vector<int64_t> values_int64s;
bool values_int64s_result = getRepeatedAttribute(ctx, "values_int64s", values_int64s);
std::vector<float> values_floats;
bool values_floats_result = getRepeatedAttribute(ctx, "values_floats", values_floats);
// Check if only one values_* attribute is set.
if (static_cast<int>(values_strings_result) + static_cast<int>(values_int64s_result) +
static_cast<int>(values_floats_result) !=
1) {
fail_shape_inference("Only one of values_*'s can be set in label encoder.");
}
// Assign output type based on the specified values_*.
auto output_elem_type = ctx.getOutputType(0)->mutable_tensor_type();
if (values_strings_result)
output_elem_type->set_elem_type(TensorProto::STRING);
if (values_int64s_result)
output_elem_type->set_elem_type(TensorProto::INT64);
if (values_floats_result)
output_elem_type->set_elem_type(TensorProto::FLOAT);
// Input and output shapes are the same.
propagateShapeFromInputToOutput(ctx, 0, 0);
}));
} // namespace ONNX_NAMESPACE
#endif
|