Spaces:
Sleeping
Sleeping
File size: 22,755 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include "shape_inference.h"
#include <vector>
#include "onnx/defs/tensor_proto_util.h"
namespace ONNX_NAMESPACE {
// Note: for all methods below for propagating type or shape, callers are
// responsible to handle optional inputs/outputs and ensure that the specified
// index value is less than NumInputs/NumOutputs.
// Supports mixed tensor and sparse tensor
void propagateElemTypeFromTensorInputToOutput(InferenceContext& ctx, size_t inputIndex, size_t outputIndex) {
auto input_type = ctx.getInputType(inputIndex);
if (nullptr == input_type) {
fail_type_inference("Input type was null");
}
const auto input_value_case = input_type->value_case();
if (input_value_case != TypeProto::kTensorType && input_value_case != TypeProto::kSparseTensorType) {
fail_type_inference(
"Input ", inputIndex, " expected to have tensor or sparse tensor type. Got: ", input_value_case);
}
const auto input_elem_type = getTensorElementType(*input_type);
if (input_elem_type == TensorProto::UNDEFINED) {
fail_type_inference("Element type of input ", inputIndex, " unknown");
}
auto output_type = ctx.getOutputType(outputIndex);
const auto output_value_case = output_type->value_case();
if (output_value_case == TypeProto::kTensorType || output_value_case == TypeProto::kSparseTensorType) {
setTensorElementType(input_elem_type, output_value_case, *output_type);
} else if (output_value_case == TypeProto::VALUE_NOT_SET) {
// Assume output will have the same type
setTensorElementType(input_elem_type, input_value_case, *output_type);
} else {
// This is not expected to happen
fail_type_inference(
"Output ", outputIndex, " expected to have tensor or sparse tensor type. Got: ", output_value_case);
}
}
void propagateElemTypeFromSequenceInputToOutput(InferenceContext& ctx, size_t inputIndex, size_t outputIndex) {
auto input_type = ctx.getInputType(inputIndex);
if (nullptr == input_type || input_type->value_case() != TypeProto::kSequenceType) {
fail_type_inference("Input ", inputIndex, " expected to have sequence type");
}
auto input_seq_type = input_type->sequence_type();
if (!input_seq_type.has_elem_type()) {
fail_type_inference("Element type of sequence input ", inputIndex, " unknown");
}
auto output_type = ctx.getOutputType(outputIndex);
output_type->mutable_sequence_type()->mutable_elem_type()->CopyFrom(input_seq_type.elem_type());
}
void propagateElemTypeFromOptionalInputToOutput(InferenceContext& ctx, size_t inputIndex, size_t outputIndex) {
auto input_type = ctx.getInputType(inputIndex);
if (nullptr == input_type || input_type->value_case() != TypeProto::kOptionalType) {
fail_type_inference("Input ", inputIndex, " expected to have optional type");
}
auto input_opt_type = input_type->optional_type();
if (!input_opt_type.has_elem_type()) {
fail_type_inference("Element type of optional input ", inputIndex, " unknown");
}
auto output_type = ctx.getOutputType(outputIndex);
output_type->mutable_optional_type()->mutable_elem_type()->CopyFrom(input_opt_type.elem_type());
}
void propagateElemTypeFromMapInputToOutput(InferenceContext& ctx, size_t inputIndex, size_t outputIndex) {
auto input_type = ctx.getInputType(inputIndex);
if (nullptr == input_type || input_type->value_case() != TypeProto::kMapType) {
fail_type_inference("Input ", inputIndex, " expected to have map type");
}
auto input_map_type = input_type->map_type();
if (!input_map_type.has_key_type()) {
fail_type_inference("Key type of map input ", inputIndex, " unknown");
}
if (!input_map_type.has_value_type()) {
fail_type_inference("Value type of map input ", inputIndex, " unknown");
}
auto output_type = ctx.getOutputType(outputIndex);
output_type->mutable_map_type()->set_key_type(input_map_type.key_type());
output_type->mutable_map_type()->mutable_value_type()->CopyFrom(input_map_type.value_type());
}
void propagateElemTypeFromInputToOutput(InferenceContext& ctx, size_t inputIndex, size_t outputIndex) {
auto input_type = ctx.getInputType(inputIndex);
if (nullptr == input_type) {
fail_type_inference("Input ", inputIndex, " expected to have type but instead is null");
}
const auto input_value_case = input_type->value_case();
if (input_value_case == TypeProto::kTensorType || input_value_case == TypeProto::kSparseTensorType) {
propagateElemTypeFromTensorInputToOutput(ctx, inputIndex, outputIndex);
} else if (input_value_case == TypeProto::kSequenceType) {
propagateElemTypeFromSequenceInputToOutput(ctx, inputIndex, outputIndex);
} else if (input_value_case == TypeProto::kOptionalType) {
propagateElemTypeFromOptionalInputToOutput(ctx, inputIndex, outputIndex);
} else if (input_value_case == TypeProto::kMapType) {
propagateElemTypeFromMapInputToOutput(ctx, inputIndex, outputIndex);
}
}
/*
Merge shape information from a source shape into a target shape.
* merges each TensorShapeProto_Dimension separately.
* prefer values over params.
* If both have values, values must match.
* prefer target param over source param if mismatched.
* Fail if there are mismatches in number of dimensions or dimension values.
*/
void mergeInShapeInfo(const TensorShapeProto& source, TensorShapeProto& target) {
auto num_source_dims = source.dim_size();
auto num_target_dims = target.dim_size();
if (num_source_dims != num_target_dims) {
fail_shape_inference(
"Mismatch between number of inferred and declared dimensions. inferred=",
num_source_dims,
" declared=",
num_target_dims);
}
auto& source_dims = source.dim();
auto* target_dims = target.mutable_dim();
for (int i = 0, end = source_dims.size(); i < end; ++i) {
auto& source_dim = source_dims.Get(i);
auto& target_dim = *target_dims->Mutable(i);
mergeInDimensionInfo(source_dim, target_dim, i);
}
}
void mergeInShapeInfo(const TensorShapeProto& source_shape, TypeProto_Tensor& target_type) {
if (target_type.has_shape()) {
// merge with existing info.
mergeInShapeInfo(source_shape, *target_type.mutable_shape());
} else {
// copy to target
(*target_type.mutable_shape()) = source_shape;
}
}
void mergeInShapeInfo(const TensorShapeProto& source_shape, TypeProto_SparseTensor& target_type) {
if (target_type.has_shape()) {
// merge with existing info.
mergeInShapeInfo(source_shape, *target_type.mutable_shape());
} else {
// copy to target
(*target_type.mutable_shape()) = source_shape;
}
}
/*
Merge the shape information from two TypeProto_Tensor instances.
Values are merged into target from source.
If target has no shape information, copy from source.
If source has no shape information, ignore source.
If both have shape information:
- merge each TensorShapeProto_Dimension separately.
- Prefer values over params. If both have values, values must match.
- Prefer target param over source param if mismatched.
Fail if there are mismatches in number of dimensions or dimension values.
*/
void mergeInShapeInfo(const TypeProto_Tensor& source, TypeProto_Tensor& target) {
if (source.has_shape())
mergeInShapeInfo(source.shape(), target);
}
void mergeInShapeInfo(const TypeProto_SparseTensor& source, TypeProto_SparseTensor& target) {
if (source.has_shape())
mergeInShapeInfo(source.shape(), target);
}
/// <summary>
/// Utility function for UnionShapeInfoForTensor.
/// Both shapes must be of the same rank
/// </summary>
/// <param name="source_shape"></param>
/// <param name="target_shape">destination shape</param>
void UnionShapeInfo(const TensorShapeProto& source_shape, TensorShapeProto& target_shape) {
auto source_rank = source_shape.dim_size();
for (int i = 0; i < source_rank; ++i) {
const auto source_dim = source_shape.dim(i);
const auto target_dim = target_shape.dim(i);
bool is_dims_conflict = [&]() {
if (source_dim.has_dim_value()) {
if (target_dim.has_dim_value() && target_dim.dim_value() == source_dim.dim_value()) {
return false;
}
return true;
}
if (source_dim.has_dim_param()) {
if (target_dim.has_dim_param() && target_dim.dim_param() == source_dim.dim_param()) {
return false;
}
return true;
}
return (target_dim.has_dim_value() || target_dim.has_dim_param());
}();
if (is_dims_conflict && (target_dim.has_dim_value() || target_dim.has_dim_param())) {
auto dim = target_shape.mutable_dim(i);
dim->clear_dim_value();
dim->clear_dim_param();
}
}
}
template <typename TENSOR_TYPE>
void UnionShapeInfoForTensor(const TensorShapeProto& source_shape, TENSOR_TYPE& target_type) {
if (target_type.has_shape()) {
TensorShapeProto* target_shape = target_type.mutable_shape();
auto source_rank = source_shape.dim_size();
auto target_rank = target_shape->dim_size();
if (source_rank != target_rank) {
target_type.clear_shape();
return;
}
UnionShapeInfo(source_shape, *target_shape);
}
}
void UnionShapeInfo(const TensorShapeProto& source_shape, TypeProto_Tensor& target_type) {
UnionShapeInfoForTensor(source_shape, target_type);
}
void UnionShapeInfo(const TypeProto_Tensor& source_type, TypeProto_Tensor& target_type) {
// The union of a tensor of unknown rank and a tensor of known rank is a tensor of unknown rank.
// Hence, if the source_type had unknown rank, we clear the shape of the target_type.
// Otherwise, UnionShapeInfoForTensor handles the rest.
if (source_type.has_shape()) {
UnionShapeInfoForTensor(source_type.shape(), target_type);
} else {
target_type.clear_shape();
}
}
void UnionShapeInfo(const TypeProto_SparseTensor& source_type, TypeProto_SparseTensor& target_type) {
// The union of a tensor of unknown rank and a tensor of known rank is a tensor of unknown rank.
// Hence, if the source_type had unknown rank, we clear the shape of the target_type.
// Otherwise, UnionShapeInfoForTensor handles the rest.
if (source_type.has_shape()) {
UnionShapeInfoForTensor(source_type.shape(), target_type);
} else {
target_type.clear_shape();
}
}
void UnionShapeInfo(const TensorShapeProto& source_shape, TypeProto_SparseTensor& target_type) {
UnionShapeInfoForTensor(source_shape, target_type);
}
void UnionTypeInfo(const TypeProto& source_type, TypeProto& target_type) {
if (source_type.value_case() != target_type.value_case()) {
fail_type_inference(
"Mismatched type:", " inferred=", source_type.value_case(), " declared=", target_type.value_case());
}
const auto target_case = target_type.value_case();
if (target_case == TypeProto::ValueCase::kTensorType) {
auto source_elem_type = source_type.tensor_type().elem_type();
auto target_elem_type = target_type.tensor_type().elem_type();
if (source_elem_type != target_elem_type) {
fail_type_inference(
"Mismatched tensor element type:",
" inferred=",
Utils::DataTypeUtils::ToDataTypeString(source_elem_type),
" declared=",
Utils::DataTypeUtils::ToDataTypeString(target_elem_type));
}
UnionShapeInfo(source_type.tensor_type(), *target_type.mutable_tensor_type());
} else if (target_case == TypeProto::ValueCase::kSparseTensorType) {
auto source_elem_type = source_type.sparse_tensor_type().elem_type();
auto target_elem_type = target_type.sparse_tensor_type().elem_type();
if (source_elem_type != target_elem_type) {
fail_type_inference(
"Mismatched sparse tensor element type:",
" inferred=",
Utils::DataTypeUtils::ToDataTypeString(source_elem_type),
" declared=",
Utils::DataTypeUtils::ToDataTypeString(target_elem_type));
}
UnionShapeInfo(source_type.sparse_tensor_type(), *target_type.mutable_sparse_tensor_type());
} else if (target_case == TypeProto::ValueCase::kSequenceType) {
if (!source_type.sequence_type().has_elem_type()) {
fail_type_inference("source sequence type missing element type.");
}
if (!target_type.sequence_type().has_elem_type()) {
fail_type_inference("target sequence type missing element type.");
}
UnionTypeInfo(source_type.sequence_type().elem_type(), *target_type.mutable_sequence_type()->mutable_elem_type());
} else if (target_case == TypeProto::ValueCase::kOptionalType) {
if (!source_type.optional_type().has_elem_type()) {
fail_type_inference("source optional type missing element type.");
}
if (!target_type.optional_type().has_elem_type()) {
fail_type_inference("target optional type missing element type.");
}
UnionTypeInfo(source_type.optional_type().elem_type(), *target_type.mutable_optional_type()->mutable_elem_type());
} else if (target_case == TypeProto::ValueCase::kMapType) {
if (!source_type.map_type().has_key_type()) {
fail_type_inference("source map type missing key type.");
}
if (!target_type.map_type().has_key_type()) {
fail_type_inference("target map type missing key type.");
}
auto source_key_type = source_type.map_type().key_type();
auto target_key_type = target_type.map_type().key_type();
if (source_key_type != target_key_type) {
fail_type_inference(
"Mismatched map tensor key type:",
" inferred=",
Utils::DataTypeUtils::ToDataTypeString(source_key_type),
" declared=",
Utils::DataTypeUtils::ToDataTypeString(target_key_type));
}
if (!source_type.map_type().has_value_type()) {
fail_type_inference("source map type missing value type.");
}
if (!target_type.map_type().has_value_type()) {
fail_type_inference("target map type missing value type.");
}
UnionTypeInfo(source_type.map_type().value_type(), *target_type.mutable_map_type()->mutable_value_type());
}
}
// Supports both Tensor and SparseTensor
// This does not fail if input_type is Tensor and output type is SparseTensor
// or the other way around. This is to support mixed cases when an op receives
// sparse input and outputs dense or vice-versa.
// If the output value_case is not set, then
// the input value_case is propagated.
void propagateTensorElemTypeWithValidation(const TypeProto* input_type, TypeProto* output_type) {
if (nullptr == input_type) {
fail_type_inference("Input type was null");
}
int32_t input_elem_type = TensorProto::UNDEFINED;
const auto input_value_case = input_type->value_case();
if (input_value_case == TypeProto::kTensorType || input_value_case == TypeProto::kSparseTensorType) {
input_elem_type = getTensorElementType(*input_type);
if (input_elem_type == TensorProto::UNDEFINED) {
fail_type_inference("Element type of tensor or sparse tensor input was unknown");
}
} else {
fail_type_inference("Input was expected to have tensor or sparse tensor type. Got ", input_value_case);
}
const auto output_value_case = output_type->value_case();
if (output_value_case == TypeProto::VALUE_NOT_SET) {
setTensorElementType(input_elem_type, input_value_case, *output_type);
} else if (output_value_case == TypeProto::kTensorType || output_value_case == TypeProto::kSparseTensorType) {
const auto output_elem_type = getTensorElementType(*output_type);
if (output_elem_type != TensorProto::UNDEFINED) {
if (input_elem_type != output_elem_type) {
fail_type_inference(
"Input element type of ", input_elem_type, " does not match existing output type of ", output_elem_type);
}
} else {
setTensorElementType(input_elem_type, output_value_case, *output_type);
}
} else {
// This is not expected to happen
fail_type_inference("Output was expected to have tensor type. Got ", output_value_case);
}
}
void propagateSequenceElemTypeWithValidation(const TypeProto* input_type, TypeProto* output_type) {
if (nullptr == input_type) {
fail_type_inference("Input type was null");
}
if (input_type->value_case() != TypeProto::kSequenceType) {
fail_type_inference("Input was expected to have sequence type. Got ", input_type->value_case());
}
auto input_seq_type = input_type->sequence_type();
if (input_seq_type.has_elem_type()) {
propagateElemTypeWithValidation(
&input_seq_type.elem_type(), output_type->mutable_sequence_type()->mutable_elem_type());
} else {
fail_type_inference("Element type of sequence input was unknown");
}
}
void propagateOptionalElemTypeWithValidation(const TypeProto* input_type, TypeProto* output_type) {
if (nullptr == input_type) {
fail_type_inference("Input type was null");
}
if (input_type->value_case() != TypeProto::kOptionalType) {
fail_type_inference("Input was expected to have optional type. Got ", input_type->value_case());
}
auto input_opt_type = input_type->optional_type();
if (input_opt_type.has_elem_type()) {
propagateElemTypeWithValidation(
&input_opt_type.elem_type(), output_type->mutable_optional_type()->mutable_elem_type());
} else {
fail_type_inference("Element type of optional input was unknown");
}
}
void propagateMapElemTypeWithValidation(const TypeProto* input_type, TypeProto* output_type) {
if (nullptr == input_type) {
fail_type_inference("Input type was null");
}
if (input_type->value_case() != TypeProto::kMapType) {
fail_type_inference("Input was expected to have map type. Got ", input_type->value_case());
}
auto input_map_type = input_type->map_type();
if (!input_map_type.has_key_type()) {
fail_type_inference("Key type of map input was unknown");
}
if (!input_map_type.has_value_type()) {
fail_type_inference("Value type of map input was unknown");
}
output_type->mutable_map_type()->set_key_type(input_map_type.key_type());
propagateElemTypeWithValidation(&input_map_type.value_type(), output_type->mutable_map_type()->mutable_value_type());
}
// propagate the element type from an input type to an output type.
// if an existing output element type exists, validate it matches.
void propagateElemTypeWithValidation(const TypeProto* input_type, TypeProto* output_type) {
if (nullptr == input_type) {
fail_type_inference("Input type was null");
}
const auto input_value_case = input_type->value_case();
if (input_value_case == TypeProto::kTensorType || input_value_case == TypeProto::kSparseTensorType) {
propagateTensorElemTypeWithValidation(input_type, output_type);
} else if (input_value_case == TypeProto::kSequenceType) {
propagateSequenceElemTypeWithValidation(input_type, output_type);
} else if (input_value_case == TypeProto::kOptionalType) {
propagateOptionalElemTypeWithValidation(input_type, output_type);
} else if (input_value_case == TypeProto::kMapType) {
propagateMapElemTypeWithValidation(input_type, output_type);
} else {
fail_type_inference(
"Input was expected to have either tensor, sequence, optional or map type. Got ", input_value_case);
}
}
TensorShapeProto getShapeInput(const InferenceContext& ctx, size_t input_index, bool& found) {
TensorShapeProto shape_input;
// First, check initializer.
const TensorProto* shape_initializer = ctx.getInputData(input_index);
if (shape_initializer) {
const std::vector<int64_t>& shape_data = ParseData<int64_t>(shape_initializer);
for (const int64_t& e : shape_data) {
shape_input.add_dim()->set_dim_value(e);
}
found = true;
return shape_input;
}
// Then, check symbolic input.
const TensorShapeProto* symbolic_input = ctx.getSymbolicInput(input_index);
if (symbolic_input) {
shape_input.CopyFrom(*symbolic_input);
found = true;
return shape_input;
}
// Try rank inference.
if (hasInputShape(ctx, input_index)) {
const TensorShapeProto& shape_input_shape = getInputShape(ctx, input_index);
if (shape_input_shape.dim_size() != 1) {
fail_shape_inference("shape input must be 1D tensor");
}
if (shape_input_shape.dim(0).has_dim_value()) {
// Attempt rank inference using shape of shape input
int64_t dim_value = shape_input_shape.dim(0).dim_value();
for (int64_t i = 0; i < dim_value; ++i) {
shape_input.add_dim();
}
found = true;
return shape_input;
}
}
// Shape input was not found.
found = false;
return shape_input;
}
template <typename Container>
std::string stringify(const Container& elements) {
std::stringstream ss;
for (const auto& element : elements) {
ss << element << ", ";
}
return ss.str();
}
std::pair<int, int> getAttributeProtoElemTypeAndLength(const AttributeProto* attr_proto) {
if (attr_proto->ints_size()) {
return {TensorProto_DataType_INT64, attr_proto->ints_size()};
} else if (attr_proto->floats_size()) {
return {TensorProto_DataType_FLOAT, attr_proto->floats_size()};
} else if (attr_proto->strings_size()) {
return {TensorProto_DataType_STRING, attr_proto->strings_size()};
} else if (attr_proto->has_t()) {
if (attr_proto->t().dims_size() != 1) {
fail_type_inference(
"Attribute ", attr_proto->name(), " expected to be a 1D tensor but was ", attr_proto->t().dims_size(), "D");
}
return {attr_proto->t().data_type(), attr_proto->t().dims(0)};
}
return {TensorProto::UNDEFINED, 0};
}
std::pair<int, int> getAttributeElementTypeAndLength(
const InferenceContext& ctx,
const std::initializer_list<std::string>& attribute_names) {
// Get element type and lengths of 1D attribute lists
int32_t elem_type = TensorProto::UNDEFINED;
int32_t length = 0;
for (const auto& attribute : attribute_names) {
const AttributeProto* attr_proto = ctx.getAttribute(attribute);
if (attr_proto != nullptr) {
if (elem_type != TensorProto::UNDEFINED) {
// Another attribute was already set
fail_shape_inference("One and only one attribute must be set out of ", stringify(attribute_names));
}
std::tie(elem_type, length) = getAttributeProtoElemTypeAndLength(attr_proto);
}
}
return {elem_type, length};
}
} // namespace ONNX_NAMESPACE
|