Spaces:
Sleeping
Sleeping
File size: 12,166 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include "onnx/defs/function.h"
#include "onnx/defs/schema.h"
namespace ONNX_NAMESPACE {
inline void unaryLogicalOpInference(InferenceContext& ctx) {
// Type inference
updateOutputElemType(ctx, 0, TensorProto::BOOL);
// Shape inference
if (hasInputShape(ctx, 0)) {
propagateShapeFromInputToOutput(ctx, 0, 0);
}
}
std::function<void(OpSchema&)> BinaryLogicDocGenerator(const char* name) {
return [=](OpSchema& schema) {
std::string doc;
POPULATE_OP_DOC_STR(doc = R"DOC(
Returns the tensor resulted from performing the `{name}` logical operation
elementwise on the input tensors `A` and `B` (with Numpy-style broadcasting support).
{broadcast_doc}
)DOC";
ReplaceAll(doc, "{name}", name);
ReplaceAll(doc, "{broadcast_doc}", GenerateBroadcastingDocMul().c_str()););
schema.SetDoc(doc);
schema.Input(
0,
"A",
"First input operand for the logical operator.",
"T",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable);
schema.Input(
1,
"B",
"Second input operand for the logical operator.",
"T",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable);
schema.Output(0, "C", "Result tensor.", "T1", OpSchema::Single, true, 1, OpSchema::NonDifferentiable);
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// Type inference
updateOutputElemType(ctx, 0, TensorProto::BOOL);
// Shape inference
if (hasNInputShapes(ctx, 2))
bidirectionalBroadcastShapeInference(
ctx.getInputType(0)->tensor_type().shape(),
ctx.getInputType(1)->tensor_type().shape(),
*ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape());
});
};
}
ONNX_OPERATOR_SET_SCHEMA(
And,
7,
OpSchema()
.FillUsing(BinaryLogicDocGenerator("and"))
.TypeConstraint("T", {"tensor(bool)"}, "Constrain input to boolean tensor.")
.TypeConstraint("T1", {"tensor(bool)"}, "Constrain output to boolean tensor."));
ONNX_OPERATOR_SET_SCHEMA(
Or,
7,
OpSchema()
.FillUsing(BinaryLogicDocGenerator("or"))
.TypeConstraint("T", {"tensor(bool)"}, "Constrain input to boolean tensor.")
.TypeConstraint("T1", {"tensor(bool)"}, "Constrain output to boolean tensor."));
ONNX_OPERATOR_SET_SCHEMA(
Xor,
7,
OpSchema()
.FillUsing(BinaryLogicDocGenerator("xor"))
.TypeConstraint("T", {"tensor(bool)"}, "Constrain input to boolean tensor.")
.TypeConstraint("T1", {"tensor(bool)"}, "Constrain output to boolean tensor."));
ONNX_OPERATOR_SET_SCHEMA(
Greater,
13,
OpSchema()
.FillUsing(BinaryLogicDocGenerator("greater"))
.TypeConstraint("T", OpSchema::all_numeric_types_ir4(), "Constrain input types to all numeric tensors.")
.TypeConstraint("T1", {"tensor(bool)"}, "Constrain output to boolean tensor."));
ONNX_OPERATOR_SET_SCHEMA(
Less,
13,
OpSchema()
.FillUsing(BinaryLogicDocGenerator("less"))
.TypeConstraint("T", OpSchema::all_numeric_types_ir4(), "Constrain input types to all numeric tensors.")
.TypeConstraint("T1", {"tensor(bool)"}, "Constrain output to boolean tensor."));
ONNX_OPERATOR_SET_SCHEMA(
Equal,
19,
OpSchema()
.FillUsing(BinaryLogicDocGenerator("equal"))
.TypeConstraint(
"T",
{"tensor(bool)",
"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)",
"tensor(float16)",
"tensor(float)",
"tensor(double)",
"tensor(bfloat16)",
"tensor(string)"},
"Constrain input types to all (non-complex) tensors.")
.TypeConstraint("T1", {"tensor(bool)"}, "Constrain output to boolean tensor."));
static const char* Not_ver1_doc = R"DOC(
Returns the negation of the input tensor element-wise.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Not,
1,
OpSchema()
.SetDoc(Not_ver1_doc)
.Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.TypeConstraint("T", {"tensor(bool)"}, "Constrain input/output to boolean tensors.")
.TypeAndShapeInferenceFunction(unaryLogicalOpInference));
static const char* BitShift_ver11_doc = R"DOC(
Bitwise shift operator performs element-wise operation. For each input element, if the
attribute "direction" is "RIGHT", this operator moves its binary representation toward
the right side so that the input value is effectively decreased. If the attribute "direction"
is "LEFT", bits of binary representation moves toward the left side, which results the
increase of its actual value. The input X is the tensor to be shifted and another input
Y specifies the amounts of shifting. For example, if "direction" is "Right", X is [1, 4],
and S is [1, 1], the corresponding output Z would be [0, 2]. If "direction" is "LEFT" with
X=[1, 2] and S=[1, 2], the corresponding output Y would be [2, 8].
Because this operator supports Numpy-style broadcasting, X's and Y's shapes are
not necessarily identical.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
BitShift,
11,
OpSchema()
.SetDoc(GET_OP_DOC_STR(std::string(BitShift_ver11_doc) + GenerateBroadcastingDocMul()))
.Input(
0,
"X",
"First operand, input to be shifted.",
"T",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable)
.Input(1, "Y", "Second operand, amounts of shift.", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.Output(0, "Z", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.TypeConstraint(
"T",
{"tensor(uint8)", "tensor(uint16)", "tensor(uint32)", "tensor(uint64)"},
"Constrain input and output types to integer tensors.")
.Attr(
"direction",
"Direction of moving bits. It can be either \"RIGHT\" (for right shift) "
"or \"LEFT\" (for left shift).",
AttributeProto::STRING)
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// Type inference
propagateElemTypeFromInputToOutput(ctx, 0, 0);
// Shape inference
if (hasNInputShapes(ctx, 2))
bidirectionalBroadcastShapeInference(
ctx.getInputType(0)->tensor_type().shape(),
ctx.getInputType(1)->tensor_type().shape(),
*ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape());
}));
ONNX_OPERATOR_SET_SCHEMA(
LessOrEqual,
16,
OpSchema()
.FillUsing(BinaryLogicDocGenerator("less_equal"))
.TypeConstraint("T", OpSchema::all_numeric_types_ir4(), "Constrain input types to all numeric tensors.")
.TypeConstraint("T1", {"tensor(bool)"}, "Constrain output to boolean tensor.")
.TypeAndShapeInferenceFunction(InferenceFunction())
.FunctionBody(R"ONNX(
{
O1 = Less (A, B)
O2 = Equal (A, B)
C = Or (O1, O2)
}
)ONNX"));
ONNX_OPERATOR_SET_SCHEMA(
GreaterOrEqual,
16,
OpSchema()
.FillUsing(BinaryLogicDocGenerator("greater_equal"))
.TypeConstraint("T", OpSchema::all_numeric_types_ir4(), "Constrain input types to all numeric tensors.")
.TypeConstraint("T1", {"tensor(bool)"}, "Constrain output to boolean tensor.")
.TypeAndShapeInferenceFunction(InferenceFunction())
.FunctionBody(R"ONNX(
{
O1 = Greater (A, B)
O2 = Equal (A, B)
C = Or (O1, O2)
}
)ONNX"));
static const char* BitwiseNot_ver18_doc = R"DOC(
Returns the bitwise not of the input tensor element-wise.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
BitwiseNot,
18,
OpSchema()
.SetDoc(BitwiseNot_ver18_doc)
.Input(0, "X", "Input tensor", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.Output(0, "Y", "Output tensor", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable)
.TypeConstraint(
"T",
{"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)"},
"Constrain input/output to integer tensors.")
.TypeAndShapeInferenceFunction(propagateShapeAndTypeFromFirstInput));
std::function<void(OpSchema&)> BinaryBitwiseDocGenerator(const char* name) {
return [=](OpSchema& schema) {
std::string doc;
POPULATE_OP_DOC_STR(doc = R"DOC(
Returns the tensor resulting from performing the bitwise `{name}` operation
elementwise on the input tensors `A` and `B` (with Numpy-style broadcasting support).
{broadcast_doc}
)DOC";
ReplaceAll(doc, "{name}", name);
ReplaceAll(doc, "{broadcast_doc}", GenerateBroadcastingDocMul().c_str()););
schema.SetDoc(doc);
schema.Input(
0,
"A",
"First input operand for the bitwise operator.",
"T",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable);
schema.Input(
1,
"B",
"Second input operand for the bitwise operator.",
"T",
OpSchema::Single,
true,
1,
OpSchema::NonDifferentiable);
schema.Output(0, "C", "Result tensor.", "T", OpSchema::Single, true, 1, OpSchema::NonDifferentiable);
schema.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// Type inference
propagateElemTypeFromInputToOutput(ctx, 0, 0);
// Shape inference
if (hasNInputShapes(ctx, 2))
bidirectionalBroadcastShapeInference(
ctx.getInputType(0)->tensor_type().shape(),
ctx.getInputType(1)->tensor_type().shape(),
*ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape());
});
};
}
ONNX_OPERATOR_SET_SCHEMA(
BitwiseAnd,
18,
OpSchema()
.FillUsing(BinaryBitwiseDocGenerator("and"))
.TypeConstraint(
"T",
{"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)"},
"Constrain input to integer tensors."));
ONNX_OPERATOR_SET_SCHEMA(
BitwiseOr,
18,
OpSchema()
.FillUsing(BinaryBitwiseDocGenerator("or"))
.TypeConstraint(
"T",
{"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)"},
"Constrain input to integer tensors."));
ONNX_OPERATOR_SET_SCHEMA(
BitwiseXor,
18,
OpSchema()
.FillUsing(BinaryBitwiseDocGenerator("xor"))
.TypeConstraint(
"T",
{"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)"},
"Constrain input to integer tensors."));
} // namespace ONNX_NAMESPACE
|