Spaces:
Sleeping
Sleeping
File size: 27,980 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 |
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include <algorithm>
#include <cmath>
#include "onnx/defs/function.h"
#include "onnx/defs/generator/utils.h"
#include "onnx/defs/schema.h"
namespace ONNX_NAMESPACE {
static const char* Constant_ver19_doc = R"DOC(
This operator produces a constant tensor. Exactly one of the provided attributes, either value, sparse_value,
or value_* must be specified.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Constant,
21,
OpSchema()
.SetDoc(Constant_ver19_doc)
.Attr("value", "The value for the elements of the output tensor.", AttributeProto::TENSOR, false)
.Attr(
"sparse_value",
"The value for the elements of the output tensor in sparse format.",
AttributeProto::SPARSE_TENSOR,
false)
.Attr(
"value_int",
"The value for the sole element for the scalar, int64, output tensor.",
AttributeProto::INT,
false)
.Attr(
"value_ints",
"The values for the elements for the 1D, int64, output tensor.",
AttributeProto::INTS,
false)
.Attr(
"value_float",
"The value for the sole element for the scalar, float32, output tensor.",
AttributeProto::FLOAT,
false)
.Attr(
"value_floats",
"The values for the elements for the 1D, float32, output tensor.",
AttributeProto::FLOATS,
false)
.Attr(
"value_string",
"The value for the sole element for the scalar, UTF-8 string, output tensor.",
AttributeProto::STRING,
false)
.Attr(
"value_strings",
"The values for the elements for the 1D, UTF-8 string, output tensor.",
AttributeProto::STRINGS,
false)
.Output(0, "output", "Output tensor containing the same value of the provided tensor.", "T")
.TypeConstraint("T", OpSchema::all_tensor_types_ir10(), "Constrain input and output types to all tensor types.")
.TypeAndShapeInferenceFunction(ConstantOpInference));
static const char* ConstantOfShape_ver20_doc = R"DOC(
Generate a tensor with given value and shape.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
ConstantOfShape,
21,
OpSchema()
.SetDoc(ConstantOfShape_ver20_doc)
.Attr(
"value",
"(Optional) The value of the output elements."
"Should be a one-element tensor. If not specified, it defaults to a tensor of value 0 and datatype float32",
AttributeProto::TENSOR,
OPTIONAL_VALUE)
.Input(
0,
"input",
"1D tensor. The shape of the expected output tensor. If empty tensor is given, the output would be a scalar."
" All values must be >= 0.",
"T1")
.Output(
0,
"output",
"Output tensor of shape specified by 'input'."
"If attribute 'value' is specified, the value and datatype of the output tensor is taken from 'value'."
"If attribute 'value' is not specified, the value in the output defaults to 0, and the datatype "
"defaults to float32.",
"T2")
.TypeConstraint("T1", {"tensor(int64)"}, "Constrain input types.")
.TypeConstraint(
"T2",
{"tensor(float16)",
"tensor(float)",
"tensor(double)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)",
"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(uint4)",
"tensor(int4)",
"tensor(bool)",
"tensor(bfloat16)",
"tensor(float8e4m3fn)",
"tensor(float8e4m3fnuz)",
"tensor(float8e5m2)",
"tensor(float8e5m2fnuz)"},
"Constrain output types to be numerics or boolean.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
if (ctx.getAttribute("value") != nullptr) {
propagateElemTypeFromDtypeToOutput(ctx, ctx.getAttribute("value"), 0);
} else {
propagateElemTypeFromDtypeToOutput(ctx, TensorProto::FLOAT, 0);
}
bool found = false;
TensorShapeProto output_shape = getShapeInput(ctx, 0, found);
if (found) {
*ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape() = output_shape;
}
}));
static const char* EyeLike_ver9_doc = R"DOC(
Generate a 2D tensor (matrix) with ones on the diagonal and zeros everywhere else. Only 2D
tensors are supported, i.e. input T1 must be of rank 2. The shape of the output tensor is the
same as the input tensor. The data type can be specified by the 'dtype' argument. If
'dtype' is not specified, then the type of input tensor is used. By default, the main diagonal
is populated with ones, but attribute 'k' can be used to populate upper or lower diagonals.
The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the
TensorProto message and be valid as an output type.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
EyeLike,
9,
OpSchema()
.SetDoc(EyeLike_ver9_doc)
.Attr(
"k",
"(Optional) Index of the diagonal to be populated with ones. Default is 0."
" If T2 is the output, this op sets T2[i, i+k] = 1. k = 0 populates the main diagonal, "
"k > 0 populates an upper diagonal, and k < 0 populates a lower diagonal.",
AttributeProto::INT,
static_cast<int64_t>(0))
.Attr(
"dtype",
"(Optional) The data type for the elements of the output tensor. If not specified,"
"the data type of the input tensor T1 is used. If input tensor T1 is also not"
"specified, then type defaults to 'float'.",
AttributeProto::INT,
OPTIONAL_VALUE)
.Input(0, "input", "2D input tensor to copy shape, and optionally, type information from.", "T1")
.Output(0, "output", "Output tensor, same shape as input tensor T1.", "T2")
.TypeConstraint(
"T1",
{"tensor(float16)",
"tensor(float)",
"tensor(double)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)",
"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(bool)"},
"Constrain input types. Strings and complex are not supported.")
.TypeConstraint(
"T2",
{"tensor(float16)",
"tensor(float)",
"tensor(double)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)",
"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(bool)"},
"Constrain output types. Strings and complex are not supported.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
if (ctx.getAttribute("dtype") != nullptr) {
propagateElemTypeFromAttributeToOutput(ctx, "dtype", 0);
} else {
propagateElemTypeFromInputToOutput(ctx, 0, 0);
}
if (hasInputShape(ctx, 0)) {
auto& input_shape = getInputShape(ctx, 0);
if (input_shape.dim_size() != 2) {
fail_shape_inference("Input tensor must be 2-dimensional");
}
}
propagateShapeFromInputToOutput(ctx, 0, 0);
}));
static const char* RandomUniform_ver1_doc = R"DOC(
Generate a tensor with random values drawn from a uniform distribution. The shape
of the tensor is specified by the `shape` argument and the range by `low` and `high`.
The data type is specified by the 'dtype' argument. The 'dtype' argument must
be one of the data types specified in the 'DataType' enum field in the
TensorProto message.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
RandomUniform,
1,
OpSchema()
.SetDoc(RandomUniform_ver1_doc)
.Attr("low", "Lower boundary of the output values.", AttributeProto::FLOAT, 0.0f)
.Attr("high", "Upper boundary of the output values.", AttributeProto::FLOAT, 1.0f)
.Attr(
"seed",
"(Optional) Seed to the random generator, if not specified we will auto generate one.",
AttributeProto::FLOAT,
OPTIONAL_VALUE)
.Attr(
"dtype",
"The data type for the elements of the output tensor. If not specified, default is TensorProto::FLOAT.",
AttributeProto::INT,
static_cast<int64_t>(TensorProto::FLOAT))
.Attr("shape", "The shape of the output tensor.", AttributeProto::INTS)
.Output(0, "output", "Output tensor of random values drawn from uniform distribution", "T")
.TypeConstraint(
"T",
{"tensor(float16)", "tensor(float)", "tensor(double)"},
"Constrain output types to float tensors.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromAttributeToOutput(ctx, "dtype", 0, TensorProto::FLOAT);
propagateShapeFromAttributeToOutput(ctx, "shape", 0);
}));
static const char* RandomNormal_ver1_doc = R"DOC(
Generate a tensor with random values drawn from a normal distribution. The shape
of the tensor is specified by the `shape` argument and the parameter of the normal distribution
specified by `mean` and `scale`.
The data type is specified by the 'dtype' argument. The 'dtype' argument must
be one of the data types specified in the 'DataType' enum field in the
TensorProto message.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
RandomNormal,
1,
OpSchema()
.SetDoc(RandomNormal_ver1_doc)
.Attr("mean", "The mean of the normal distribution.", AttributeProto::FLOAT, 0.0f)
.Attr("scale", "The standard deviation of the normal distribution.", AttributeProto::FLOAT, 1.0f)
.Attr(
"seed",
"(Optional) Seed to the random generator, if not specified we will auto generate one.",
AttributeProto::FLOAT,
OPTIONAL_VALUE)
.Attr(
"dtype",
"The data type for the elements of the output tensor. Default is TensorProto::FLOAT.",
AttributeProto::INT,
static_cast<int64_t>(TensorProto::FLOAT))
.Attr("shape", "The shape of the output tensor.", AttributeProto::INTS)
.Output(0, "output", "Output tensor of random values drawn from normal distribution", "T")
.TypeConstraint(
"T",
{"tensor(float16)", "tensor(float)", "tensor(double)"},
"Constrain output types to float tensors.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
propagateElemTypeFromAttributeToOutput(ctx, "dtype", 0, TensorProto::FLOAT);
propagateShapeFromAttributeToOutput(ctx, "shape", 0);
}));
static const char* RandomUniformLike_ver1_doc = R"DOC(
Generate a tensor with random values drawn from a uniform distribution.
The shape of the output tensor is copied from the shape of the input tensor,
and the parameters of the uniform distribution are specified by `low` and `high`.
The data type is specified by the 'dtype' argument, or copied from the input tensor if not provided.
The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the
TensorProto message and be valid as an output type.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
RandomUniformLike,
1,
OpSchema()
.SetDoc(RandomUniformLike_ver1_doc)
.Attr("low", "Lower boundary of the output values.", AttributeProto::FLOAT, 0.0f)
.Attr("high", "Upper boundary of the output values.", AttributeProto::FLOAT, 1.0f)
.Attr(
"seed",
"(Optional) Seed to the random generator, if not specified we will auto generate one.",
AttributeProto::FLOAT,
OPTIONAL_VALUE)
.Attr(
"dtype",
"(Optional) The data type for the elements of the output tensor, if not specified, we will use "
"the data type of the input tensor.",
AttributeProto::INT,
OPTIONAL_VALUE)
.Input(0, "input", "Input tensor to copy shape and optionally type information from.", "T1")
.Output(0, "output", "Output tensor of random values drawn from uniform distribution", "T2")
.TypeConstraint(
"T1",
OpSchema::all_tensor_types(),
"Constrain to any tensor type. If the dtype attribute is not provided this must be a valid output type.")
.TypeConstraint(
"T2",
{"tensor(float16)", "tensor(float)", "tensor(double)"},
"Constrain output types to float tensors.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
if (ctx.getAttribute("dtype") != nullptr)
propagateElemTypeFromAttributeToOutput(ctx, "dtype", 0);
else
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
propagateShapeFromInputToOutput(ctx, 0, 0);
}));
static const char* RandomNormalLike_ver1_doc = R"DOC(
Generate a tensor with random values drawn from a normal distribution.
The shape of the output tensor is copied from the shape of the input tensor,
and the parameters of the normal distribution are specified by `mean` and `scale`.
The data type is specified by the 'dtype' argument, or copied from the input tensor if not provided.
The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the
TensorProto message, and be valid as an output type.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
RandomNormalLike,
1,
OpSchema()
.SetDoc(RandomNormalLike_ver1_doc)
.Attr("mean", "The mean of the normal distribution.", AttributeProto::FLOAT, 0.0f)
.Attr("scale", "The standard deviation of the normal distribution.", AttributeProto::FLOAT, 1.0f)
.Attr(
"seed",
"(Optional) Seed to the random generator, if not specified we will auto generate one.",
AttributeProto::FLOAT,
OPTIONAL_VALUE)
.Attr(
"dtype",
"(Optional) The data type for the elements of the output tensor, if not specified, we will use "
"the data type of the input tensor.",
AttributeProto::INT,
OPTIONAL_VALUE)
.Input(0, "input", "Input tensor to copy shape and optionally type information from.", "T1")
.Output(0, "output", "Output tensor of random values drawn from normal distribution", "T2")
.TypeConstraint(
"T1",
OpSchema::all_tensor_types(),
"Constrain to any tensor type. If the dtype attribute is not provided this must be a valid output type.")
.TypeConstraint(
"T2",
{"tensor(float16)", "tensor(float)", "tensor(double)"},
"Constrain output types to float tensors.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
if (ctx.getAttribute("dtype") != nullptr)
propagateElemTypeFromAttributeToOutput(ctx, "dtype", 0);
else
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
propagateShapeFromInputToOutput(ctx, 0, 0);
}));
static const char* Multinomial_ver7_doc = R"DOC(
Generate a tensor of samples from a multinomial distribution according to the probabilities
of each of the possible outcomes.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Multinomial,
7,
OpSchema()
.SetDoc(Multinomial_ver7_doc)
.Attr("sample_size", "Number of times to sample.", AttributeProto::INT, static_cast<int64_t>(1))
.Attr(
"seed",
"(Optional) Seed to the random generator, if not specified we will auto generate one.",
AttributeProto::FLOAT,
OPTIONAL_VALUE)
.Attr(
"dtype",
"(Optional) The data type for the elements of the output tensor, if not specified, we will use int32.",
AttributeProto::INT,
static_cast<int64_t>(TensorProto::INT32))
.Input(
0,
"input",
"Input tensor with shape [batch_size, class_size], where class_size is the number of all possible outcomes. Each value along the axis zero represents the unnormalized log-probability of each corresponding outcome in a batch.",
"T1")
.Output(
0,
"output",
"Output tensor with shape [batch_size, sample_size], where sample_size is the number of times to sample. Each value along the axis zero represents the outcome of the corresponding sample in a batch.",
"T2")
.TypeConstraint(
"T1",
{"tensor(float16)", "tensor(float)", "tensor(double)"},
"Constrain input types to float tensors.")
.TypeConstraint("T2", {"tensor(int32)", "tensor(int64)"}, "Constrain output types to integral tensors.")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
auto dtype = ctx.getAttribute("dtype");
auto dataType = TensorProto_DataType::TensorProto_DataType_INT32;
if (dtype != nullptr) {
dataType = static_cast<TensorProto_DataType>(dtype->i());
if (dataType != TensorProto_DataType::TensorProto_DataType_INT32 &&
dataType != TensorProto_DataType::TensorProto_DataType_INT64) {
fail_type_inference("Output type must be int32 or int64");
}
}
updateOutputElemType(ctx, 0, dataType);
TensorShapeProto::Dimension batch_size, sample_size;
if (hasInputShape(ctx, 0)) {
auto& input_shape = getInputShape(ctx, 0);
if (input_shape.dim_size() != 2) {
fail_shape_inference("Input tensor must have rank 2");
}
batch_size = input_shape.dim(0);
} // else statically-unknown batch-size
sample_size.set_dim_value(getAttribute(ctx, "sample_size", 1));
updateOutputShape(ctx, 0, {batch_size, sample_size});
}));
static const char* Range_ver11_doc = R"DOC(
Generate a tensor containing a sequence of numbers that begin at `start` and extends by increments of `delta`
up to `limit` (exclusive).
The number of elements in the output of range is computed as below:
```
number_of_elements = max( ceil( (limit - start) / delta ) , 0 )
```
The pseudocode determining the contents of the output is shown below:
```
for(int i=0; i<number_of_elements; ++i) {
output[i] = start + (i * delta);
}
```
Example 1
```
Inputs: start = 3, limit = 9, delta = 3
Output: [3, 6]
```
Example 2
```
Inputs: start = 10, limit = 4, delta = -2
Output: [10, 8, 6]
```
)DOC";
template <typename T>
inline int64_t
compute_output_dim_for_range(const TensorProto* start, const TensorProto* limit, const TensorProto* delta) {
if (start->dims().size() != 0 || limit->dims().size() != 0 || delta->dims().size() != 0) {
fail_shape_inference("Input to 'Range' op should be scalars (Tensor with only one element and shape empty)");
}
const auto& start_data = ParseData<T>(start);
const auto& limit_data = ParseData<T>(limit);
const auto& delta_data = ParseData<T>(delta);
int64_t n = static_cast<int64_t>(ceil((1.0 * (limit_data[0] - start_data[0])) / delta_data[0]));
if (n < 0)
n = 0;
return n;
}
ONNX_OPERATOR_SET_SCHEMA(
Range,
11,
OpSchema()
.SetDoc(Range_ver11_doc)
.Input(0, "start", "Scalar. First entry for the range of output values.", "T")
.Input(1, "limit", "Scalar. Exclusive upper limit for the range of output values.", "T")
.Input(2, "delta", "Scalar. Value to step by.", "T")
.Output(0, "output", "A 1-D tensor with same type as the inputs containing generated range of values.", "T")
.TypeConstraint(
"T",
{"tensor(float)", "tensor(double)", "tensor(int16)", "tensor(int32)", "tensor(int64)"},
"Constrain input types to common numeric type tensors.")
.FunctionBody(R"ONNX(
{
sub_result = Sub (limit, start)
sub_result_casted = Cast <to = 1> (sub_result)
delta_casted = Cast <to = 1> (delta)
div_result = Div (sub_result_casted, delta_casted)
ceil_result = Ceil (div_result)
ceil_result_relu = Relu (ceil_result)
ceil_result_relu_int = Cast <to = 7> (ceil_result_relu)
ceil_result_relu_bool = Cast <to = 9> (ceil_result_relu)
variadic_output, output = Loop (ceil_result_relu_int, ceil_result_relu_bool, start)
<body = loop_body_attribute (int64 i, bool cond, prev) => (cond_out, current, range) {
cond_out = Identity (cond)
current = Add (prev, delta)
range = Identity (prev)
}>
}
)ONNX")
.TypeAndShapeInferenceFunction([](InferenceContext& ctx) {
// Type inference
propagateElemTypeFromInputToOutput(ctx, 0, 0);
// Shape inference
const auto* start_initializer = ctx.getInputData(0);
const auto* limit_initializer = ctx.getInputData(1);
const auto* delta_initializer = ctx.getInputData(2);
// Output is always 1-D
auto* output_dim = ctx.getOutputType(0)->mutable_tensor_type()->mutable_shape()->add_dim();
// If any of Range's inputs are not initializers, the output dimension
// value would remain unknown.
if (start_initializer != nullptr && limit_initializer != nullptr && delta_initializer != nullptr) {
// Make sure the input types are homogeneous
if ((start_initializer->data_type() != limit_initializer->data_type()) ||
(start_initializer->data_type() != delta_initializer->data_type())) {
fail_shape_inference("All inputs to 'Range' op must be of the same type");
}
// Explicitly compute the output dimension if Range's inputs are
// stored in initializer list.
if (start_initializer->data_type() == TensorProto::FLOAT) {
output_dim->set_dim_value(
compute_output_dim_for_range<float>(start_initializer, limit_initializer, delta_initializer));
} else if (start_initializer->data_type() == TensorProto::INT32) {
output_dim->set_dim_value(
compute_output_dim_for_range<int32_t>(start_initializer, limit_initializer, delta_initializer));
} else if (start_initializer->data_type() == TensorProto::INT64) {
output_dim->set_dim_value(
compute_output_dim_for_range<int64_t>(start_initializer, limit_initializer, delta_initializer));
} else if (start_initializer->data_type() == TensorProto::DOUBLE) {
output_dim->set_dim_value(
compute_output_dim_for_range<double>(start_initializer, limit_initializer, delta_initializer));
} else {
// 'float16' has no native CPU type -
// stop with rank inference, no action here
}
return;
}
}));
static const char* Bernoulli_ver15_doc = R"DOC(
Draws binary random numbers (0 or 1) from a Bernoulli distribution. The input tensor should be a tensor
containing probabilities p (a value in the range [0,1]) to be used for drawing the binary random number,
where an output of 1 is produced with probability p and an output of 0 is produced with probability (1-p).
This operator is non-deterministic and may not produce the same values in different
implementations (even if a seed is specified).
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Bernoulli,
15,
OpSchema()
.SetDoc(Bernoulli_ver15_doc)
.Attr(
"seed",
"(Optional) Seed to the random generator, if not specified we will auto generate one.",
AttributeProto::FLOAT,
OPTIONAL_VALUE)
.Attr(
"dtype",
"The data type for the elements of the output tensor. if not specified, we will use "
"the data type of the input tensor.",
AttributeProto::INT,
OPTIONAL_VALUE)
.Input(0, "input", "All values in input have to be in the range:[0, 1].", "T1")
.Output(0, "output", "The returned output tensor only has values 0 or 1, same shape as input tensor.", "T2")
.TypeConstraint(
"T1",
{"tensor(float16)", "tensor(float)", "tensor(double)"},
"Constrain input types to float tensors.")
.TypeConstraint(
"T2",
{"tensor(float16)",
"tensor(float)",
"tensor(double)",
"tensor(bfloat16)",
"tensor(uint8)",
"tensor(uint16)",
"tensor(uint32)",
"tensor(uint64)",
"tensor(int8)",
"tensor(int16)",
"tensor(int32)",
"tensor(int64)",
"tensor(bool)"},
"Constrain output types to all numeric tensors and bool tensors.")
.TypeAndShapeInferenceFunction([](ONNX_NAMESPACE::InferenceContext& ctx) {
if (ctx.getAttribute("dtype") != nullptr)
propagateElemTypeFromAttributeToOutput(ctx, "dtype", 0);
else
propagateElemTypeFromInputToOutput(ctx, 0, 0);
if (!hasNInputShapes(ctx, 1)) {
return;
}
propagateShapeFromInputToOutput(ctx, 0, 0);
})
.SetContextDependentFunctionBodyBuilder(
[](const FunctionBodyBuildContext& ctx, const OpSchema& schema, FunctionProto& functionProto) -> bool {
if (ctx.getInputType(0) == nullptr) {
// we cannot create a correct function body without knowing the input type
return false;
}
auto input_type = ctx.getInputType(0)->tensor_type().elem_type();
auto dtype = ctx.getAttribute("dtype") != nullptr
? static_cast<TensorProto_DataType>(ctx.getAttribute("dtype")->i())
: input_type;
FunctionBuilder builder(functionProto);
builder
.Add(
"X_random = RandomUniformLike <low = 0.0, high = 1.0, seed = @seed> (input)",
"dtype",
int64_t(input_type))
.Add("X_greater = Greater (X_random, input)")
.Add("output = Cast (X_greater)", "to", int64_t(dtype));
schema.BuildFunction(functionProto);
return true;
}));
} // namespace ONNX_NAMESPACE
|