Spaces:
Sleeping
Sleeping
File size: 20,718 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
// Copyright (c) ONNX Project Contributors
/*
* SPDX-License-Identifier: Apache-2.0
*/
#include <assert.h>
#include "onnx/defs/controlflow/utils.h"
#include "onnx/defs/schema.h"
namespace ONNX_NAMESPACE {
using SupportType = OpSchema::SupportType;
static std::vector<std::string> control_flow_types_ir10() {
auto t = OpSchema::all_tensor_types_ir10();
auto s = OpSchema::all_tensor_sequence_types_ir10();
auto o = OpSchema::all_optional_types_ir10();
t.insert(t.end(), s.begin(), s.end());
t.insert(t.end(), o.begin(), o.end());
return t;
}
ONNX_OPERATOR_SET_SCHEMA(
If,
21,
OpSchema()
.SetDoc("If conditional")
.Input(0, "cond", "Condition for the if. The tensor must contain a single element.", "B")
.Output(
0,
"outputs",
"Values that are live-out to the enclosing scope. The return values in "
"the `then_branch` and `else_branch` must be of the same data type. "
"The `then_branch` and `else_branch` may produce tensors with the same "
"element type and different shapes. "
"If corresponding outputs from the then-branch and the else-branch have "
"static shapes S1 and S2, then the shape of the corresponding output "
"variable of the if-node (if present) must be compatible with both S1 "
"and S2 as it represents the union of both possible shapes."
"For example, if in a model file, the first "
"output of `then_branch` is typed float tensor with shape [2] and the "
"first output of `else_branch` is another float tensor with shape [3], "
"If's first output should have (a) no shape set, or (b) "
"a shape of rank 1 with neither `dim_value` nor `dim_param` set, or (c) "
"a shape of rank 1 with a unique `dim_param`. "
"In contrast, the first output cannot have the shape [2] since [2] and "
"[3] are not compatible.",
"V",
OpSchema::Variadic,
false)
.Attr(
"then_branch",
"Graph to run if condition is true. Has N outputs: values you wish to "
"be live-out to the enclosing scope. The number of outputs must match"
" the number of outputs in the else_branch.",
AttributeProto::GRAPH)
.Attr(
"else_branch",
"Graph to run if condition is false. Has N outputs: values you wish to"
" be live-out to the enclosing scope. The number of outputs must match"
" the number of outputs in the then_branch.",
AttributeProto::GRAPH)
.TypeConstraint(
"V",
control_flow_types_ir10(),
"All Tensor, Sequence(Tensor), Optional(Tensor), and Optional(Sequence(Tensor)) types up to IRv10.")
.TypeConstraint("B", {"tensor(bool)"}, "Only bool")
.TypeAndShapeInferenceFunction(IfInferenceFunction));
static const char* Loop_ver16_doc = R"DOC(
Generic Looping construct. This loop has multiple termination conditions:
1) Trip count. Iteration count specified at runtime. Set by
specifying the input M. Optional. Set to empty string to omit.
Note that a static trip count (specified at graph construction time) can be
specified by passing in a constant node for input M.
2) Loop termination condition. This is an input to the op that determines
whether to run the first iteration and also a loop-carried dependency for
the body graph. The body graph must yield a value for the condition variable,
whether this input is provided or not.
This table summarizes the operating modes of this operator with equivalent
C-style code:
Operator inputs defined as (max_trip_count, condition_var).
* input ("", ""):
for (int i=0; ; ++i) {
cond = ... // Note this value is ignored, but is required in the body
}
* input ("", cond) // Note this is analogous to a while loop
bool cond = ...;
for (int i=0; cond; ++i) {
cond = ...;
}
* input ("", 1) // Note this is analogous to a do-while loop
bool cond = true
for (int i=0; cond; ++i) {
cond = ...;
}
* input (trip_count, "") // Note this is analogous to a for loop
int trip_count = ...
for (int i=0; i < trip_count; ++i) {
cond = ...; // ignored
}
* input (trip_count, cond)
int trip_count = ...;
bool cond = ...;
for (int i=0; i < trip_count && cond; ++i) {
cond = ...;
}
*Sample usage - cond as well as trip count*
graph predict-net {
%a = Constant[value = <Scalar Tensor [3]>]()
%b = Constant[value = <Scalar Tensor [6]>]()
%keepgoing = Constant[value = <Scalar Tensor [1]>]()
%max_trip_count = Constant[value = <Scalar Tensor [10]>]()
%keepgoing_out, %b_out, %user_defined_vals = Loop[body = <graph body-net>](%max_trip_count, %keepgoing, %b)
return
}
graph body-net (
%i[INT32, scalar] // iteration number
%keepgoing_in[BOOL, scalar] // incoming loop-termination-condition; not used
%b_in[INT32, scalar] // incoming value of loop-carried-dependency b
) {
%my_local = Add(%a, %b_in)
%b_out = Sub(%a, %b_in) // outgoing value of loop-carried-dependency b
%keepgoing_out = Greater(%my_local, %b_out) // outgoing loop-termination-condition
%user_defined_val = Add(%b_in, %b_in) // scan-output value to be accumulated
return %keepgoing_out, %b_out, %user_defined_val
}
*Sample equivalent C code*
{
/* User-defined code (enclosing scope) */
int a = 3, b = 6;
bool keepgoing = true; // Analogous to input cond
/* End user-defined code */
/* Implicitly-defined code */
const int max_trip_count = 10; // Analogous to input M
int user_defined_vals[]; // Imagine this is resizable
/* End implicitly-defined code */
/* initialize loop-carried variables and scan-output variables */
bool keepgoing_out = keepgoing
int b_out = b
for (int i=0; i < max_trip_count && keepgoing_out; ++i) {
/* Implicitly-defined code: bind actual parameter values
to formal parameter variables of loop-body */
bool keepgoing_in = keepgoing_out;
bool b_in = b_out;
/* User-defined code (loop body) */
int my_local = a + b_in; // Reading value "a" from the enclosing scope is fine
b_out = a - b_in;
keepgoing_out = my_local > b_out;
user_defined_val = b_in + b_in; // b_in and b_out are different variables
/* End user-defined code */
/* Implicitly defined-code */
user_defined_vals[i] = user_defined_val // accumulate scan-output values
}
// int t = my_local; // Can't do this. my_local is not accessible here.
// The values below are bound to the output variables of the loop and therefore accessible
// b_out; user_defined_vals; keepgoing_out;
}
There are several things of note in this code snippet:
1) Values from the enclosing scope (i.e. variable "a" here) are in scope and can
be referenced in the inputs of the loop.
2) Any values computed in the loop body that needs to be used in a subsequent
iteration or after the loop are modelled using a pair of variables in the loop-body,
consisting of an input variable (eg., b_in) and an output variable (eg., b_out).
These are referred to as loop-carried dependences. The loop operation node
supplies the input value of the input variable for the first iteration, and
returns the output value of the output variable produced by the final
iteration.
3) Scan_output variables are used to implicitly concatenate values computed across
all the iterations. In the above example, the value of user_defined_val computed
over all iterations are concatenated and returned as the value of user_defined_vals
after the loop.
4) Values created in the body cannot be accessed in the enclosing scope,
except using the mechanism described above.
Note that the semantics of this op support "diagonal" or "wavefront" execution.
(See Step 3 here for an example:
https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-cudnn-5/).
Frontends should emit multi-layer RNNs as a series of While operators (with
time being the inner looping dimension), with each successive layer consuming
the scan_outputs from the previous layer, possibly going through several
point-wise operators (e.g. dropout, residual connections, linear layer).
The input/output of subgraph (produced by loop node) matching is based on order instead of name. The implementation will figure out the names based on this order.
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Loop,
21,
OpSchema()
.SetDoc(Loop_ver16_doc)
.Input(
0,
"M",
"A maximum trip-count for the loop specified at runtime. Optional."
" Pass empty string to skip.",
"I",
OpSchema::Optional)
.Input(
1,
"cond",
"A boolean termination condition. Optional. Pass empty string to skip.",
"B",
OpSchema::Optional)
.Input(
2,
"v_initial",
"The initial values of any loop-carried dependencies (values that "
"change across loop iterations)",
"V",
OpSchema::Variadic,
false,
0)
.Output(
0,
"v_final_and_scan_outputs",
"Final N loop carried dependency values then K scan_outputs. "
"Scan outputs must be Tensors.",
"V",
OpSchema::Variadic,
false)
.Attr(
"body",
"The graph run each iteration. It has 2+N inputs: (iteration_num, "
"condition, loop carried dependencies...). It has 1+N+K outputs: "
"(condition, loop carried dependencies..., scan_outputs...). Each "
"scan_output is created by concatenating the value of the specified "
"output value at the end of each iteration of the loop. It is an error"
" if the dimensions or data type of these scan_outputs change across loop"
" iterations.",
AttributeProto::GRAPH)
.TypeConstraint(
"V",
control_flow_types_ir10(),
"All Tensor, Sequence(Tensor), Optional(Tensor), and Optional(Sequence(Tensor)) types up to IRv10.")
.TypeConstraint("I", {"tensor(int64)"}, "tensor of int64, which should be a scalar.")
.TypeConstraint("B", {"tensor(bool)"}, "tensor of bool, which should be a scalar.")
.TypeAndShapeInferenceFunction(LoopInferenceFunction));
static const char* scan_16_doc = R"DOC(
Scan can be used to iterate over one or more scan_input tensors,
constructing zero or more scan_output tensors. It combines ideas from general recurrences,
functional programming constructs such as scan, fold, map, and zip, and is intended to enable
generalizations of RNN-like constructs for sequence-to-sequence processing.
Other tensors (referred to as state_variables here) can be used to carry a state
when iterating from one element to another (similar to hidden-state in RNNs, also referred
to as loop-carried dependences in the context of loops).
Many common usages involve a single scan_input tensor (where functionality
similar to scan, fold and map can be obtained). When more than one scan_input is used,
a behavior similar to zip is obtained.
The attribute body must be a graph, specifying the computation to be performed in
every iteration. It takes as input the current values of the state_variables and
the current iterated element of the scan_inputs. It must return the (updated) values
of the state_variables and zero or more scan_output_element tensors. The values of the
scan_output_element tensors are concatenated over all the iterations to produce the
scan_output values of the scan construct (similar to the concatenated intermediate
hidden-state values of RNN-like constructs). All the output tensors (state_variables as
well as scan_output_element tensors) are required to have the same shape in each iteration
of the loop (a restriction imposed to enable efficient memory allocation).
Note that the iterated element passed to the body subgraph does not have a sequence
axis. It will have a rank one less than the rank of the corresponding scan_input.
The scan operation returns the final values of the state_variables as well as the
scan_outputs.
The optional attribute scan_input_directions specifies the direction (forward or backward)
for each scan input. If this attribute is omitted, all sequences are scanned in the forward
direction. A bidirectional scan may be performed by specifying the same tensor input twice
in the scan_inputs, once with a forward direction, and once with a backward direction.
The scan_output of the operation is produced by concatenating the scan_output_element
values produced by the body in each iteration. The optional attribute scan_output_directions
specifies the direction in which scan_output is constructed (by appending or prepending the
scan_output_element to scan_output in each iteration) for each scan_output. If this attribute
is omitted, the scan_output_element is appended to the scan_output in each iteration.
The optional attribute scan_input_axes specifies the axis to be scanned for each scan_input.
If omitted, every scan_input will be scanned in axis 0. For example, if axis 0 is the
batch axis and axis 1 is the time axis (to be scanned), specify an axis value of 1.
Note that scanning a non-zero axis may be less efficient than scanning axis zero.
The optional attribute scan_output_axes specifies the axis along which the scan_outputs
are accumulated for each scan_output. For example, if axis 1 is the time axis (to be
scanned) for both inputs and outputs, specify a scan_input axis and scan_output axis
value of 1.
Note that because of the ONNX restriction that only the last parameter of an operator can
be variadic, the initial-states and scan-inputs are listed together as one input parameter.
Similarly, the final-states and scan-outputs are listed together as one output parameter.
The attribute num_scan_inputs indicates the number M of scan-inputs.
The behavior of
Scan <
num_scan_inputs = m,
body = loop-body,
scan_input_axes = [axis_1, ..., axis_m]
> (init_1, ..., init_n, scan_1, ..., scan_m)
is equivalent to the following pseudo-code:
// scan_i.shape[axis_i] denotes the (max) sequence-length of scan_i
// scan_i.shape[axis_i] is required to be equal to scan_j.shape[axis_j] for all i,j.
sequence_length = scan_1.shape[axis_1];
// initialize state-variables
st_1 = init_1; ... st_n = init_n;
// initialize scan-output variables: [] denotes an empty tensor
scan_out_1 = []; ...; scan_out_k = [];
// identify number of iterations:
// execute loop
for (int t = 0; t < sequence_length; ++t) {
// generate the scan-input elements: the notation T<axis=k>[t] indicates the sub-tensor
// of rank one less than T obtained by indexing T at position t along axis k.
si_1 = scan_1<axis=axis_1>[t];
... ;
si_m = scan_m<axis=axis_m>[t];
// execute loop-body
st_1, ..., st_n, so_1, ..., so_k = loop-body(st_1, ..., st_n, si_1, ..., si_m)
// accumulate the scan-output elements
scan_out_1 = Concat<axis=0>(scan_out_1, so_1); ... ; scan_out_k = Concat<axis=0>(scan_out_k, so_k);
}
return st_1, ..., st_n, scan_out_1, ..., scan_out_k;
*Sample usage: Encoding RNN using a Scan*
The following example shows how a simple RNN over an input tensor %X, with weight tensor %Wi,
recurrence weight tensor %Ri, bias tensors %Wbi and %Rbi, and initial hidden-state %H_0 can
be encoded as a ScanLoop. Note that the loop-body is a nested graph, and it directly computes
%Wi, %Ri, %Wbi, and %Rbi (typically constants or initializers in the body graph). If these
values are computed in the outer graph, they need to be passed in as extra state_variables.
graph rnn-encoding {
%H_0 = ...
%X = ...
%Y_h, %Y = Scan[body = <graph rnn-cell-1>, num_scan_inputs=1](%H_0, %X)
return %Y, %Y_h
}
graph rnn-cell-1 (
%H_tminus1[FLOAT, tensor]
%X_t[FLOAT, tensor]
) {
%Wi = ...
%Ri = ...
%Wbi = ...
%Rbi = ...
%t1 = X_t * (Wi^T)
%t2 = H_tminus1*(Ri^T)
%t3 = Add(%t1, %t2)
%t4 = Add(%t3, %Wbi)
%t5 = Add(%t4, %Rbi)
%Ht = Tanh(%t5)
%Accumulate = Identity(%Ht)
return %Ht, %Accumulate
}
)DOC";
ONNX_OPERATOR_SET_SCHEMA(
Scan,
21,
OpSchema()
.SetDoc(scan_16_doc)
.Input(
0,
"initial_state_and_scan_inputs",
"Initial values of the loop's N state variables followed by M scan_inputs",
"V",
OpSchema::Variadic,
false)
.Output(
0,
"final_state_and_scan_outputs",
"Final values of the loop's N state variables followed by K scan_outputs",
"V",
OpSchema::Variadic,
false)
.Attr(
"body",
"The graph run each iteration. It has N+M inputs: "
"(loop state variables..., scan_input_elts...). It has N+K outputs: "
"(loop state variables..., scan_output_elts...). Each "
"scan_output is created by concatenating the value of the specified "
"scan_output_elt value at the end of each iteration of the loop. It is an error"
" if the dimensions of these values change across loop iterations.",
AttributeProto::GRAPH,
true)
.Attr("num_scan_inputs", "An attribute specifying the number of scan_inputs M. ", AttributeProto::INT, true)
.Attr(
"scan_input_directions",
"An optional list of M flags. The i-th element of the list specifies the direction "
"to be scanned for the i-th scan_input tensor: 0 indicates forward direction and 1 "
"indicates reverse direction. "
"If omitted, all scan_input tensors will be scanned in the forward direction.",
AttributeProto::INTS,
false)
.Attr(
"scan_output_directions",
"An optional list of K flags, one for each scan_output. The i-th element of the list "
"specifies whether the i-th scan_output should be constructed by appending or "
"prepending a new value in each iteration: 0 indicates appending and 1 "
"indicates prepending. "
"If omitted, all scan_output tensors will be produced by appending a value "
"in each iteration.",
AttributeProto::INTS,
false)
.Attr(
"scan_input_axes",
"An optional list of M flags. The i-th element of the list specifies the axis "
"to be scanned (the sequence axis) for the i-th scan_input. If omitted, 0 will "
"be used as the scan axis for every scan_input. Negative value for an axis means "
"counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(input).",
AttributeProto::INTS,
false)
.Attr(
"scan_output_axes",
"An optional list of K flags. The i-th element of the list specifies the axis "
"for the i-th scan_output. The scan outputs are accumulated along the specified "
"axis. If omitted, 0 will be used as the scan axis for every scan_output. "
"Negative value for an axis means counting dimensions from the back. Accepted "
"range is [-r, r-1].",
AttributeProto::INTS,
false)
.TypeConstraint("V", OpSchema::all_tensor_types_ir10(), "All Tensor types up to IRv10.")
.TypeAndShapeInferenceFunction(ScanInferenceFunction)); // Shares same shape inference as opset 11
} // namespace ONNX_NAMESPACE
|