Spaces:
Sleeping
Sleeping
File size: 26,885 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
from typing import Dict, List, MutableMapping, Optional, Set, Tuple
from onnx import GraphProto, ModelProto, TensorProto, checker, helper, utils
def check_overlapping_names(
g1: GraphProto, g2: GraphProto, io_map: Optional[List[Tuple[str, str]]] = None
) -> List[Tuple[str, List[str]]]:
"""Checks whether there are name collisions between two graphs
Returns a list of tuples where the first element represents the member containing overlapping names
(One of: "node", "edge", "value_info", "initializer", "sparse_initializer"), and the
second element contains a list of names that appear in both graphs on that category.
Optionally, it takes an io_map, representing the output/inputs to be connected. It provided, overlapping
present in the io_map argument will be ignored.
"""
if type(g1) is not GraphProto:
raise ValueError("g1 argument is not an ONNX graph")
if type(g2) is not GraphProto:
raise ValueError("g2 argument is not an ONNX graph")
def _overlapping(c1: List[str], c2: List[str]) -> List[str]:
return list(set(c1) & set(c2))
def _edge_names(graph: GraphProto, exclude: Optional[Set[str]] = None) -> List[str]:
if exclude is None:
exclude = set()
edges = []
for n in graph.node:
for i in n.input:
if i != "" and i not in exclude:
edges.append(i)
for o in n.output:
if o != "" and o not in exclude:
edges.append(o)
return edges
result = []
if not io_map:
io_map = []
io_map_inputs = {elem[1] for elem in io_map}
# Edges already cover input/output
overlap = _overlapping(_edge_names(g1), _edge_names(g2, exclude=io_map_inputs))
if overlap:
result.append(("edge", overlap))
overlap = _overlapping(
[e.name for e in g1.value_info], [e.name for e in g2.value_info]
)
if overlap:
result.append(("value_info", overlap))
overlap = _overlapping(
[e.name for e in g1.initializer], [e.name for e in g2.initializer]
)
if overlap:
result.append(("initializer", overlap))
overlap = _overlapping(
[e.values.name for e in g1.sparse_initializer],
[e.values.name for e in g2.sparse_initializer],
) + _overlapping(
[e.indices.name for e in g1.sparse_initializer],
[e.indices.name for e in g2.sparse_initializer],
)
if overlap:
result.append(("sparse_initializer", overlap))
return result
def merge_graphs(
g1: GraphProto,
g2: GraphProto,
io_map: List[Tuple[str, str]],
inputs: Optional[List[str]] = None,
outputs: Optional[List[str]] = None,
prefix1: Optional[str] = None,
prefix2: Optional[str] = None,
name: Optional[str] = None,
doc_string: Optional[str] = None,
) -> GraphProto:
"""Combines two ONNX graphs into a single one.
The combined graph is defined by connecting the specified set of outputs/inputs. Those inputs/outputs
not specified in the io_map argument will remain as inputs/outputs of the combined graph.
Arguments:
g1 (GraphProto): First graph
g2 (GraphProto): Second graph
io_map (list of pairs of string): The pairs of names [(out0, in0), (out1, in1), ...]
representing outputs of the first graph and inputs of the second
to be connected
inputs (list of string): Optional list of inputs to be included in the combined graph
By default, all inputs not present in the ``io_map`` argument will be
included in the combined model
outputs (list of string): Optional list of outputs to be included in the combined graph
By default, all outputs not present in the ``io_map`` argument will be
included in the combined model
prefix1 (string): Optional prefix to be added to all names in g1
prefix2 (string): Optional prefix to be added to all names in g2
name (string): Optional name for the combined graph
By default, the name is g1.name and g2.name concatenated with an undescore delimiter
doc_string (string): Optional docstring for the combined graph
If not provided, a default docstring with the concatenation of g1 and g2 docstrings is used
Returns:
GraphProto
"""
if type(g1) is not GraphProto:
raise ValueError("g1 argument is not an ONNX graph")
if type(g2) is not GraphProto:
raise ValueError("g2 argument is not an ONNX graph")
# Prefixing names in the graph if requested, adjusting io_map accordingly
if prefix1 or prefix2:
if prefix1:
g1_copy = GraphProto()
g1_copy.CopyFrom(g1)
g1 = g1_copy
g1 = add_prefix_graph(g1, prefix=prefix1)
if prefix2:
g2_copy = GraphProto()
g2_copy.CopyFrom(g2)
g2 = g2_copy
g2 = add_prefix_graph(g2, prefix=prefix2)
io_map = [
(
prefix1 + io[0] if prefix1 else io[0],
prefix2 + io[1] if prefix2 else io[1],
)
for io in io_map
]
io_map_g1_outs = {io[0] for io in io_map}
io_map_g2_ins = {io[1] for io in io_map}
reversed_io_map = {in_name: out_name for out_name, in_name in io_map}
g1_outs = {o.name for o in g1.output}
g2_ins = {i.name for i in g2.input}
# If necessary extract subgraphs
if inputs or outputs:
if not inputs:
g1_inputs = [i.name for i in g1.input]
g2_inputs = [i.name for i in g2.input]
else:
input_set = set(inputs)
g1_inputs = [i.name for i in g1.input if i.name in input_set]
g2_inputs = [
i.name
for i in g2.input
if i.name in input_set or i.name in io_map_g2_ins
]
if not outputs:
g1_outputs = [o.name for o in g1.output]
g2_outputs = [o.name for o in g2.output]
else:
output_set = set(outputs)
g1_outputs = [
o.name
for o in g1.output
if o.name in output_set or o.name in io_map_g1_outs
]
g2_outputs = [o.name for o in g2.output if o.name in output_set]
if len(g1_inputs) < len(g1.input) or len(g1_outputs) < len(g1.output):
e1 = utils.Extractor(helper.make_model(g1))
g1 = e1.extract_model(g1_inputs, g1_outputs).graph
if len(g2_inputs) < len(g2.input) or len(g2_outputs) < len(g2.output):
e2 = utils.Extractor(helper.make_model(g2))
g2 = e2.extract_model(g2_inputs, g2_outputs).graph
# Check that input/output names specified in the io_map argument are valid input/output names
for g1_out_name, g2_in_name in io_map:
if g1_out_name not in g1_outs:
raise ValueError(f"Output {g1_out_name} is not present in g1")
if g2_in_name not in g2_ins:
raise ValueError(f"Input {g2_in_name} is not present in g2")
# Check for name collision
overlapping_names = check_overlapping_names(g1, g2, io_map)
if len(overlapping_names) > 0:
category, names = overlapping_names[0]
raise ValueError(
"Cant merge two graphs with overlapping names. "
f"Found repeated {category} names: "
+ ", ".join(names)
+ "\n"
+ "Consider using ``onnx.compose.add_prefix`` to add a prefix to names in one of the graphs."
)
g = GraphProto()
g.node.extend(g1.node)
g2_nodes_begin = len(g.node)
g.node.extend(g2.node)
g2_nodes_end = len(g.node)
# Connecting outputs of the first graph with the inputs of the second
for node_idx in range(g2_nodes_begin, g2_nodes_end):
node = g.node[node_idx]
for index, name_ in enumerate(node.input):
if name_ in reversed_io_map:
node.input[index] = reversed_io_map[name_]
if inputs:
input_set = set(inputs)
g.input.extend([i for i in g1.input if i.name in input_set])
g.input.extend([i for i in g2.input if i.name in input_set])
else:
g.input.extend(g1.input)
g.input.extend([i for i in g2.input if i.name not in io_map_g2_ins])
if outputs:
output_set = set(outputs)
g.output.extend([o for o in g1.output if o.name in output_set])
g.output.extend([o for o in g2.output if o.name in output_set])
else:
g.output.extend([o for o in g1.output if o.name not in io_map_g1_outs])
g.output.extend(g2.output)
g.initializer.extend(g1.initializer)
g.initializer.extend(
[init for init in g2.initializer if init.name not in io_map_g2_ins]
)
g.sparse_initializer.extend(g1.sparse_initializer)
g.sparse_initializer.extend(
[
init
for init in g2.sparse_initializer
if init.values.name not in io_map_g2_ins
]
)
g.value_info.extend(g1.value_info)
g.value_info.extend([vi for vi in g2.value_info if vi.name not in io_map_g2_ins])
g.name = name if name is not None else "_".join([g1.name, g2.name])
if doc_string is None:
doc_string = (
f"Graph combining {g1.name} and {g2.name}\n"
+ g1.name
+ "\n\n"
+ g1.doc_string
+ "\n\n"
+ g2.name
+ "\n\n"
+ g2.doc_string
)
g.doc_string = doc_string
return g
def merge_models(
m1: ModelProto,
m2: ModelProto,
io_map: List[Tuple[str, str]],
inputs: Optional[List[str]] = None,
outputs: Optional[List[str]] = None,
prefix1: Optional[str] = None,
prefix2: Optional[str] = None,
name: Optional[str] = None,
doc_string: Optional[str] = None,
producer_name: Optional[str] = "onnx.compose.merge_models",
producer_version: Optional[str] = "1.0",
domain: Optional[str] = "",
model_version: Optional[int] = 1,
) -> ModelProto:
"""Combines two ONNX models into a single one.
The combined model is defined by connecting the specified set of outputs/inputs.
Those inputs/outputs not specified in the io_map argument will remain as
inputs/outputs of the combined model.
Both models should have the same IR version, and same operator sets imported.
Arguments:
m1 (ModelProto): First model
m2 (ModelProto): Second model
io_map (list of pairs of string): The pairs of names [(out0, in0), (out1, in1), ...]
representing outputs of the first graph and inputs of the second
to be connected
inputs (list of string): Optional list of inputs to be included in the combined graph
By default, all inputs not present in the ``io_map`` argument will be
included in the combined model
outputs (list of string): Optional list of outputs to be included in the combined graph
By default, all outputs not present in the ``io_map`` argument will be
included in the combined model
prefix1 (string): Optional prefix to be added to all names in m1
prefix2 (string): Optional prefix to be added to all names in m2
name (string): Optional name for the combined graph
By default, the name is g1.name and g2.name concatenated with an undescore delimiter
doc_string (string): Optional docstring for the combined graph
If not provided, a default docstring with the concatenation of g1 and g2 docstrings is used
producer_name (string): Optional producer name for the combined model. Default: 'onnx.compose'
producer_version (string): Optional producer version for the combined model. Default: "1.0"
domain (string): Optional domain of the combined model. Default: ""
model_version (int): Optional version of the graph encoded. Default: 1
Returns:
ModelProto
"""
if type(m1) is not ModelProto:
raise ValueError("m1 argument is not an ONNX model")
if type(m2) is not ModelProto:
raise ValueError("m2 argument is not an ONNX model")
if m1.ir_version != m2.ir_version:
raise ValueError(
f"IR version mismatch {m1.ir_version} != {m2.ir_version}."
" Both models should have the same IR version"
)
ir_version = m1.ir_version
opset_import_map: MutableMapping[str, int] = {}
opset_imports = list(m1.opset_import) + list(m2.opset_import)
for entry in opset_imports:
if entry.domain in opset_import_map:
found_version = opset_import_map[entry.domain]
if entry.version != found_version:
raise ValueError(
"Can't merge two models with different operator set ids for a given domain. "
f"Got: {m1.opset_import} and {m2.opset_import}"
)
else:
opset_import_map[entry.domain] = entry.version
# Prefixing names in the graph if requested, adjusting io_map accordingly
if prefix1 or prefix2:
if prefix1:
m1_copy = ModelProto()
m1_copy.CopyFrom(m1)
m1 = m1_copy
m1 = add_prefix(m1, prefix=prefix1)
if prefix2:
m2_copy = ModelProto()
m2_copy.CopyFrom(m2)
m2 = m2_copy
m2 = add_prefix(m2, prefix=prefix2)
io_map = [
(
prefix1 + io[0] if prefix1 else io[0],
prefix2 + io[1] if prefix2 else io[1],
)
for io in io_map
]
graph = merge_graphs(
m1.graph,
m2.graph,
io_map,
inputs=inputs,
outputs=outputs,
name=name,
doc_string=doc_string,
)
model = helper.make_model(
graph,
producer_name=producer_name,
producer_version=producer_version,
domain=domain,
model_version=model_version,
opset_imports=opset_imports,
ir_version=ir_version,
)
# Merging model metadata props
model_props = {}
for meta_entry in m1.metadata_props:
model_props[meta_entry.key] = meta_entry.value
for meta_entry in m2.metadata_props:
if meta_entry.key in model_props:
value = model_props[meta_entry.key]
if value != meta_entry.value:
raise ValueError(
"Can't merge models with different values for the same model metadata property."
f" Found: property = {meta_entry.key}, with values {value} and {meta_entry.value}."
)
else:
model_props[meta_entry.key] = meta_entry.value
helper.set_model_props(model, model_props)
# Merging functions
function_overlap = list(
{f.name for f in m1.functions} & {f.name for f in m2.functions}
)
if function_overlap:
raise ValueError(
"Can't merge models with overlapping local function names."
" Found in both graphs: " + ", ".join(function_overlap)
)
model.functions.MergeFrom(m1.functions)
model.functions.MergeFrom(m2.functions)
checker.check_model(model)
return model
def add_prefix_graph(
graph: GraphProto,
prefix: str,
rename_nodes: Optional[bool] = True,
rename_edges: Optional[bool] = True,
rename_inputs: Optional[bool] = True,
rename_outputs: Optional[bool] = True,
rename_initializers: Optional[bool] = True,
rename_value_infos: Optional[bool] = True,
inplace: Optional[bool] = False,
name_map: Optional[Dict[str, str]] = None,
) -> GraphProto:
"""Adds a prefix to names of elements in a graph: nodes, edges, inputs, outputs,
initializers, sparse initializer, value infos.
It can be used as a utility before merging graphs that have overlapping names.
Empty names are not prefixed.
Arguments:
graph (GraphProto): Graph
prefix (str): Prefix to be added to each name in the graph
rename_nodes (bool): Whether to prefix node names
rename_edges (bool): Whether to prefix node edge names
rename_inputs (bool): Whether to prefix input names
rename_outputs (bool): Whether to prefix output names
rename_initializers (bool): Whether to prefix initializer and sparse initializer names
rename_value_infos (bool): Whether to prefix value info names
inplace (bool): If True, mutates the graph directly.
Otherwise, a copy will be created
name_map: (Dict): shared name_map in subgraph
Returns:
GraphProto
"""
if type(graph) is not GraphProto:
raise ValueError("graph argument is not an ONNX graph")
if not inplace:
g = GraphProto()
g.CopyFrom(graph)
else:
g = graph
def _prefixed(prefix: str, name: str) -> str:
return prefix + name if len(name) > 0 else name
if name_map is None:
name_map = {}
if rename_edges:
for n in g.node:
for e in n.input:
name_map[e] = _prefixed(prefix, e)
for e in n.output:
name_map[e] = _prefixed(prefix, e)
if rename_inputs:
for entry in g.input:
name_map[entry.name] = _prefixed(prefix, entry.name)
if rename_outputs:
for entry in g.output:
name_map[entry.name] = _prefixed(prefix, entry.name)
if rename_nodes:
for n in g.node:
n.name = _prefixed(prefix, n.name)
for attribute in n.attribute:
if attribute.g:
add_prefix_graph(
attribute.g, prefix, inplace=True, name_map=name_map
)
if rename_initializers:
for init in g.initializer:
name_map[init.name] = _prefixed(prefix, init.name)
for sparse_init in g.sparse_initializer:
name_map[sparse_init.values.name] = _prefixed(
prefix, sparse_init.values.name
)
name_map[sparse_init.indices.name] = _prefixed(
prefix, sparse_init.indices.name
)
if rename_value_infos:
for entry in g.value_info:
name_map[entry.name] = _prefixed(prefix, entry.name)
for n in g.node:
for i, output in enumerate(n.output):
if n.output[i] in name_map:
n.output[i] = name_map[output]
for i, input_ in enumerate(n.input):
if n.input[i] in name_map:
n.input[i] = name_map[input_]
for in_desc in g.input:
if in_desc.name in name_map:
in_desc.name = name_map[in_desc.name]
for out_desc in g.output:
if out_desc.name in name_map:
out_desc.name = name_map[out_desc.name]
for initializer in g.initializer:
if initializer.name in name_map:
initializer.name = name_map[initializer.name]
for sparse_initializer in g.sparse_initializer:
if sparse_initializer.values.name in name_map:
sparse_initializer.values.name = name_map[sparse_initializer.values.name]
if sparse_initializer.indices.name in name_map:
sparse_initializer.indices.name = name_map[sparse_initializer.indices.name]
for value_info in g.value_info:
if value_info.name in name_map:
value_info.name = name_map[value_info.name]
return g
def add_prefix(
model: ModelProto,
prefix: str,
rename_nodes: Optional[bool] = True,
rename_edges: Optional[bool] = True,
rename_inputs: Optional[bool] = True,
rename_outputs: Optional[bool] = True,
rename_initializers: Optional[bool] = True,
rename_value_infos: Optional[bool] = True,
rename_functions: Optional[bool] = True,
inplace: Optional[bool] = False,
) -> ModelProto:
"""Adds a prefix to names of elements in a graph: nodes, edges, inputs, outputs,
initializers, sparse initializer, value infos, and local functions.
It can be used as a utility before merging graphs that have overlapping names.
Empty names are not _prefixed.
Arguments:
model (ModelProto): Model
prefix (str): Prefix to be added to each name in the graph
rename_nodes (bool): Whether to prefix node names
rename_edges (bool): Whether to prefix node edge names
rename_inputs (bool): Whether to prefix input names
rename_outputs (bool): Whether to prefix output names
rename_initializers (bool): Whether to prefix initializer and sparse initializer names
rename_value_infos (bool): Whether to prefix value info nanes
rename_functions (bool): Whether to prefix local function names
inplace (bool): If True, mutates the model directly.
Otherwise, a copy will be created
Returns:
ModelProto
"""
if type(model) is not ModelProto:
raise ValueError("model argument is not an ONNX model")
if not inplace:
m = ModelProto()
m.CopyFrom(model)
model = m
add_prefix_graph(
model.graph,
prefix,
rename_nodes=rename_nodes,
rename_edges=rename_edges,
rename_inputs=rename_inputs,
rename_outputs=rename_outputs,
rename_initializers=rename_initializers,
rename_value_infos=rename_value_infos,
inplace=True, # No need to create a copy, since it's a new model
)
if rename_functions:
f_name_map = {}
for f in model.functions:
new_f_name = prefix + f.name
f_name_map[f.name] = new_f_name
f.name = new_f_name
# Adjust references to local functions in other local function
# definitions
for f in model.functions:
for n in f.node:
if n.op_type in f_name_map:
n.op_type = f_name_map[n.op_type]
# Adjust references to local functions in the graph
for n in model.graph.node:
if n.op_type in f_name_map:
n.op_type = f_name_map[n.op_type]
return model
def expand_out_dim_graph(
graph: GraphProto,
dim_idx: int,
inplace: Optional[bool] = False,
) -> GraphProto:
"""Inserts an extra dimension with extent 1 to each output in the graph.
Inserts an Unsqueeze node for each output. It can be used as a utility before merging graphs,
for example when the second one expects a batch dimension.
Arguments:
graph (GraphProto): Graph
dim_idx (int): Index of the dimension to be inserted.
A negative value means counting dimensions from the back.
inplace (bool): If True, mutates the model directly.
Otherwise, a copy will be created
Returns:
GraphProto
"""
if type(graph) is not GraphProto:
raise ValueError("graph argument is not an ONNX graph")
if not inplace:
g = GraphProto()
g.CopyFrom(graph)
else:
g = graph
orig_out_names = [output.name for output in g.output]
for n in g.node:
for i, out in enumerate(n.output):
if out in orig_out_names:
n.output[i] = out + f"_collapsed_dim_{dim_idx}"
for i, inp in enumerate(n.input):
if inp in orig_out_names:
n.input[i] = inp + f"_collapsed_dim_{dim_idx}"
expand_dim_k = g.name + "_expand_out_dim_idx"
g.node.append(
helper.make_node(
"Constant",
inputs=[],
outputs=[expand_dim_k],
name=f"{expand_dim_k}-constant",
value=helper.make_tensor(
name=f"{expand_dim_k}-value",
data_type=TensorProto.INT64,
dims=[
1,
],
vals=[
dim_idx,
],
),
)
)
for _ in range(len(g.output)):
o = g.output.pop(0)
prev_output = o.name + f"_collapsed_dim_{dim_idx}"
g.node.append(
helper.make_node(
"Unsqueeze",
inputs=[prev_output, expand_dim_k],
outputs=[o.name],
name=f"unsqueeze-{o.name}",
)
)
new_shape = [d.dim_value for d in o.type.tensor_type.shape.dim]
new_shape.insert(dim_idx, 1)
g.output.append(
helper.make_tensor_value_info(
o.name, o.type.tensor_type.elem_type, new_shape
)
)
return g
def expand_out_dim(
model: ModelProto,
dim_idx: int,
inplace: Optional[bool] = False,
) -> ModelProto:
"""Inserts an extra dimension with extent 1 to each output in the graph.
Inserts an Unsqueeze node for each output. It can be used as a utility before merging graphs,
for example when the second one expects a batch dimension.
Arguments:
model (ModelProto): Model
dim_idx (int): Index of the dimension to be inserted.
A negative value means counting dimensions from the back.
inplace (bool): If True, mutates the model directly.
Otherwise, a copy will be created
Returns:
ModelProto
"""
if type(model) is not ModelProto:
raise ValueError("model argument is not an ONNX model")
if not inplace:
m = ModelProto()
m.CopyFrom(model)
model = m
expand_out_dim_graph(
model.graph,
dim_idx,
inplace=True, # No need to create a copy, since it's a new model
)
return model
|