Spaces:
Sleeping
Sleeping
File size: 39,950 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 |
// Copyright (c) ONNX Project Contributors
//
// SPDX-License-Identifier: Apache-2.0
#include "onnx/checker.h"
#include <fstream>
#include <functional>
#include <iterator>
#include <set>
#include <string>
#include <unordered_set>
#include <vector>
#include "onnx/common/file_utils.h"
#include "onnx/defs/schema.h"
#include "onnx/defs/tensor_proto_util.h"
#include "onnx/proto_utils.h"
#include "onnx/shape_inference/implementation.h"
#include "onnx/string_utils.h"
#ifdef _WIN32
#include <direct.h>
#include <filesystem>
#else // POSIX
#include <sys/stat.h>
#endif
namespace ONNX_NAMESPACE {
namespace checker {
#define enforce_has_field(proto, field) \
do { \
if (!proto.has_##field()) { \
fail_check("Field '", #field, "' of '", #proto, "' is required but missing."); \
} \
} while (0)
#define enforce_non_empty_field(proto, field) \
do { \
if (proto.field().empty()) { \
fail_check("Field '", #field, "' of '", #proto, "' is required to be non-empty."); \
} \
} while (0)
void check_value_info(const ValueInfoProto& value_info, const CheckerContext& ctx) {
enforce_non_empty_field(value_info, name);
// Relax constraint for subgraph input/output.
if (!ctx.is_main_graph())
return;
enforce_has_field(value_info, type);
const auto value_case = value_info.type().value_case();
switch (value_case) {
case TypeProto::kTensorType: {
const auto& type = value_info.type().tensor_type();
enforce_has_field(type, elem_type);
enforce_has_field(type, shape);
} break;
case TypeProto::kOptionalType: {
const auto& type = value_info.type().optional_type();
enforce_has_field(type, elem_type);
} break;
case TypeProto::kSequenceType: {
const auto& type = value_info.type().sequence_type();
enforce_has_field(type, elem_type);
} break;
case TypeProto::kMapType: {
const auto& type = value_info.type().map_type();
enforce_has_field(type, key_type);
enforce_has_field(type, value_type);
} break;
#ifdef ONNX_ML
case TypeProto::kOpaqueType:
break;
#endif
case TypeProto::kSparseTensorType: {
const auto& type = value_info.type().sparse_tensor_type();
enforce_has_field(type, elem_type);
enforce_has_field(type, shape);
} break;
default:
fail_check("Unrecognized type value case (value_info name: ", value_info.name(), "): ", value_case);
}
}
void check_tensor(const TensorProto& tensor, const CheckerContext& ctx) {
enforce_has_field(tensor, data_type);
if (tensor.data_type() == TensorProto::UNDEFINED) {
fail_check("setting data_type field (tensor name: ", tensor.name(), ") to UNDEFINED is not allowed");
}
int num_value_fields = 0;
const char* value_field = nullptr;
#define check_data_field(field) \
bool has_##field = tensor.field().size(); \
if (has_##field) { \
++num_value_fields; \
value_field = #field; \
}
check_data_field(float_data);
check_data_field(int32_data);
check_data_field(string_data);
check_data_field(int64_data);
check_data_field(raw_data);
check_data_field(double_data);
check_data_field(uint64_data);
#undef check_data_field
bool stored_externally = tensor.has_data_location() && tensor.data_location() == TensorProto::EXTERNAL;
if (stored_externally) {
if (num_value_fields != 0) {
fail_check(
"Data of TensorProto ( tensor name: ",
tensor.name(),
") is stored externally and should not have data field.",
value_field);
}
bool has_location = false;
for (const StringStringEntryProto& entry : tensor.external_data()) {
if (entry.has_key() && entry.has_value() && entry.key() == "location") {
has_location = true;
resolve_external_data_location(ctx.get_model_dir(), entry.value(), tensor.name());
}
}
if (!has_location) {
fail_check("TensorProto ( tensor name: ", tensor.name(), ") is stored externally but doesn't have a location.");
}
return;
}
int64_t nelem = 1;
for (auto x : tensor.dims()) {
nelem *= x;
}
if (nelem == 0 && num_value_fields != 0) {
fail_check("TensorProto (tensor name: ", tensor.name(), ") is 0-element but contains data!");
}
if (nelem != 0 && num_value_fields != 1) {
fail_check("TensorProto (tensor name: ", tensor.name(), ") should contain one and only one value field.");
}
if (has_raw_data) {
if (tensor.data_type() == TensorProto::STRING) {
fail_check("STRING data (tensor name: ", tensor.name(), ") should not be stored in raw_data field");
}
return;
} else {
#define check_field(field) \
if (nelem != 0 && !has_##field) { \
fail_check( \
"values of data_type '", \
tensor.data_type(), \
"' should be stored in field '", \
#field, \
"' instead of '", \
value_field, \
"'"); \
}
switch (tensor.data_type()) {
case TensorProto::FLOAT:
case TensorProto::COMPLEX64:
check_field(float_data);
break;
case TensorProto::DOUBLE:
case TensorProto::COMPLEX128:
check_field(double_data);
break;
case TensorProto::INT32:
case TensorProto::UINT8:
case TensorProto::INT8:
case TensorProto::UINT16:
case TensorProto::INT16:
case TensorProto::BOOL:
case TensorProto::FLOAT16:
case TensorProto::BFLOAT16:
case TensorProto::FLOAT8E4M3FN:
case TensorProto::FLOAT8E4M3FNUZ:
case TensorProto::FLOAT8E5M2:
case TensorProto::FLOAT8E5M2FNUZ:
case TensorProto::UINT4:
case TensorProto::INT4:
check_field(int32_data);
break;
case TensorProto::INT64:
check_field(int64_data);
break;
case TensorProto::UINT32:
case TensorProto::UINT64:
check_field(uint64_data);
break;
case TensorProto::STRING:
check_field(string_data);
break;
default:
fail_check("Unrecognized data_type (tensor name: ", tensor.name(), "): ", tensor.data_type());
}
}
#undef check_field
}
void check_sequence(const SequenceProto& sequence, const CheckerContext& ctx) {
enforce_has_field(sequence, elem_type);
if (sequence.elem_type() == SequenceProto::TENSOR) {
for (const TensorProto& tensor : sequence.tensor_values()) {
check_tensor(tensor, ctx);
}
} else if (sequence.elem_type() == SequenceProto::SPARSE_TENSOR) {
for (const SparseTensorProto& sparse_tensor : sequence.sparse_tensor_values()) {
check_sparse_tensor(sparse_tensor, ctx);
}
} else if (sequence.elem_type() == SequenceProto::SEQUENCE) {
for (const SequenceProto& seq : sequence.sequence_values()) {
check_sequence(seq, ctx);
}
} else if (sequence.elem_type() == SequenceProto::MAP) {
for (const MapProto& map : sequence.map_values()) {
check_map(map, ctx);
}
} else {
fail_check(
"Sequence ( Structure name: ",
sequence.name(),
", elem_type: ",
sequence.elem_type(),
") is not have a valid element type.");
}
}
void check_optional(const OptionalProto& optional, const CheckerContext& ctx) {
enforce_has_field(optional, elem_type);
if (optional.elem_type() == OptionalProto::UNDEFINED) {
return;
} else if (optional.elem_type() == OptionalProto::TENSOR) {
if (optional.has_tensor_value())
check_tensor(optional.tensor_value(), ctx);
} else if (optional.elem_type() == OptionalProto::SPARSE_TENSOR) {
if (optional.has_sparse_tensor_value())
check_sparse_tensor(optional.sparse_tensor_value(), ctx);
} else if (optional.elem_type() == OptionalProto::SEQUENCE) {
if (optional.has_sequence_value())
check_sequence(optional.sequence_value(), ctx);
} else if (optional.elem_type() == OptionalProto::MAP) {
if (optional.has_map_value())
check_map(optional.map_value(), ctx);
} else {
fail_check(
"Optional ( Structure name: ",
optional.name(),
", elem_type: ",
optional.elem_type(),
") is not have a valid element type.");
}
}
void check_map(const MapProto& map, const CheckerContext& ctx) {
enforce_has_field(map, key_type);
if (map.key_type() == TensorProto::UNDEFINED) {
fail_check("setting key_type field (map name: ", map.name(), ") to UNDEFINED is not allowed");
}
// Check if key is a valid type, specifically INT8, INT16, INT32, INT64,
// UINT8, UINT16, UINT32, UINT64, or STRING.
if ((map.key_type() == TensorProto::FLOAT) || (map.key_type() == TensorProto::BOOL) ||
(map.key_type() == TensorProto::FLOAT16) || (map.key_type() == TensorProto::COMPLEX64) ||
(map.key_type() == TensorProto::COMPLEX128)) {
fail_check(
"setting key_type field (map name: ",
map.name(),
") to invalid TensorProto key_type ",
map.key_type(),
" is not allowed");
}
// MapProto will use either keys or string_keys, so only one should be > 0.
if ((map.keys_size() > 0) && (map.string_keys_size() > 0)) {
fail_check("Map (name: ", map.name(), ") should not contain more than one keys field.");
}
int num_keys = map.keys_size() + map.string_keys_size();
int num_values = 0;
enforce_has_field(map, values);
check_sequence(map.values(), ctx);
if (map.values().elem_type() == SequenceProto::TENSOR) {
num_values = map.values().tensor_values_size();
} else if (map.values().elem_type() == SequenceProto::SPARSE_TENSOR) {
num_values = map.values().sparse_tensor_values_size();
} else if (map.values().elem_type() == SequenceProto::SEQUENCE) {
num_values = map.values().sequence_values_size();
} else if (map.values().elem_type() == SequenceProto::MAP) {
num_values = map.values().map_values_size();
}
if (num_keys != num_values) {
fail_check("Length of map keys and map values are not the same (map name: ", map.name(), ")");
}
}
// Check that the index data stored in a SparseTensorProto is valid.
// indices: a 1-dimensional tensor; indices[i] represents the
// linearized index value for the i-th nonzero value.
void check_sparse_tensor_indices_1(
const TensorProto& indices,
const SparseTensorProto& sparse_tensor_proto,
size_t nnz) {
int dense_rank = sparse_tensor_proto.dims_size();
int64_t dense_size = 1;
for (int i = 0; i < dense_rank; ++i)
dense_size *= sparse_tensor_proto.dims(i);
if (static_cast<size_t>(indices.dims(0)) != nnz) {
fail_check("Sparse tensor indices (", indices.name(), ") has ", indices.dims(0), " values, but NNZ is ", nnz);
}
// Check if indices appear in ascending order, and if they have valid
// values. The i-th value in index_data is the linear index of the i-th
// non-zero value.
const std::vector<int64_t> index_data = ParseData<int64_t>(&indices);
int64_t prev_index = -1;
for (size_t i = 0; i < nnz; ++i) {
int64_t curr_index = index_data[i]; // linearized index of i-th value
if (curr_index < 0 || curr_index >= dense_size) {
fail_check(
"Sparse tensor (",
indices.name(),
") index value at position [",
i,
"] out of range [0, ",
dense_size - 1,
"]");
}
if (curr_index <= prev_index) {
fail_check("Sparse tensor (", indices.name(), ") index value at position [", i, "] not in sorted order.");
}
prev_index = curr_index;
}
}
// Check that the index data stored in a SparseTensorProto is valid.
// indices: a 2-dimensional tensor; indices[i,j] represents the j-th
// index value for the i-th nonzero value.
void check_sparse_tensor_indices_2(
const TensorProto& indices,
const SparseTensorProto& sparse_tensor_proto,
size_t nnz) {
int dense_rank = sparse_tensor_proto.dims_size();
if (static_cast<size_t>(indices.dims(0)) != nnz) {
fail_check("Sparse tensor indices (", indices.name(), ") first dimension size does not equal NNZ.");
}
if (indices.dims(1) != dense_rank) {
fail_check("Sparse tensor indices (", indices.name(), ") second dimension size does not match rank of tensor.");
}
// Check if indices appear in ascending order, and if they have valid
// values.
const std::vector<int64_t> index_data = ParseData<int64_t>(&indices);
int64_t prev_index = -1;
for (size_t i = 0; i < nnz; ++i) {
int64_t curr_index = 0; // linearized index of i-th value
for (int j = 0; j < dense_rank; ++j) {
auto index_ij = index_data[i * dense_rank + j];
if ((index_ij < 0) || (index_ij >= sparse_tensor_proto.dims(j))) {
fail_check("Sparse tensor (", indices.name(), ") index value at position [", i, ",", j, "] out of range.");
}
curr_index = curr_index * sparse_tensor_proto.dims(j) + index_ij;
}
if (curr_index <= prev_index) {
fail_check(
"Sparse tensor (", indices.name(), ") index value at position [", i, "] not in lexicographic sorted order.");
}
prev_index = curr_index;
}
}
void check_sparse_tensor(const SparseTensorProto& sparse_tensor_proto, const CheckerContext& ctx) {
enforce_has_field(sparse_tensor_proto, values);
const TensorProto& values = sparse_tensor_proto.values();
check_tensor(values, ctx);
// values must be a tensor of shape [NNZ]
// Currently we restrict the value associated with a particular index-tuple
// to be a single value. In the future, if there is a requirement,
// we may extend this to permit the value to be a "sub-tensor", in which
// case values will have dimension > 1.
if (values.dims_size() != 1) {
fail_check("Sparse tensor values (", values.name(), ") must have rank 1.");
}
size_t nnz = static_cast<size_t>(values.dims(0));
int dense_rank = sparse_tensor_proto.dims_size();
if (dense_rank == 0) {
fail_check("Sparse tensor (", values.name(), ") must have a dense-rank > 0");
}
for (int i = 0; i < dense_rank; ++i) {
if (sparse_tensor_proto.dims(i) <= 0) {
fail_check("Sparse tensor (", values.name(), ") dimensions are not positive.");
}
}
if (sparse_tensor_proto.has_indices()) {
const TensorProto& indices = sparse_tensor_proto.indices();
check_tensor(indices, ctx);
if (indices.data_type() != TensorProto::INT64) {
fail_check("Sparse tensor indices (", indices.name(), ") must have INT64 type.");
}
switch (indices.dims().size()) {
case 1:
// Indices in linearized format
check_sparse_tensor_indices_1(indices, sparse_tensor_proto, nnz);
return;
case 2:
// Check COO-style index. E.g., an index for a 3D tensor is a 3-tuple.
check_sparse_tensor_indices_2(indices, sparse_tensor_proto, nnz);
return;
default:
fail_check("Sparse tensor indices (", indices.name(), ") must have rank 1 or 2.");
}
} else if (nnz != 0) {
fail_check("Sparse tensor (", values.name(), ") has no index values.");
}
}
// NB: This is a generic "attribute well-formedness" check, it doesn't
// actually test if an attribute is valid per a schema
void check_attribute(const AttributeProto& attr, const CheckerContext& ctx, const LexicalScopeContext& lex_ctx) {
enforce_non_empty_field(attr, name);
if (ctx.get_ir_version() >= 0x00000002) {
enforce_has_field(attr, type);
}
int used_fields = 0;
#define check_type(expected_type) \
if (attr.has_type() && attr.type() != expected_type) { \
fail_check("type field and data field mismatch in attribute ", attr.name(), "."); \
}
#define check_singular_field(field, type) \
if (attr.has_##field()) { \
++used_fields; \
check_type(type); \
}
#define check_repeated_field(field, type) \
if (attr.field##_size() > 0) { \
++used_fields; \
check_type(type); \
}
check_singular_field(f, AttributeProto::FLOAT);
check_singular_field(i, AttributeProto::INT);
check_singular_field(s, AttributeProto::STRING);
check_singular_field(t, AttributeProto::TENSOR);
check_singular_field(g, AttributeProto::GRAPH);
check_singular_field(tp, AttributeProto::TYPE_PROTO);
check_singular_field(sparse_tensor, AttributeProto::SPARSE_TENSOR);
check_repeated_field(floats, AttributeProto::FLOATS);
check_repeated_field(ints, AttributeProto::INTS);
check_repeated_field(strings, AttributeProto::STRINGS);
check_repeated_field(tensors, AttributeProto::TENSORS);
check_repeated_field(graphs, AttributeProto::GRAPHS);
check_repeated_field(sparse_tensors, AttributeProto::SPARSE_TENSORS);
check_repeated_field(type_protos, AttributeProto::TYPE_PROTOS);
#undef check_type
#undef check_singular_field
#undef check_repeated_field
// Normally, used_fields is expected to be 1.
// In proto3, when the value to be set is type default value (say 0 for
// int), used_fields may be 0.
if (used_fields > 1) {
fail_check("Attribute (name: ", attr.name(), ") should not contain more than one value field.");
}
if (!ctx.is_main_graph()) {
// It's an attribute of a node in function body.
if (attr.has_ref_attr_name() && used_fields != 0) {
// The attribute proto is supposed to refer to data outside and does not
// have its own value field set.
fail_check("Attribute (name: ", attr.name(), ") should refer to attribute in parent node.");
}
}
if (attr.has_t()) {
check_tensor(attr.t(), ctx);
}
if (attr.has_sparse_tensor()) {
check_sparse_tensor(attr.sparse_tensor(), ctx);
}
if (attr.has_g()) {
CheckerContext subgraph_ctx(ctx);
subgraph_ctx.set_is_main_graph(false);
check_graph(attr.g(), subgraph_ctx, lex_ctx);
}
for (const auto& tensor : attr.tensors()) {
check_tensor(tensor, ctx);
}
for (const auto& sparse_tensor : attr.sparse_tensors()) {
check_sparse_tensor(sparse_tensor, ctx);
}
if (attr.graphs().size() > 0) {
CheckerContext subgraph_ctx(ctx);
subgraph_ctx.set_is_main_graph(false);
for (const auto& graph : attr.graphs()) {
check_graph(graph, subgraph_ctx, lex_ctx);
}
}
}
void print_warning_if_has_experimental(const std::unordered_set<std::string>& used_experimental_ops) {
if (!used_experimental_ops.empty()) {
std::string all_experimental_ops;
for (const auto& op : used_experimental_ops) {
all_experimental_ops += " " + op + ",";
}
// Remove the last comma which is unnecessary
all_experimental_ops.pop_back();
std::cout << "Warning: Model contains experimental ops:" + all_experimental_ops << std::endl;
}
}
void check_node(const NodeProto& node, const CheckerContext& ctx, const LexicalScopeContext& lex_ctx) {
enforce_non_empty_field(node, op_type);
if (node.input().empty() && node.output().empty()) {
fail_check("NodeProto (name: ", node.name(), ", type: ", node.op_type(), ") has zero input and zero output.");
}
// Resolve domain for node
const auto& opset_imports = ctx.get_opset_imports();
auto dit = opset_imports.find(node.domain());
if (dit == opset_imports.end()) {
fail_check("No opset import for domain '" + node.domain() + "'");
}
auto domain_version = dit->second;
// for ops referencing local functions, there is no schema to verify it.
// will add a check to verify consistency between these ops and local functions.
std::unordered_set<std::string> seen_attr_names{};
for (const auto& attr : node.attribute()) {
if (!seen_attr_names.insert(attr.name()).second) {
fail_check("Attribute '", attr.name(), "' appeared multiple times.");
};
check_attribute(attr, ctx, lex_ctx);
}
// This issue will be caught by check_graph instead
if (check_is_experimental_op(node)) {
return;
}
const auto* schema = ctx.get_schema_registry()->GetSchema(node.op_type(), domain_version, node.domain());
if (!schema) {
if (node.domain() == ONNX_DOMAIN || node.domain() == AI_ONNX_ML_DOMAIN || node.domain() == "ai.onnx" ||
node.domain() == AI_ONNX_TRAINING_DOMAIN || ctx.check_custom_domain()) {
// fail the checker if op is in built-in domains or if it has no schema when `check_custom_domain` is true
fail_check(
"No Op registered for " + node.op_type() + " with domain_version of " +
ONNX_NAMESPACE::to_string(domain_version));
}
} else if (schema->Deprecated()) {
fail_check(
"Op registered for " + node.op_type() + " is deprecated in domain_version of " +
ONNX_NAMESPACE::to_string(domain_version));
} else {
schema->Verify(node);
}
}
void check_graph(const GraphProto& graph, const CheckerContext& ctx, const LexicalScopeContext& parent_lex) {
enforce_non_empty_field(graph, name);
for (const auto& value_info : graph.input()) {
check_value_info(value_info, ctx);
}
for (const auto& value_info : graph.output()) {
check_value_info(value_info, ctx);
}
// Inherit values available in outer scope
// Note that we do not allow shadowing, so the presence of an already-defined
// name is always an error.
LexicalScopeContext lex_ctx{parent_lex};
for (const auto& value_info : graph.input()) {
// TODO: If shadowing isn't allowed, this should maybe use
// this_or_ancestor_graph_has
if (lex_ctx.this_graph_has(value_info.name())) {
fail_check(
"Graph must be in single static assignment (SSA) form, however '",
value_info.name(),
"' has been used as graph input names multiple times.");
}
lex_ctx.add(value_info.name());
}
std::unordered_set<std::reference_wrapper<const std::string>, std::hash<std::string>, std::equal_to<std::string>>
initializer_name_checker;
for (const auto& init : graph.initializer()) {
enforce_has_field(init, name);
const auto& name = init.name();
if (name.empty()) {
fail_check("Tensor initializers must have a non-empty name");
}
if (!initializer_name_checker.insert(std::cref(name)).second) {
fail_check(name + " initializer name is not unique");
}
check_tensor(init, ctx);
if (ctx.get_ir_version() <= 0x00000003) {
// Initializers are a subset of graph inputs for IR_VERSION <= 3
if (!lex_ctx.this_graph_has(name)) {
fail_check(name + " in initializer but not in graph input");
}
} else {
// An initializer is allowed to have the same name as an input,
// but is not required to (for IR_VERSION >= 4)
lex_ctx.add(name);
}
}
for (const auto& sparse_init : graph.sparse_initializer()) {
const auto& values = sparse_init.values();
enforce_has_field(values, name);
const auto& name = values.name();
if (name.empty()) {
fail_check("Sparse tensor initializers must have a non-empty name");
}
if (!initializer_name_checker.insert(std::cref(name)).second) {
fail_check(name + " sparse initializer name is not unique across initializers and sparse_initializers");
}
check_sparse_tensor(sparse_init, ctx);
lex_ctx.add(name);
}
std::unordered_set<std::string> used_experimental_ops;
for (const auto& node : graph.node()) {
// nodes must be in topologically sorted order
for (const auto& input : node.input()) {
// explicit optional input
if (input.empty()) {
continue;
}
if (!lex_ctx.this_or_ancestor_graph_has(input)) {
fail_check(
"Nodes in a graph must be topologically sorted, however input '",
input,
"' of node: \n",
"name: ",
node.name(),
" OpType: ",
node.op_type(),
"\n is not output of any previous nodes.");
}
}
if (check_is_experimental_op(node)) {
used_experimental_ops.insert(node.op_type());
}
// This needs to happen before SSA check since we don't want to recurse and
// find that outputs from control flow ops are colliding with names in the
// inner block
ONNX_TRY {
check_node(node, ctx, lex_ctx);
}
ONNX_CATCH(ValidationError & ex) {
ONNX_HANDLE_EXCEPTION([&]() {
ex.AppendContext("Bad node spec for node. Name: " + node.name() + " OpType: " + node.op_type());
ONNX_THROW_EX(ex);
});
}
// check for SSA form
for (const auto& output : node.output()) {
// optional output
if (output.empty()) {
continue;
}
if (lex_ctx.this_or_ancestor_graph_has(output)) {
fail_check(
"Graph must be in single static assignment (SSA) form, however '",
output,
"' has been used as output names multiple times.");
}
lex_ctx.add(output);
}
}
print_warning_if_has_experimental(used_experimental_ops);
}
// Utilify function to get the imported version of domain from opset imports
// Returns -1 if requested domain is not found in the opset_imports
int get_version_for_domain(const std::string& domain, const std::unordered_map<std::string, int>& opset_imports) {
auto it = opset_imports.find(domain);
if (it == opset_imports.end()) {
return -1;
}
return it->second;
}
void check_opset_compatibility(
const NodeProto& node,
const CheckerContext& ctx,
const std::unordered_map<std::string, int>& func_opset_imports,
const std::unordered_map<std::string, int>& model_opset_imports) {
auto func_opset_version = get_version_for_domain(node.domain(), func_opset_imports);
auto model_opset_version = get_version_for_domain(node.domain(), model_opset_imports);
if (func_opset_version == -1) {
fail_check("No Opset registered for domain " + node.domain());
}
if (model_opset_version == -1) {
// model does not include opset import for a node present in function body.
// This is ok as along as the opset import is present in function level opset imports.
return;
}
if (func_opset_version == model_opset_version) {
// both versions are same, no need to verify schema.
return;
}
const auto* schema_for_model_import =
ctx.get_schema_registry()->GetSchema(node.op_type(), model_opset_version, node.domain());
const auto* schema_for_function_import =
ctx.get_schema_registry()->GetSchema(node.op_type(), func_opset_version, node.domain());
if (!schema_for_model_import && !schema_for_function_import) {
// the op belongs to a custom domain so we cannot verify schema
return;
}
// if schema is present for 1 but not other or the schema since versions do not match then raise an error
if (!schema_for_model_import || !schema_for_function_import ||
schema_for_function_import->since_version() != schema_for_model_import->since_version()) {
fail_check(
"Opset import for domain " + node.domain() + " in function op " + node.op_type() +
"is not compatible with the version imported by model. FunctionOp imports version " +
ONNX_NAMESPACE::to_string(func_opset_version) + " whereas model imports version " +
ONNX_NAMESPACE::to_string(model_opset_version));
}
}
void check_model_local_functions(
const ModelProto& model,
const CheckerContext& ctx,
const LexicalScopeContext& parent_lex) {
// make a copy of model opset imports to maintain a main copy of opset imports across the model and
// all model local functions to verify opset compatibility
std::unordered_map<std::string, int> model_opset_imports(ctx.get_opset_imports());
// merge the opset imports from every function in model_opset_imports
// only add the opset import if an entry for it does not exist in model_opset_imports
// if there is an entry then the compatibility will be checked later on in check_opset_compatibility
// called by check_function.
for (const auto& function_proto : model.functions()) {
for (const auto& opset_import : function_proto.opset_import()) {
if (get_version_for_domain(opset_import.domain(), model_opset_imports) == -1) {
model_opset_imports[opset_import.domain()] = opset_import.version();
}
}
}
CheckerContext ctx_copy = ctx;
ctx_copy.set_opset_imports(model_opset_imports);
for (const auto& function_proto : model.functions()) {
check_function(function_proto, ctx_copy, parent_lex);
}
}
void check_function(const FunctionProto& function, const CheckerContext& ctx, const LexicalScopeContext& parent_lex) {
enforce_non_empty_field(function, name);
if (ctx.get_ir_version() >= 0x00000008) {
enforce_has_field(function, domain);
}
const auto& model_opset_imports = ctx.get_opset_imports();
CheckerContext ctx_copy = ctx;
std::unordered_map<std::string, int> func_opset_imports;
for (auto& relied_opset : function.opset_import()) {
func_opset_imports[relied_opset.domain()] = static_cast<int>(relied_opset.version());
}
ctx_copy.set_opset_imports(func_opset_imports);
LexicalScopeContext lex_ctx{parent_lex};
for (const auto& input : function.input()) {
// TODO: If shadowing isn't allowed, this should maybe use
// this_or_ancestor_graph_has
if (lex_ctx.this_graph_has(input)) {
fail_check(
"Graph must be in single static assignment (SSA) form, however '", input, "' has been used multiple times.");
}
lex_ctx.add(input);
}
std::unordered_set<std::string> outputs;
for (const auto& output : function.output()) {
auto result = outputs.insert(output);
if (!result.second) {
fail_check("function (", function.name(), ") should not have duplicate outputs specified.");
}
}
std::unordered_set<std::string> attrs;
for (const auto& attr : function.attribute()) {
auto result = attrs.insert(attr);
if (!result.second) {
fail_check("function (", function.name(), ") should not have duplicate attributes specified.");
}
}
std::unordered_set<std::string> used_experimental_ops;
for (const auto& node : function.node()) {
// nodes must be in topologically sorted order
for (const auto& input : node.input()) {
// explicit optional input
if (input.empty()) {
continue;
}
if (!lex_ctx.this_graph_has(input)) {
fail_check(
"Nodes in a function must be topologically sorted, however input '",
input,
"' of node: \n",
"Name: ",
node.name(),
" OpType: ",
node.op_type(),
"\n is neither output of any previous nodes nor input of the function.");
}
}
// check whether the opset version imported for a domain by function and model are
// compatible
if (!ctx_copy.skip_opset_compatibility_check())
check_opset_compatibility(node, ctx_copy, func_opset_imports, model_opset_imports);
if (check_is_experimental_op(node)) {
used_experimental_ops.insert(node.op_type());
}
check_node(node, ctx_copy, lex_ctx);
// check for SSA form
for (const auto& output : node.output()) {
// optional output
if (output.empty()) {
continue;
}
if (lex_ctx.this_or_ancestor_graph_has(output)) {
fail_check(
"Function must be in single static assignment (SSA) form, however '",
output,
"' has been used as output names multiple times.");
}
lex_ctx.add(output);
}
}
print_warning_if_has_experimental(used_experimental_ops);
}
void check_model(const ModelProto& model, CheckerContext& ctx) {
if (!model.ir_version()) {
fail_check("The model does not have an ir_version set properly.");
}
if (model.ir_version() > IR_VERSION) {
fail_check("Your model ir_version ", model.ir_version(), " is higher than the checker's (", IR_VERSION, ").");
}
if (model.metadata_props_size() > 1) {
std::unordered_set<std::string> keys;
for (const StringStringEntryProto& entry : model.metadata_props()) {
auto i = keys.insert(entry.key());
if (!i.second) {
fail_check("Your model has duplicate keys in metadata_props.");
}
}
}
std::unordered_map<std::string, int> versions;
ctx.set_ir_version(static_cast<int>(model.ir_version()));
std::unordered_map<std::string, int> opset_imports;
for (const auto& opset_import : model.opset_import()) {
opset_imports[opset_import.domain()] = static_cast<int>(opset_import.version());
}
if (model.ir_version() >= 3) {
if (opset_imports.empty()) {
fail_check("model with IR version >= 3 must specify opset_import for ONNX");
}
} else {
if (opset_imports.empty())
opset_imports[ONNX_DOMAIN] = 1;
else {
fail_check("model with IR version < 3 cannot have opset_import specified");
}
}
ctx.set_opset_imports(opset_imports);
LexicalScopeContext lex_ctx;
check_graph(model.graph(), ctx, lex_ctx);
if (ctx.get_ir_version() >= 0x00000008) {
check_model_local_functions(model, ctx, lex_ctx);
// TODO: check consistency between local functions and ops referencing it.
}
}
void check_model(
const std::string& model_path,
bool full_check,
bool skip_opset_compatibility_check,
bool check_custom_domain) {
ModelProto model;
LoadProtoFromPath(model_path, model);
CheckerContext ctx;
std::string model_dir;
size_t pos = model_path.find_last_of("\\/");
if (pos != std::string::npos) {
model_dir = model_path.substr(0, pos + 1);
}
ctx.set_model_dir(model_dir);
ctx.set_skip_opset_compatibility_check(skip_opset_compatibility_check);
ctx.set_check_custom_domain(check_custom_domain);
check_model(model, ctx);
if (full_check) {
ShapeInferenceOptions options{true, 1, false};
ONNX_NAMESPACE::shape_inference::InferShapes(model, ctx.get_schema_registry(), options);
}
}
void check_model(
const ModelProto& model,
bool full_check,
bool skip_opset_compatibility_check,
bool check_custom_domain) {
CheckerContext ctx;
ctx.set_skip_opset_compatibility_check(skip_opset_compatibility_check);
ctx.set_check_custom_domain(check_custom_domain);
check_model(model, ctx);
if (full_check) {
ShapeInferenceOptions options{true, 1, false};
// Do not update the model in place by the check from shape inference
// because checker should not modify the original model
ModelProto copy = model;
ONNX_NAMESPACE::shape_inference::InferShapes(copy, ctx.get_schema_registry(), options);
}
}
std::string resolve_external_data_location(
const std::string& base_dir,
const std::string& location,
const std::string& tensor_name) {
#ifdef _WIN32
auto file_path = std::filesystem::path(utf8str_to_wstring(location));
if (file_path.is_absolute()) {
fail_check(
"Location of external TensorProto ( tensor name: ",
tensor_name,
") should be a relative path, but it is an absolute path: ",
location);
}
auto relative_path = file_path.lexically_normal().make_preferred().wstring();
// Check that normalized relative path contains ".." on Windows.
if (relative_path.find(L"..", 0) != std::string::npos) {
fail_check(
"Data of TensorProto ( tensor name: ",
tensor_name,
") should be file inside the ",
base_dir,
", but the '",
location,
"' points outside the directory");
}
std::wstring data_path = path_join(utf8str_to_wstring(base_dir), relative_path);
struct _stat64 buff;
if (data_path.empty() || (data_path[0] != '#' && _wstat64(data_path.c_str(), &buff) != 0)) {
fail_check(
"Data of TensorProto ( tensor name: ",
tensor_name,
") should be stored in ",
location,
", but it doesn't exist or is not accessible.");
}
return wstring_to_utf8str(data_path);
#else // POSIX
if (location.empty()) {
fail_check("Location of external TensorProto ( tensor name: ", tensor_name, ") should not be empty.");
} else if (location[0] == '/') {
fail_check(
"Location of external TensorProto ( tensor name: ",
tensor_name,
") should be a relative path, but it is an absolute path: ",
location);
}
std::string relative_path = clean_relative_path(location);
// Check that normalized relative path contains ".." on POSIX
if (relative_path.find("..", 0) != std::string::npos) {
fail_check(
"Data of TensorProto ( tensor name: ",
tensor_name,
") should be file inside the ",
base_dir,
", but the '",
location,
"' points outside the directory");
}
std::string data_path = path_join(base_dir, relative_path);
// use stat64 to check whether the file exists
#if defined(__APPLE__) || defined(__wasm__) || !defined(__GLIBC__)
struct stat buffer; // APPLE, wasm and non-glic stdlibs do not have stat64
if (data_path.empty() || (data_path[0] != '#' && stat((data_path).c_str(), &buffer) != 0)) {
#else
struct stat64 buffer; // All POSIX under glibc except APPLE and wasm have stat64
if (data_path.empty() || (data_path[0] != '#' && stat64((data_path).c_str(), &buffer) != 0)) {
#endif
fail_check(
"Data of TensorProto ( tensor name: ",
tensor_name,
") should be stored in ",
data_path,
", but it doesn't exist or is not accessible.");
}
// Do not allow symlinks or directories.
if (data_path.empty() || (data_path[0] != '#' && !S_ISREG(buffer.st_mode))) {
fail_check(
"Data of TensorProto ( tensor name: ",
tensor_name,
") should be stored in ",
data_path,
", but it is not regular file.");
}
return data_path;
#endif
}
std::set<std::string> experimental_ops = {
"ATen",
"Affine",
"ConstantFill",
"Crop",
"DynamicSlice",
"GRUUnit",
"GivenTensorFill",
"ImageScaler",
"ParametricSoftplus",
"Scale",
"ScaledTanh"};
bool check_is_experimental_op(const NodeProto& node) {
return (node.domain() == ONNX_DOMAIN || node.domain() == "ai.onnx") && experimental_ops.count(node.op_type());
}
#undef enforce_has_field
#undef enforce_non_empty_field
} // namespace checker
} // namespace ONNX_NAMESPACE
|