File size: 39,950 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
// Copyright (c) ONNX Project Contributors
//
// SPDX-License-Identifier: Apache-2.0

#include "onnx/checker.h"

#include <fstream>
#include <functional>
#include <iterator>
#include <set>
#include <string>
#include <unordered_set>
#include <vector>

#include "onnx/common/file_utils.h"
#include "onnx/defs/schema.h"
#include "onnx/defs/tensor_proto_util.h"
#include "onnx/proto_utils.h"
#include "onnx/shape_inference/implementation.h"
#include "onnx/string_utils.h"

#ifdef _WIN32
#include <direct.h>

#include <filesystem>

#else // POSIX
#include <sys/stat.h>
#endif

namespace ONNX_NAMESPACE {
namespace checker {

#define enforce_has_field(proto, field)                                              \
  do {                                                                               \
    if (!proto.has_##field()) {                                                      \
      fail_check("Field '", #field, "' of '", #proto, "' is required but missing."); \
    }                                                                                \
  } while (0)

#define enforce_non_empty_field(proto, field)                                            \
  do {                                                                                   \
    if (proto.field().empty()) {                                                         \
      fail_check("Field '", #field, "' of '", #proto, "' is required to be non-empty."); \
    }                                                                                    \
  } while (0)

void check_value_info(const ValueInfoProto& value_info, const CheckerContext& ctx) {
  enforce_non_empty_field(value_info, name);
  // Relax constraint for subgraph input/output.
  if (!ctx.is_main_graph())
    return;
  enforce_has_field(value_info, type);
  const auto value_case = value_info.type().value_case();
  switch (value_case) {
    case TypeProto::kTensorType: {
      const auto& type = value_info.type().tensor_type();
      enforce_has_field(type, elem_type);
      enforce_has_field(type, shape);
    } break;
    case TypeProto::kOptionalType: {
      const auto& type = value_info.type().optional_type();
      enforce_has_field(type, elem_type);
    } break;
    case TypeProto::kSequenceType: {
      const auto& type = value_info.type().sequence_type();
      enforce_has_field(type, elem_type);
    } break;
    case TypeProto::kMapType: {
      const auto& type = value_info.type().map_type();
      enforce_has_field(type, key_type);
      enforce_has_field(type, value_type);
    } break;
#ifdef ONNX_ML
    case TypeProto::kOpaqueType:
      break;
#endif
    case TypeProto::kSparseTensorType: {
      const auto& type = value_info.type().sparse_tensor_type();
      enforce_has_field(type, elem_type);
      enforce_has_field(type, shape);
    } break;

    default:
      fail_check("Unrecognized type value case (value_info name: ", value_info.name(), "): ", value_case);
  }
}

void check_tensor(const TensorProto& tensor, const CheckerContext& ctx) {
  enforce_has_field(tensor, data_type);
  if (tensor.data_type() == TensorProto::UNDEFINED) {
    fail_check("setting data_type field (tensor name: ", tensor.name(), ") to UNDEFINED is not allowed");
  }

  int num_value_fields = 0;

  const char* value_field = nullptr;

#define check_data_field(field)             \
  bool has_##field = tensor.field().size(); \
  if (has_##field) {                        \
    ++num_value_fields;                     \
    value_field = #field;                   \
  }

  check_data_field(float_data);
  check_data_field(int32_data);
  check_data_field(string_data);
  check_data_field(int64_data);
  check_data_field(raw_data);
  check_data_field(double_data);
  check_data_field(uint64_data);

#undef check_data_field

  bool stored_externally = tensor.has_data_location() && tensor.data_location() == TensorProto::EXTERNAL;
  if (stored_externally) {
    if (num_value_fields != 0) {
      fail_check(
          "Data of TensorProto ( tensor name: ",
          tensor.name(),
          ") is stored externally and should not have data field.",
          value_field);
    }

    bool has_location = false;
    for (const StringStringEntryProto& entry : tensor.external_data()) {
      if (entry.has_key() && entry.has_value() && entry.key() == "location") {
        has_location = true;
        resolve_external_data_location(ctx.get_model_dir(), entry.value(), tensor.name());
      }
    }
    if (!has_location) {
      fail_check("TensorProto ( tensor name: ", tensor.name(), ") is stored externally but doesn't have a location.");
    }
    return;
  }
  int64_t nelem = 1;
  for (auto x : tensor.dims()) {
    nelem *= x;
  }
  if (nelem == 0 && num_value_fields != 0) {
    fail_check("TensorProto (tensor name: ", tensor.name(), ") is 0-element but contains data!");
  }
  if (nelem != 0 && num_value_fields != 1) {
    fail_check("TensorProto (tensor name: ", tensor.name(), ") should contain one and only one value field.");
  }
  if (has_raw_data) {
    if (tensor.data_type() == TensorProto::STRING) {
      fail_check("STRING data (tensor name: ", tensor.name(), ") should not be stored in raw_data field");
    }
    return;
  } else {
#define check_field(field)               \
  if (nelem != 0 && !has_##field) {      \
    fail_check(                          \
        "values of data_type '",         \
        tensor.data_type(),              \
        "' should be stored in field '", \
        #field,                          \
        "' instead of '",                \
        value_field,                     \
        "'");                            \
  }

    switch (tensor.data_type()) {
      case TensorProto::FLOAT:
      case TensorProto::COMPLEX64:
        check_field(float_data);
        break;

      case TensorProto::DOUBLE:
      case TensorProto::COMPLEX128:
        check_field(double_data);
        break;

      case TensorProto::INT32:
      case TensorProto::UINT8:
      case TensorProto::INT8:
      case TensorProto::UINT16:
      case TensorProto::INT16:
      case TensorProto::BOOL:
      case TensorProto::FLOAT16:
      case TensorProto::BFLOAT16:
      case TensorProto::FLOAT8E4M3FN:
      case TensorProto::FLOAT8E4M3FNUZ:
      case TensorProto::FLOAT8E5M2:
      case TensorProto::FLOAT8E5M2FNUZ:
      case TensorProto::UINT4:
      case TensorProto::INT4:
        check_field(int32_data);
        break;

      case TensorProto::INT64:
        check_field(int64_data);
        break;

      case TensorProto::UINT32:
      case TensorProto::UINT64:
        check_field(uint64_data);
        break;

      case TensorProto::STRING:
        check_field(string_data);
        break;

      default:
        fail_check("Unrecognized data_type (tensor name: ", tensor.name(), "): ", tensor.data_type());
    }
  }

#undef check_field
}

void check_sequence(const SequenceProto& sequence, const CheckerContext& ctx) {
  enforce_has_field(sequence, elem_type);
  if (sequence.elem_type() == SequenceProto::TENSOR) {
    for (const TensorProto& tensor : sequence.tensor_values()) {
      check_tensor(tensor, ctx);
    }
  } else if (sequence.elem_type() == SequenceProto::SPARSE_TENSOR) {
    for (const SparseTensorProto& sparse_tensor : sequence.sparse_tensor_values()) {
      check_sparse_tensor(sparse_tensor, ctx);
    }
  } else if (sequence.elem_type() == SequenceProto::SEQUENCE) {
    for (const SequenceProto& seq : sequence.sequence_values()) {
      check_sequence(seq, ctx);
    }
  } else if (sequence.elem_type() == SequenceProto::MAP) {
    for (const MapProto& map : sequence.map_values()) {
      check_map(map, ctx);
    }
  } else {
    fail_check(
        "Sequence ( Structure name: ",
        sequence.name(),
        ", elem_type: ",
        sequence.elem_type(),
        ") is not have a valid element type.");
  }
}

void check_optional(const OptionalProto& optional, const CheckerContext& ctx) {
  enforce_has_field(optional, elem_type);
  if (optional.elem_type() == OptionalProto::UNDEFINED) {
    return;
  } else if (optional.elem_type() == OptionalProto::TENSOR) {
    if (optional.has_tensor_value())
      check_tensor(optional.tensor_value(), ctx);
  } else if (optional.elem_type() == OptionalProto::SPARSE_TENSOR) {
    if (optional.has_sparse_tensor_value())
      check_sparse_tensor(optional.sparse_tensor_value(), ctx);
  } else if (optional.elem_type() == OptionalProto::SEQUENCE) {
    if (optional.has_sequence_value())
      check_sequence(optional.sequence_value(), ctx);
  } else if (optional.elem_type() == OptionalProto::MAP) {
    if (optional.has_map_value())
      check_map(optional.map_value(), ctx);
  } else {
    fail_check(
        "Optional ( Structure name: ",
        optional.name(),
        ", elem_type: ",
        optional.elem_type(),
        ") is not have a valid element type.");
  }
}

void check_map(const MapProto& map, const CheckerContext& ctx) {
  enforce_has_field(map, key_type);
  if (map.key_type() == TensorProto::UNDEFINED) {
    fail_check("setting key_type field (map name: ", map.name(), ") to UNDEFINED is not allowed");
  }
  // Check if key is a valid type, specifically INT8, INT16, INT32, INT64,
  // UINT8, UINT16, UINT32, UINT64, or STRING.
  if ((map.key_type() == TensorProto::FLOAT) || (map.key_type() == TensorProto::BOOL) ||
      (map.key_type() == TensorProto::FLOAT16) || (map.key_type() == TensorProto::COMPLEX64) ||
      (map.key_type() == TensorProto::COMPLEX128)) {
    fail_check(
        "setting key_type field (map name: ",
        map.name(),
        ") to invalid TensorProto key_type ",
        map.key_type(),
        " is not allowed");
  }

  // MapProto will use either keys or string_keys, so only one should be > 0.
  if ((map.keys_size() > 0) && (map.string_keys_size() > 0)) {
    fail_check("Map (name: ", map.name(), ") should not contain more than one keys field.");
  }

  int num_keys = map.keys_size() + map.string_keys_size();
  int num_values = 0;

  enforce_has_field(map, values);
  check_sequence(map.values(), ctx);

  if (map.values().elem_type() == SequenceProto::TENSOR) {
    num_values = map.values().tensor_values_size();
  } else if (map.values().elem_type() == SequenceProto::SPARSE_TENSOR) {
    num_values = map.values().sparse_tensor_values_size();
  } else if (map.values().elem_type() == SequenceProto::SEQUENCE) {
    num_values = map.values().sequence_values_size();
  } else if (map.values().elem_type() == SequenceProto::MAP) {
    num_values = map.values().map_values_size();
  }

  if (num_keys != num_values) {
    fail_check("Length of map keys and map values are not the same (map name: ", map.name(), ")");
  }
}

// Check that the index data stored in a SparseTensorProto is valid.
// indices: a 1-dimensional tensor; indices[i] represents the
// linearized index value for the i-th nonzero value.
void check_sparse_tensor_indices_1(
    const TensorProto& indices,
    const SparseTensorProto& sparse_tensor_proto,
    size_t nnz) {
  int dense_rank = sparse_tensor_proto.dims_size();
  int64_t dense_size = 1;
  for (int i = 0; i < dense_rank; ++i)
    dense_size *= sparse_tensor_proto.dims(i);
  if (static_cast<size_t>(indices.dims(0)) != nnz) {
    fail_check("Sparse tensor indices (", indices.name(), ") has ", indices.dims(0), " values, but NNZ is ", nnz);
  }

  // Check if indices appear in ascending order, and if they have valid
  // values. The i-th value in index_data is the linear index of the i-th
  // non-zero value.
  const std::vector<int64_t> index_data = ParseData<int64_t>(&indices);

  int64_t prev_index = -1;
  for (size_t i = 0; i < nnz; ++i) {
    int64_t curr_index = index_data[i]; // linearized index of i-th value
    if (curr_index < 0 || curr_index >= dense_size) {
      fail_check(
          "Sparse tensor (",
          indices.name(),
          ") index value at position [",
          i,
          "] out of range [0, ",
          dense_size - 1,
          "]");
    }
    if (curr_index <= prev_index) {
      fail_check("Sparse tensor (", indices.name(), ") index value at position [", i, "] not in sorted order.");
    }
    prev_index = curr_index;
  }
}

// Check that the index data stored in a SparseTensorProto is valid.
// indices: a 2-dimensional tensor; indices[i,j] represents the j-th
// index value for the i-th nonzero value.
void check_sparse_tensor_indices_2(
    const TensorProto& indices,
    const SparseTensorProto& sparse_tensor_proto,
    size_t nnz) {
  int dense_rank = sparse_tensor_proto.dims_size();
  if (static_cast<size_t>(indices.dims(0)) != nnz) {
    fail_check("Sparse tensor indices (", indices.name(), ") first dimension size does not equal NNZ.");
  }
  if (indices.dims(1) != dense_rank) {
    fail_check("Sparse tensor indices (", indices.name(), ") second dimension size does not match rank of tensor.");
  }

  // Check if indices appear in ascending order, and if they have valid
  // values.
  const std::vector<int64_t> index_data = ParseData<int64_t>(&indices);
  int64_t prev_index = -1;
  for (size_t i = 0; i < nnz; ++i) {
    int64_t curr_index = 0; // linearized index of i-th value
    for (int j = 0; j < dense_rank; ++j) {
      auto index_ij = index_data[i * dense_rank + j];
      if ((index_ij < 0) || (index_ij >= sparse_tensor_proto.dims(j))) {
        fail_check("Sparse tensor (", indices.name(), ") index value at position [", i, ",", j, "] out of range.");
      }
      curr_index = curr_index * sparse_tensor_proto.dims(j) + index_ij;
    }
    if (curr_index <= prev_index) {
      fail_check(
          "Sparse tensor (", indices.name(), ") index value at position [", i, "] not in lexicographic sorted order.");
    }
    prev_index = curr_index;
  }
}

void check_sparse_tensor(const SparseTensorProto& sparse_tensor_proto, const CheckerContext& ctx) {
  enforce_has_field(sparse_tensor_proto, values);

  const TensorProto& values = sparse_tensor_proto.values();
  check_tensor(values, ctx);

  // values must be a tensor of shape [NNZ]
  // Currently we restrict the value associated with a particular index-tuple
  // to be a single value. In the future, if there is a requirement,
  // we may extend this to permit the value to be a "sub-tensor", in which
  // case values will have dimension > 1.
  if (values.dims_size() != 1) {
    fail_check("Sparse tensor values (", values.name(), ") must have rank 1.");
  }
  size_t nnz = static_cast<size_t>(values.dims(0));
  int dense_rank = sparse_tensor_proto.dims_size();
  if (dense_rank == 0) {
    fail_check("Sparse tensor (", values.name(), ") must have a dense-rank > 0");
  }
  for (int i = 0; i < dense_rank; ++i) {
    if (sparse_tensor_proto.dims(i) <= 0) {
      fail_check("Sparse tensor (", values.name(), ") dimensions are not positive.");
    }
  }

  if (sparse_tensor_proto.has_indices()) {
    const TensorProto& indices = sparse_tensor_proto.indices();
    check_tensor(indices, ctx);
    if (indices.data_type() != TensorProto::INT64) {
      fail_check("Sparse tensor indices (", indices.name(), ") must have INT64 type.");
    }
    switch (indices.dims().size()) {
      case 1:
        // Indices in linearized format
        check_sparse_tensor_indices_1(indices, sparse_tensor_proto, nnz);
        return;
      case 2:
        // Check COO-style index. E.g., an index for a 3D tensor is a 3-tuple.
        check_sparse_tensor_indices_2(indices, sparse_tensor_proto, nnz);
        return;
      default:
        fail_check("Sparse tensor indices (", indices.name(), ") must have rank 1 or 2.");
    }
  } else if (nnz != 0) {
    fail_check("Sparse tensor (", values.name(), ") has no index values.");
  }
}

// NB: This is a generic "attribute well-formedness" check, it doesn't
// actually test if an attribute is valid per a schema
void check_attribute(const AttributeProto& attr, const CheckerContext& ctx, const LexicalScopeContext& lex_ctx) {
  enforce_non_empty_field(attr, name);

  if (ctx.get_ir_version() >= 0x00000002) {
    enforce_has_field(attr, type);
  }

  int used_fields = 0;

#define check_type(expected_type)                                                     \
  if (attr.has_type() && attr.type() != expected_type) {                              \
    fail_check("type field and data field mismatch in attribute ", attr.name(), "."); \
  }

#define check_singular_field(field, type) \
  if (attr.has_##field()) {               \
    ++used_fields;                        \
    check_type(type);                     \
  }

#define check_repeated_field(field, type) \
  if (attr.field##_size() > 0) {          \
    ++used_fields;                        \
    check_type(type);                     \
  }

  check_singular_field(f, AttributeProto::FLOAT);
  check_singular_field(i, AttributeProto::INT);
  check_singular_field(s, AttributeProto::STRING);
  check_singular_field(t, AttributeProto::TENSOR);
  check_singular_field(g, AttributeProto::GRAPH);
  check_singular_field(tp, AttributeProto::TYPE_PROTO);
  check_singular_field(sparse_tensor, AttributeProto::SPARSE_TENSOR);
  check_repeated_field(floats, AttributeProto::FLOATS);
  check_repeated_field(ints, AttributeProto::INTS);
  check_repeated_field(strings, AttributeProto::STRINGS);
  check_repeated_field(tensors, AttributeProto::TENSORS);
  check_repeated_field(graphs, AttributeProto::GRAPHS);
  check_repeated_field(sparse_tensors, AttributeProto::SPARSE_TENSORS);
  check_repeated_field(type_protos, AttributeProto::TYPE_PROTOS);

#undef check_type
#undef check_singular_field
#undef check_repeated_field

  // Normally, used_fields is expected to be 1.
  // In proto3, when the value to be set is type default value (say 0 for
  // int), used_fields may be 0.
  if (used_fields > 1) {
    fail_check("Attribute (name: ", attr.name(), ") should not contain more than one value field.");
  }

  if (!ctx.is_main_graph()) {
    // It's an attribute of a node in function body.
    if (attr.has_ref_attr_name() && used_fields != 0) {
      // The attribute proto is supposed to refer to data outside and does not
      // have its own value field set.
      fail_check("Attribute (name: ", attr.name(), ") should refer to attribute in parent node.");
    }
  }

  if (attr.has_t()) {
    check_tensor(attr.t(), ctx);
  }

  if (attr.has_sparse_tensor()) {
    check_sparse_tensor(attr.sparse_tensor(), ctx);
  }

  if (attr.has_g()) {
    CheckerContext subgraph_ctx(ctx);
    subgraph_ctx.set_is_main_graph(false);
    check_graph(attr.g(), subgraph_ctx, lex_ctx);
  }

  for (const auto& tensor : attr.tensors()) {
    check_tensor(tensor, ctx);
  }
  for (const auto& sparse_tensor : attr.sparse_tensors()) {
    check_sparse_tensor(sparse_tensor, ctx);
  }
  if (attr.graphs().size() > 0) {
    CheckerContext subgraph_ctx(ctx);
    subgraph_ctx.set_is_main_graph(false);
    for (const auto& graph : attr.graphs()) {
      check_graph(graph, subgraph_ctx, lex_ctx);
    }
  }
}

void print_warning_if_has_experimental(const std::unordered_set<std::string>& used_experimental_ops) {
  if (!used_experimental_ops.empty()) {
    std::string all_experimental_ops;
    for (const auto& op : used_experimental_ops) {
      all_experimental_ops += " " + op + ",";
    }
    // Remove the last comma which is unnecessary
    all_experimental_ops.pop_back();
    std::cout << "Warning: Model contains experimental ops:" + all_experimental_ops << std::endl;
  }
}

void check_node(const NodeProto& node, const CheckerContext& ctx, const LexicalScopeContext& lex_ctx) {
  enforce_non_empty_field(node, op_type);

  if (node.input().empty() && node.output().empty()) {
    fail_check("NodeProto (name: ", node.name(), ", type: ", node.op_type(), ") has zero input and zero output.");
  }

  // Resolve domain for node
  const auto& opset_imports = ctx.get_opset_imports();
  auto dit = opset_imports.find(node.domain());
  if (dit == opset_imports.end()) {
    fail_check("No opset import for domain '" + node.domain() + "'");
  }
  auto domain_version = dit->second;

  // for ops referencing local functions, there is no schema to verify it.
  // will add a check to verify consistency between these ops and local functions.
  std::unordered_set<std::string> seen_attr_names{};
  for (const auto& attr : node.attribute()) {
    if (!seen_attr_names.insert(attr.name()).second) {
      fail_check("Attribute '", attr.name(), "' appeared multiple times.");
    };

    check_attribute(attr, ctx, lex_ctx);
  }

  // This issue will be caught by check_graph instead
  if (check_is_experimental_op(node)) {
    return;
  }

  const auto* schema = ctx.get_schema_registry()->GetSchema(node.op_type(), domain_version, node.domain());
  if (!schema) {
    if (node.domain() == ONNX_DOMAIN || node.domain() == AI_ONNX_ML_DOMAIN || node.domain() == "ai.onnx" ||
        node.domain() == AI_ONNX_TRAINING_DOMAIN || ctx.check_custom_domain()) {
      // fail the checker if op is in built-in domains or if it has no schema when `check_custom_domain` is true
      fail_check(
          "No Op registered for " + node.op_type() + " with domain_version of " +
          ONNX_NAMESPACE::to_string(domain_version));
    }
  } else if (schema->Deprecated()) {
    fail_check(
        "Op registered for " + node.op_type() + " is deprecated in domain_version of " +
        ONNX_NAMESPACE::to_string(domain_version));
  } else {
    schema->Verify(node);
  }
}

void check_graph(const GraphProto& graph, const CheckerContext& ctx, const LexicalScopeContext& parent_lex) {
  enforce_non_empty_field(graph, name);

  for (const auto& value_info : graph.input()) {
    check_value_info(value_info, ctx);
  }
  for (const auto& value_info : graph.output()) {
    check_value_info(value_info, ctx);
  }

  // Inherit values available in outer scope
  // Note that we do not allow shadowing, so the presence of an already-defined
  // name is always an error.
  LexicalScopeContext lex_ctx{parent_lex};

  for (const auto& value_info : graph.input()) {
    // TODO: If shadowing isn't allowed, this should maybe use
    // this_or_ancestor_graph_has
    if (lex_ctx.this_graph_has(value_info.name())) {
      fail_check(
          "Graph must be in single static assignment (SSA) form, however '",
          value_info.name(),
          "' has been used as graph input names multiple times.");
    }
    lex_ctx.add(value_info.name());
  }

  std::unordered_set<std::reference_wrapper<const std::string>, std::hash<std::string>, std::equal_to<std::string>>
      initializer_name_checker;

  for (const auto& init : graph.initializer()) {
    enforce_has_field(init, name);
    const auto& name = init.name();
    if (name.empty()) {
      fail_check("Tensor initializers must have a non-empty name");
    }

    if (!initializer_name_checker.insert(std::cref(name)).second) {
      fail_check(name + " initializer name is not unique");
    }

    check_tensor(init, ctx);

    if (ctx.get_ir_version() <= 0x00000003) {
      // Initializers are a subset of graph inputs for IR_VERSION <= 3
      if (!lex_ctx.this_graph_has(name)) {
        fail_check(name + " in initializer but not in graph input");
      }
    } else {
      // An initializer is allowed to have the same name as an input,
      // but is not required to (for IR_VERSION >= 4)
      lex_ctx.add(name);
    }
  }

  for (const auto& sparse_init : graph.sparse_initializer()) {
    const auto& values = sparse_init.values();
    enforce_has_field(values, name);
    const auto& name = values.name();
    if (name.empty()) {
      fail_check("Sparse tensor initializers must have a non-empty name");
    }
    if (!initializer_name_checker.insert(std::cref(name)).second) {
      fail_check(name + " sparse initializer name is not unique across initializers and sparse_initializers");
    }
    check_sparse_tensor(sparse_init, ctx);
    lex_ctx.add(name);
  }
  std::unordered_set<std::string> used_experimental_ops;
  for (const auto& node : graph.node()) {
    // nodes must be in topologically sorted order
    for (const auto& input : node.input()) {
      // explicit optional input
      if (input.empty()) {
        continue;
      }
      if (!lex_ctx.this_or_ancestor_graph_has(input)) {
        fail_check(
            "Nodes in a graph must be topologically sorted, however input '",
            input,
            "' of node: \n",
            "name: ",
            node.name(),
            " OpType: ",
            node.op_type(),
            "\n is not output of any previous nodes.");
      }
    }

    if (check_is_experimental_op(node)) {
      used_experimental_ops.insert(node.op_type());
    }

    // This needs to happen before SSA check since we don't want to recurse and
    // find that outputs from control flow ops are colliding with names in the
    // inner block

    ONNX_TRY {
      check_node(node, ctx, lex_ctx);
    }
    ONNX_CATCH(ValidationError & ex) {
      ONNX_HANDLE_EXCEPTION([&]() {
        ex.AppendContext("Bad node spec for node. Name: " + node.name() + " OpType: " + node.op_type());
        ONNX_THROW_EX(ex);
      });
    }
    // check for SSA form
    for (const auto& output : node.output()) {
      // optional output
      if (output.empty()) {
        continue;
      }

      if (lex_ctx.this_or_ancestor_graph_has(output)) {
        fail_check(
            "Graph must be in single static assignment (SSA) form, however '",
            output,
            "' has been used as output names multiple times.");
      }
      lex_ctx.add(output);
    }
  }
  print_warning_if_has_experimental(used_experimental_ops);
}

// Utilify function to get the imported version of domain from opset imports
// Returns -1 if requested domain is not found in the opset_imports
int get_version_for_domain(const std::string& domain, const std::unordered_map<std::string, int>& opset_imports) {
  auto it = opset_imports.find(domain);
  if (it == opset_imports.end()) {
    return -1;
  }

  return it->second;
}

void check_opset_compatibility(
    const NodeProto& node,
    const CheckerContext& ctx,
    const std::unordered_map<std::string, int>& func_opset_imports,
    const std::unordered_map<std::string, int>& model_opset_imports) {
  auto func_opset_version = get_version_for_domain(node.domain(), func_opset_imports);
  auto model_opset_version = get_version_for_domain(node.domain(), model_opset_imports);

  if (func_opset_version == -1) {
    fail_check("No Opset registered for domain " + node.domain());
  }

  if (model_opset_version == -1) {
    // model does not include opset import for a node present in function body.
    // This is ok as along as the opset import is present in function level opset imports.
    return;
  }

  if (func_opset_version == model_opset_version) {
    // both versions are same, no need to verify schema.
    return;
  }

  const auto* schema_for_model_import =
      ctx.get_schema_registry()->GetSchema(node.op_type(), model_opset_version, node.domain());

  const auto* schema_for_function_import =
      ctx.get_schema_registry()->GetSchema(node.op_type(), func_opset_version, node.domain());

  if (!schema_for_model_import && !schema_for_function_import) {
    // the op belongs to a custom domain so we cannot verify schema
    return;
  }

  // if schema is present for 1 but not other or the schema since versions do not match then raise an error
  if (!schema_for_model_import || !schema_for_function_import ||
      schema_for_function_import->since_version() != schema_for_model_import->since_version()) {
    fail_check(
        "Opset import for domain " + node.domain() + " in function op " + node.op_type() +
        "is not compatible with the version imported by model. FunctionOp imports version " +
        ONNX_NAMESPACE::to_string(func_opset_version) + " whereas model imports version " +
        ONNX_NAMESPACE::to_string(model_opset_version));
  }
}

void check_model_local_functions(
    const ModelProto& model,
    const CheckerContext& ctx,
    const LexicalScopeContext& parent_lex) {
  // make a copy of model opset imports to maintain a main copy of opset imports across the model and
  // all model local functions to verify opset compatibility
  std::unordered_map<std::string, int> model_opset_imports(ctx.get_opset_imports());

  // merge the opset imports from every function in model_opset_imports
  // only add the opset import if an entry for it does not exist in model_opset_imports
  // if there is an entry then the compatibility will be checked later on in check_opset_compatibility
  // called by check_function.
  for (const auto& function_proto : model.functions()) {
    for (const auto& opset_import : function_proto.opset_import()) {
      if (get_version_for_domain(opset_import.domain(), model_opset_imports) == -1) {
        model_opset_imports[opset_import.domain()] = opset_import.version();
      }
    }
  }

  CheckerContext ctx_copy = ctx;
  ctx_copy.set_opset_imports(model_opset_imports);

  for (const auto& function_proto : model.functions()) {
    check_function(function_proto, ctx_copy, parent_lex);
  }
}

void check_function(const FunctionProto& function, const CheckerContext& ctx, const LexicalScopeContext& parent_lex) {
  enforce_non_empty_field(function, name);

  if (ctx.get_ir_version() >= 0x00000008) {
    enforce_has_field(function, domain);
  }

  const auto& model_opset_imports = ctx.get_opset_imports();
  CheckerContext ctx_copy = ctx;

  std::unordered_map<std::string, int> func_opset_imports;
  for (auto& relied_opset : function.opset_import()) {
    func_opset_imports[relied_opset.domain()] = static_cast<int>(relied_opset.version());
  }

  ctx_copy.set_opset_imports(func_opset_imports);

  LexicalScopeContext lex_ctx{parent_lex};

  for (const auto& input : function.input()) {
    // TODO: If shadowing isn't allowed, this should maybe use
    // this_or_ancestor_graph_has
    if (lex_ctx.this_graph_has(input)) {
      fail_check(
          "Graph must be in single static assignment (SSA) form, however '", input, "' has been used multiple times.");
    }
    lex_ctx.add(input);
  }

  std::unordered_set<std::string> outputs;
  for (const auto& output : function.output()) {
    auto result = outputs.insert(output);
    if (!result.second) {
      fail_check("function (", function.name(), ") should not have duplicate outputs specified.");
    }
  }

  std::unordered_set<std::string> attrs;
  for (const auto& attr : function.attribute()) {
    auto result = attrs.insert(attr);
    if (!result.second) {
      fail_check("function (", function.name(), ") should not have duplicate attributes specified.");
    }
  }
  std::unordered_set<std::string> used_experimental_ops;
  for (const auto& node : function.node()) {
    // nodes must be in topologically sorted order
    for (const auto& input : node.input()) {
      // explicit optional input
      if (input.empty()) {
        continue;
      }
      if (!lex_ctx.this_graph_has(input)) {
        fail_check(
            "Nodes in a function must be topologically sorted, however input '",
            input,
            "' of node: \n",
            "Name: ",
            node.name(),
            " OpType: ",
            node.op_type(),
            "\n is neither output of any previous nodes nor input of the function.");
      }
    }

    // check whether the opset version imported for a domain by function and model are
    // compatible
    if (!ctx_copy.skip_opset_compatibility_check())
      check_opset_compatibility(node, ctx_copy, func_opset_imports, model_opset_imports);
    if (check_is_experimental_op(node)) {
      used_experimental_ops.insert(node.op_type());
    }
    check_node(node, ctx_copy, lex_ctx);

    // check for SSA form
    for (const auto& output : node.output()) {
      // optional output
      if (output.empty()) {
        continue;
      }
      if (lex_ctx.this_or_ancestor_graph_has(output)) {
        fail_check(
            "Function must be in single static assignment (SSA) form, however '",
            output,
            "' has been used as output names multiple times.");
      }
      lex_ctx.add(output);
    }
  }
  print_warning_if_has_experimental(used_experimental_ops);
}

void check_model(const ModelProto& model, CheckerContext& ctx) {
  if (!model.ir_version()) {
    fail_check("The model does not have an ir_version set properly.");
  }
  if (model.ir_version() > IR_VERSION) {
    fail_check("Your model ir_version ", model.ir_version(), " is higher than the checker's (", IR_VERSION, ").");
  }
  if (model.metadata_props_size() > 1) {
    std::unordered_set<std::string> keys;
    for (const StringStringEntryProto& entry : model.metadata_props()) {
      auto i = keys.insert(entry.key());
      if (!i.second) {
        fail_check("Your model has duplicate keys in metadata_props.");
      }
    }
  }
  std::unordered_map<std::string, int> versions;
  ctx.set_ir_version(static_cast<int>(model.ir_version()));
  std::unordered_map<std::string, int> opset_imports;
  for (const auto& opset_import : model.opset_import()) {
    opset_imports[opset_import.domain()] = static_cast<int>(opset_import.version());
  }
  if (model.ir_version() >= 3) {
    if (opset_imports.empty()) {
      fail_check("model with IR version >= 3 must specify opset_import for ONNX");
    }
  } else {
    if (opset_imports.empty())
      opset_imports[ONNX_DOMAIN] = 1;
    else {
      fail_check("model with IR version < 3 cannot have opset_import specified");
    }
  }
  ctx.set_opset_imports(opset_imports);
  LexicalScopeContext lex_ctx;
  check_graph(model.graph(), ctx, lex_ctx);

  if (ctx.get_ir_version() >= 0x00000008) {
    check_model_local_functions(model, ctx, lex_ctx);
    // TODO: check consistency between local functions and ops referencing it.
  }
}

void check_model(
    const std::string& model_path,
    bool full_check,
    bool skip_opset_compatibility_check,
    bool check_custom_domain) {
  ModelProto model;
  LoadProtoFromPath(model_path, model);

  CheckerContext ctx;
  std::string model_dir;
  size_t pos = model_path.find_last_of("\\/");
  if (pos != std::string::npos) {
    model_dir = model_path.substr(0, pos + 1);
  }
  ctx.set_model_dir(model_dir);
  ctx.set_skip_opset_compatibility_check(skip_opset_compatibility_check);
  ctx.set_check_custom_domain(check_custom_domain);
  check_model(model, ctx);

  if (full_check) {
    ShapeInferenceOptions options{true, 1, false};
    ONNX_NAMESPACE::shape_inference::InferShapes(model, ctx.get_schema_registry(), options);
  }
}

void check_model(
    const ModelProto& model,
    bool full_check,
    bool skip_opset_compatibility_check,
    bool check_custom_domain) {
  CheckerContext ctx;
  ctx.set_skip_opset_compatibility_check(skip_opset_compatibility_check);
  ctx.set_check_custom_domain(check_custom_domain);
  check_model(model, ctx);
  if (full_check) {
    ShapeInferenceOptions options{true, 1, false};
    // Do not update the model in place by the check from shape inference
    // because checker should not modify the original model
    ModelProto copy = model;
    ONNX_NAMESPACE::shape_inference::InferShapes(copy, ctx.get_schema_registry(), options);
  }
}

std::string resolve_external_data_location(
    const std::string& base_dir,
    const std::string& location,
    const std::string& tensor_name) {
#ifdef _WIN32
  auto file_path = std::filesystem::path(utf8str_to_wstring(location));
  if (file_path.is_absolute()) {
    fail_check(
        "Location of external TensorProto ( tensor name: ",
        tensor_name,
        ") should be a relative path, but it is an absolute path: ",
        location);
  }
  auto relative_path = file_path.lexically_normal().make_preferred().wstring();
  // Check that normalized relative path contains ".." on Windows.
  if (relative_path.find(L"..", 0) != std::string::npos) {
    fail_check(
        "Data of TensorProto ( tensor name: ",
        tensor_name,
        ") should be file inside the ",
        base_dir,
        ", but the '",
        location,
        "' points outside the directory");
  }
  std::wstring data_path = path_join(utf8str_to_wstring(base_dir), relative_path);
  struct _stat64 buff;
  if (data_path.empty() || (data_path[0] != '#' && _wstat64(data_path.c_str(), &buff) != 0)) {
    fail_check(
        "Data of TensorProto ( tensor name: ",
        tensor_name,
        ") should be stored in ",
        location,
        ", but it doesn't exist or is not accessible.");
  }
  return wstring_to_utf8str(data_path);
#else // POSIX
  if (location.empty()) {
    fail_check("Location of external TensorProto ( tensor name: ", tensor_name, ") should not be empty.");
  } else if (location[0] == '/') {
    fail_check(
        "Location of external TensorProto ( tensor name: ",
        tensor_name,
        ") should be a relative path, but it is an absolute path: ",
        location);
  }
  std::string relative_path = clean_relative_path(location);
  // Check that normalized relative path contains ".." on POSIX
  if (relative_path.find("..", 0) != std::string::npos) {
    fail_check(
        "Data of TensorProto ( tensor name: ",
        tensor_name,
        ") should be file inside the ",
        base_dir,
        ", but the '",
        location,
        "' points outside the directory");
  }
  std::string data_path = path_join(base_dir, relative_path);
  // use stat64 to check whether the file exists
#if defined(__APPLE__) || defined(__wasm__) || !defined(__GLIBC__)
  struct stat buffer; // APPLE, wasm and non-glic stdlibs do not have stat64
  if (data_path.empty() || (data_path[0] != '#' && stat((data_path).c_str(), &buffer) != 0)) {
#else
  struct stat64 buffer; // All POSIX under glibc except APPLE and wasm have stat64
  if (data_path.empty() || (data_path[0] != '#' && stat64((data_path).c_str(), &buffer) != 0)) {
#endif
    fail_check(
        "Data of TensorProto ( tensor name: ",
        tensor_name,
        ") should be stored in ",
        data_path,
        ", but it doesn't exist or is not accessible.");
  }
  // Do not allow symlinks or directories.
  if (data_path.empty() || (data_path[0] != '#' && !S_ISREG(buffer.st_mode))) {
    fail_check(
        "Data of TensorProto ( tensor name: ",
        tensor_name,
        ") should be stored in ",
        data_path,
        ", but it is not regular file.");
  }
  return data_path;
#endif
}

std::set<std::string> experimental_ops = {
    "ATen",
    "Affine",
    "ConstantFill",
    "Crop",
    "DynamicSlice",
    "GRUUnit",
    "GivenTensorFill",
    "ImageScaler",
    "ParametricSoftplus",
    "Scale",
    "ScaledTanh"};

bool check_is_experimental_op(const NodeProto& node) {
  return (node.domain() == ONNX_DOMAIN || node.domain() == "ai.onnx") && experimental_ops.count(node.op_type());
}

#undef enforce_has_field
#undef enforce_non_empty_field

} // namespace checker
} // namespace ONNX_NAMESPACE