File size: 7,892 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0

import argparse
import json
import os
import shutil
import warnings

import onnx.backend.test.case.model as model_test
import onnx.backend.test.case.node as node_test
from onnx import ONNX_ML, TensorProto, numpy_helper

TOP_DIR = os.path.realpath(os.path.dirname(__file__))
DATA_DIR = os.path.join(TOP_DIR, "data")


def generate_data(args: argparse.Namespace) -> None:
    def prepare_dir(path: str) -> None:
        if os.path.exists(path):
            shutil.rmtree(path)
        os.makedirs(path)

    # Clean the output directory before generating data for node testcases
    # It is used to check new generated data is correct in CIs
    node_root = os.path.join(args.output, "node")
    original_dir_number = len(
        [name for name in os.listdir(node_root) if os.path.isfile(name)]
    )
    if args.clean and os.path.exists(node_root):
        for sub_dir in os.listdir(node_root):
            if ONNX_ML or not sub_dir.startswith("test_ai_onnx_ml_"):
                shutil.rmtree(os.path.join(node_root, sub_dir))

    cases = model_test.collect_testcases()
    # If op_type is specified, only include those testcases including the given operator
    # Otherwise, include all of the testcases
    if args.diff:
        cases += node_test.collect_diff_testcases()
    else:
        cases += node_test.collect_testcases(args.op_type)
    node_number = 0

    for case in cases:
        output_dir = os.path.join(args.output, case.kind, case.name)
        prepare_dir(output_dir)
        if case.kind == "node":
            node_number += 1
        if case.kind == "real":
            with open(os.path.join(output_dir, "data.json"), "w") as fi:
                json.dump(
                    {
                        "url": case.url,
                        "model_name": case.model_name,
                        "rtol": case.rtol,
                        "atol": case.atol,
                    },
                    fi,
                    sort_keys=True,
                )
        else:
            assert case.model
            with open(os.path.join(output_dir, "model.onnx"), "wb") as f:
                f.write(case.model.SerializeToString())
            assert case.data_sets
            for i, (inputs, outputs) in enumerate(case.data_sets):
                data_set_dir = os.path.join(output_dir, f"test_data_set_{i}")
                prepare_dir(data_set_dir)
                for j, input in enumerate(inputs):
                    with open(os.path.join(data_set_dir, f"input_{j}.pb"), "wb") as f:
                        if case.model.graph.input[j].type.HasField("map_type"):
                            f.write(
                                numpy_helper.from_dict(
                                    input, case.model.graph.input[j].name
                                ).SerializeToString()
                            )
                        elif case.model.graph.input[j].type.HasField("sequence_type"):
                            f.write(
                                numpy_helper.from_list(
                                    input, case.model.graph.input[j].name
                                ).SerializeToString()
                            )
                        elif case.model.graph.input[j].type.HasField("optional_type"):
                            f.write(
                                numpy_helper.from_optional(
                                    input, case.model.graph.input[j].name
                                ).SerializeToString()
                            )
                        else:
                            assert case.model.graph.input[j].type.HasField(
                                "tensor_type"
                            )
                            if isinstance(input, TensorProto):
                                f.write(input.SerializeToString())
                            else:
                                f.write(
                                    numpy_helper.from_array(
                                        input, case.model.graph.input[j].name
                                    ).SerializeToString()
                                )
                for j, output in enumerate(outputs):
                    with open(os.path.join(data_set_dir, f"output_{j}.pb"), "wb") as f:
                        if case.model.graph.output[j].type.HasField("map_type"):
                            f.write(
                                numpy_helper.from_dict(
                                    output, case.model.graph.output[j].name
                                ).SerializeToString()
                            )
                        elif case.model.graph.output[j].type.HasField("sequence_type"):
                            f.write(
                                numpy_helper.from_list(
                                    output, case.model.graph.output[j].name
                                ).SerializeToString()
                            )
                        elif case.model.graph.output[j].type.HasField("optional_type"):
                            f.write(
                                numpy_helper.from_optional(
                                    output, case.model.graph.output[j].name
                                ).SerializeToString()
                            )
                        else:
                            assert case.model.graph.output[j].type.HasField(
                                "tensor_type"
                            )
                            if isinstance(output, TensorProto):
                                f.write(output.SerializeToString())
                            else:
                                f.write(
                                    numpy_helper.from_array(
                                        output, case.model.graph.output[j].name
                                    ).SerializeToString()
                                )
    if not args.clean and node_number != original_dir_number:
        warnings.warn(
            "There are some models under 'onnx/backend/test/data/node' which cannot not"
            " be generated by the script from 'onnx/backend/test/case/node'. Please add"
            " '--clean' option for 'python onnx/backend/test/cmd_tools.py generate-data'"
            " to cleanup the existing directories and regenerate them.",
            Warning,
            stacklevel=2,
        )


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser("backend-test-tools")
    subparsers = parser.add_subparsers()

    subparser = subparsers.add_parser(
        "generate-data", help="convert testcases to test data."
    )
    subparser.add_argument(
        "-c",
        "--clean",
        default=False,
        action="store_true",
        help="Clean the output directory before generating data for node testcases.",
    )
    subparser.add_argument(
        "-o",
        "--output",
        default=DATA_DIR,
        help="output directory (default: %(default)s)",
    )
    subparser.add_argument(
        "-t",
        "--op_type",
        default=None,
        help="op_type for test case generation. (generates test data for the specified op_type only.)",
    )
    subparser.add_argument(
        "-d",
        "--diff",
        default=False,
        action="store_true",
        help="only generates test data for those changed files (compared to the main branch).",
    )
    subparser.set_defaults(func=generate_data)

    return parser.parse_args()


def main() -> None:
    args = parse_args()
    args.func(args)


if __name__ == "__main__":
    main()