File size: 5,745 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
""" Test functions for linalg module

"""
import warnings

import numpy as np
from numpy import linalg, arange, float64, array, dot, transpose
from numpy.testing import (
    assert_, assert_raises, assert_equal, assert_array_equal,
    assert_array_almost_equal, assert_array_less
)


class TestRegression:

    def test_eig_build(self):
        # Ticket #652
        rva = array([1.03221168e+02 + 0.j,
                     -1.91843603e+01 + 0.j,
                     -6.04004526e-01 + 15.84422474j,
                     -6.04004526e-01 - 15.84422474j,
                     -1.13692929e+01 + 0.j,
                     -6.57612485e-01 + 10.41755503j,
                     -6.57612485e-01 - 10.41755503j,
                     1.82126812e+01 + 0.j,
                     1.06011014e+01 + 0.j,
                     7.80732773e+00 + 0.j,
                     -7.65390898e-01 + 0.j,
                     1.51971555e-15 + 0.j,
                     -1.51308713e-15 + 0.j])
        a = arange(13 * 13, dtype=float64)
        a.shape = (13, 13)
        a = a % 17
        va, ve = linalg.eig(a)
        va.sort()
        rva.sort()
        assert_array_almost_equal(va, rva)

    def test_eigh_build(self):
        # Ticket 662.
        rvals = [68.60568999, 89.57756725, 106.67185574]

        cov = array([[77.70273908,   3.51489954,  15.64602427],
                     [3.51489954,  88.97013878,  -1.07431931],
                     [15.64602427,  -1.07431931,  98.18223512]])

        vals, vecs = linalg.eigh(cov)
        assert_array_almost_equal(vals, rvals)

    def test_svd_build(self):
        # Ticket 627.
        a = array([[0., 1.], [1., 1.], [2., 1.], [3., 1.]])
        m, n = a.shape
        u, s, vh = linalg.svd(a)

        b = dot(transpose(u[:, n:]), a)

        assert_array_almost_equal(b, np.zeros((2, 2)))

    def test_norm_vector_badarg(self):
        # Regression for #786: Frobenius norm for vectors raises
        # ValueError.
        assert_raises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro')

    def test_lapack_endian(self):
        # For bug #1482
        a = array([[5.7998084,  -2.1825367],
                   [-2.1825367,   9.85910595]], dtype='>f8')
        b = array(a, dtype='<f8')

        ap = linalg.cholesky(a)
        bp = linalg.cholesky(b)
        assert_array_equal(ap, bp)

    def test_large_svd_32bit(self):
        # See gh-4442, 64bit would require very large/slow matrices.
        x = np.eye(1000, 66)
        np.linalg.svd(x)

    def test_svd_no_uv(self):
        # gh-4733
        for shape in (3, 4), (4, 4), (4, 3):
            for t in float, complex:
                a = np.ones(shape, dtype=t)
                w = linalg.svd(a, compute_uv=False)
                c = np.count_nonzero(np.absolute(w) > 0.5)
                assert_equal(c, 1)
                assert_equal(np.linalg.matrix_rank(a), 1)
                assert_array_less(1, np.linalg.norm(a, ord=2))

    def test_norm_object_array(self):
        # gh-7575
        testvector = np.array([np.array([0, 1]), 0, 0], dtype=object)

        norm = linalg.norm(testvector)
        assert_array_equal(norm, [0, 1])
        assert_(norm.dtype == np.dtype('float64'))

        norm = linalg.norm(testvector, ord=1)
        assert_array_equal(norm, [0, 1])
        assert_(norm.dtype != np.dtype('float64'))

        norm = linalg.norm(testvector, ord=2)
        assert_array_equal(norm, [0, 1])
        assert_(norm.dtype == np.dtype('float64'))

        assert_raises(ValueError, linalg.norm, testvector, ord='fro')
        assert_raises(ValueError, linalg.norm, testvector, ord='nuc')
        assert_raises(ValueError, linalg.norm, testvector, ord=np.inf)
        assert_raises(ValueError, linalg.norm, testvector, ord=-np.inf)
        with warnings.catch_warnings():
            warnings.simplefilter("error", DeprecationWarning)
            assert_raises((AttributeError, DeprecationWarning),
                              linalg.norm, testvector, ord=0)
        assert_raises(ValueError, linalg.norm, testvector, ord=-1)
        assert_raises(ValueError, linalg.norm, testvector, ord=-2)

        testmatrix = np.array([[np.array([0, 1]), 0, 0],
                               [0,                0, 0]], dtype=object)

        norm = linalg.norm(testmatrix)
        assert_array_equal(norm, [0, 1])
        assert_(norm.dtype == np.dtype('float64'))

        norm = linalg.norm(testmatrix, ord='fro')
        assert_array_equal(norm, [0, 1])
        assert_(norm.dtype == np.dtype('float64'))

        assert_raises(TypeError, linalg.norm, testmatrix, ord='nuc')
        assert_raises(ValueError, linalg.norm, testmatrix, ord=np.inf)
        assert_raises(ValueError, linalg.norm, testmatrix, ord=-np.inf)
        assert_raises(ValueError, linalg.norm, testmatrix, ord=0)
        assert_raises(ValueError, linalg.norm, testmatrix, ord=1)
        assert_raises(ValueError, linalg.norm, testmatrix, ord=-1)
        assert_raises(TypeError, linalg.norm, testmatrix, ord=2)
        assert_raises(TypeError, linalg.norm, testmatrix, ord=-2)
        assert_raises(ValueError, linalg.norm, testmatrix, ord=3)

    def test_lstsq_complex_larger_rhs(self):
        # gh-9891
        size = 20
        n_rhs = 70
        G = np.random.randn(size, size) + 1j * np.random.randn(size, size)
        u = np.random.randn(size, n_rhs) + 1j * np.random.randn(size, n_rhs)
        b = G.dot(u)
        # This should work without segmentation fault.
        u_lstsq, res, rank, sv = linalg.lstsq(G, b, rcond=None)
        # check results just in case
        assert_array_almost_equal(u_lstsq, u)