Spaces:
Sleeping
Sleeping
File size: 7,246 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import numbers
import operator
import numpy as np
from numpy.testing import assert_, assert_equal, assert_raises
# NOTE: This class should be kept as an exact copy of the example from the
# docstring for NDArrayOperatorsMixin.
class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
def __init__(self, value):
self.value = np.asarray(value)
# One might also consider adding the built-in list type to this
# list, to support operations like np.add(array_like, list)
_HANDLED_TYPES = (np.ndarray, numbers.Number)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
out = kwargs.get('out', ())
for x in inputs + out:
# Only support operations with instances of _HANDLED_TYPES.
# Use ArrayLike instead of type(self) for isinstance to
# allow subclasses that don't override __array_ufunc__ to
# handle ArrayLike objects.
if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)):
return NotImplemented
# Defer to the implementation of the ufunc on unwrapped values.
inputs = tuple(x.value if isinstance(x, ArrayLike) else x
for x in inputs)
if out:
kwargs['out'] = tuple(
x.value if isinstance(x, ArrayLike) else x
for x in out)
result = getattr(ufunc, method)(*inputs, **kwargs)
if type(result) is tuple:
# multiple return values
return tuple(type(self)(x) for x in result)
elif method == 'at':
# no return value
return None
else:
# one return value
return type(self)(result)
def __repr__(self):
return '%s(%r)' % (type(self).__name__, self.value)
def wrap_array_like(result):
if type(result) is tuple:
return tuple(ArrayLike(r) for r in result)
else:
return ArrayLike(result)
def _assert_equal_type_and_value(result, expected, err_msg=None):
assert_equal(type(result), type(expected), err_msg=err_msg)
if isinstance(result, tuple):
assert_equal(len(result), len(expected), err_msg=err_msg)
for result_item, expected_item in zip(result, expected):
_assert_equal_type_and_value(result_item, expected_item, err_msg)
else:
assert_equal(result.value, expected.value, err_msg=err_msg)
assert_equal(getattr(result.value, 'dtype', None),
getattr(expected.value, 'dtype', None), err_msg=err_msg)
_ALL_BINARY_OPERATORS = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.gt,
operator.ge,
operator.add,
operator.sub,
operator.mul,
operator.truediv,
operator.floordiv,
operator.mod,
divmod,
pow,
operator.lshift,
operator.rshift,
operator.and_,
operator.xor,
operator.or_,
]
class TestNDArrayOperatorsMixin:
def test_array_like_add(self):
def check(result):
_assert_equal_type_and_value(result, ArrayLike(0))
check(ArrayLike(0) + 0)
check(0 + ArrayLike(0))
check(ArrayLike(0) + np.array(0))
check(np.array(0) + ArrayLike(0))
check(ArrayLike(np.array(0)) + 0)
check(0 + ArrayLike(np.array(0)))
check(ArrayLike(np.array(0)) + np.array(0))
check(np.array(0) + ArrayLike(np.array(0)))
def test_inplace(self):
array_like = ArrayLike(np.array([0]))
array_like += 1
_assert_equal_type_and_value(array_like, ArrayLike(np.array([1])))
array = np.array([0])
array += ArrayLike(1)
_assert_equal_type_and_value(array, ArrayLike(np.array([1])))
def test_opt_out(self):
class OptOut:
"""Object that opts out of __array_ufunc__."""
__array_ufunc__ = None
def __add__(self, other):
return self
def __radd__(self, other):
return self
array_like = ArrayLike(1)
opt_out = OptOut()
# supported operations
assert_(array_like + opt_out is opt_out)
assert_(opt_out + array_like is opt_out)
# not supported
with assert_raises(TypeError):
# don't use the Python default, array_like = array_like + opt_out
array_like += opt_out
with assert_raises(TypeError):
array_like - opt_out
with assert_raises(TypeError):
opt_out - array_like
def test_subclass(self):
class SubArrayLike(ArrayLike):
"""Should take precedence over ArrayLike."""
x = ArrayLike(0)
y = SubArrayLike(1)
_assert_equal_type_and_value(x + y, y)
_assert_equal_type_and_value(y + x, y)
def test_object(self):
x = ArrayLike(0)
obj = object()
with assert_raises(TypeError):
x + obj
with assert_raises(TypeError):
obj + x
with assert_raises(TypeError):
x += obj
def test_unary_methods(self):
array = np.array([-1, 0, 1, 2])
array_like = ArrayLike(array)
for op in [operator.neg,
operator.pos,
abs,
operator.invert]:
_assert_equal_type_and_value(op(array_like), ArrayLike(op(array)))
def test_forward_binary_methods(self):
array = np.array([-1, 0, 1, 2])
array_like = ArrayLike(array)
for op in _ALL_BINARY_OPERATORS:
expected = wrap_array_like(op(array, 1))
actual = op(array_like, 1)
err_msg = 'failed for operator {}'.format(op)
_assert_equal_type_and_value(expected, actual, err_msg=err_msg)
def test_reflected_binary_methods(self):
for op in _ALL_BINARY_OPERATORS:
expected = wrap_array_like(op(2, 1))
actual = op(2, ArrayLike(1))
err_msg = 'failed for operator {}'.format(op)
_assert_equal_type_and_value(expected, actual, err_msg=err_msg)
def test_matmul(self):
array = np.array([1, 2], dtype=np.float64)
array_like = ArrayLike(array)
expected = ArrayLike(np.float64(5))
_assert_equal_type_and_value(expected, np.matmul(array_like, array))
_assert_equal_type_and_value(
expected, operator.matmul(array_like, array))
_assert_equal_type_and_value(
expected, operator.matmul(array, array_like))
def test_ufunc_at(self):
array = ArrayLike(np.array([1, 2, 3, 4]))
assert_(np.negative.at(array, np.array([0, 1])) is None)
_assert_equal_type_and_value(array, ArrayLike([-1, -2, 3, 4]))
def test_ufunc_two_outputs(self):
mantissa, exponent = np.frexp(2 ** -3)
expected = (ArrayLike(mantissa), ArrayLike(exponent))
_assert_equal_type_and_value(
np.frexp(ArrayLike(2 ** -3)), expected)
_assert_equal_type_and_value(
np.frexp(ArrayLike(np.array(2 ** -3))), expected)
|