File size: 18,389 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
"""

Utilities that manipulate strides to achieve desirable effects.



An explanation of strides can be found in the "ndarray.rst" file in the

NumPy reference guide.



"""
import numpy as np
from numpy.core.numeric import normalize_axis_tuple
from numpy.core.overrides import array_function_dispatch, set_module

__all__ = ['broadcast_to', 'broadcast_arrays', 'broadcast_shapes']


class DummyArray:
    """Dummy object that just exists to hang __array_interface__ dictionaries

    and possibly keep alive a reference to a base array.

    """

    def __init__(self, interface, base=None):
        self.__array_interface__ = interface
        self.base = base


def _maybe_view_as_subclass(original_array, new_array):
    if type(original_array) is not type(new_array):
        # if input was an ndarray subclass and subclasses were OK,
        # then view the result as that subclass.
        new_array = new_array.view(type=type(original_array))
        # Since we have done something akin to a view from original_array, we
        # should let the subclass finalize (if it has it implemented, i.e., is
        # not None).
        if new_array.__array_finalize__:
            new_array.__array_finalize__(original_array)
    return new_array


def as_strided(x, shape=None, strides=None, subok=False, writeable=True):
    """

    Create a view into the array with the given shape and strides.



    .. warning:: This function has to be used with extreme care, see notes.



    Parameters

    ----------

    x : ndarray

        Array to create a new.

    shape : sequence of int, optional

        The shape of the new array. Defaults to ``x.shape``.

    strides : sequence of int, optional

        The strides of the new array. Defaults to ``x.strides``.

    subok : bool, optional

        .. versionadded:: 1.10



        If True, subclasses are preserved.

    writeable : bool, optional

        .. versionadded:: 1.12



        If set to False, the returned array will always be readonly.

        Otherwise it will be writable if the original array was. It

        is advisable to set this to False if possible (see Notes).



    Returns

    -------

    view : ndarray



    See also

    --------

    broadcast_to : broadcast an array to a given shape.

    reshape : reshape an array.

    lib.stride_tricks.sliding_window_view :

        userfriendly and safe function for the creation of sliding window views.



    Notes

    -----

    ``as_strided`` creates a view into the array given the exact strides

    and shape. This means it manipulates the internal data structure of

    ndarray and, if done incorrectly, the array elements can point to

    invalid memory and can corrupt results or crash your program.

    It is advisable to always use the original ``x.strides`` when

    calculating new strides to avoid reliance on a contiguous memory

    layout.



    Furthermore, arrays created with this function often contain self

    overlapping memory, so that two elements are identical.

    Vectorized write operations on such arrays will typically be

    unpredictable. They may even give different results for small, large,

    or transposed arrays.

    Since writing to these arrays has to be tested and done with great

    care, you may want to use ``writeable=False`` to avoid accidental write

    operations.



    For these reasons it is advisable to avoid ``as_strided`` when

    possible.

    """
    # first convert input to array, possibly keeping subclass
    x = np.array(x, copy=False, subok=subok)
    interface = dict(x.__array_interface__)
    if shape is not None:
        interface['shape'] = tuple(shape)
    if strides is not None:
        interface['strides'] = tuple(strides)

    array = np.asarray(DummyArray(interface, base=x))
    # The route via `__interface__` does not preserve structured
    # dtypes. Since dtype should remain unchanged, we set it explicitly.
    array.dtype = x.dtype

    view = _maybe_view_as_subclass(x, array)

    if view.flags.writeable and not writeable:
        view.flags.writeable = False

    return view


def _sliding_window_view_dispatcher(x, window_shape, axis=None, *,

                                    subok=None, writeable=None):
    return (x,)


@array_function_dispatch(_sliding_window_view_dispatcher)
def sliding_window_view(x, window_shape, axis=None, *,

                        subok=False, writeable=False):
    """

    Create a sliding window view into the array with the given window shape.



    Also known as rolling or moving window, the window slides across all

    dimensions of the array and extracts subsets of the array at all window

    positions.

    

    .. versionadded:: 1.20.0



    Parameters

    ----------

    x : array_like

        Array to create the sliding window view from.

    window_shape : int or tuple of int

        Size of window over each axis that takes part in the sliding window.

        If `axis` is not present, must have same length as the number of input

        array dimensions. Single integers `i` are treated as if they were the

        tuple `(i,)`.

    axis : int or tuple of int, optional

        Axis or axes along which the sliding window is applied.

        By default, the sliding window is applied to all axes and

        `window_shape[i]` will refer to axis `i` of `x`.

        If `axis` is given as a `tuple of int`, `window_shape[i]` will refer to

        the axis `axis[i]` of `x`.

        Single integers `i` are treated as if they were the tuple `(i,)`.

    subok : bool, optional

        If True, sub-classes will be passed-through, otherwise the returned

        array will be forced to be a base-class array (default).

    writeable : bool, optional

        When true, allow writing to the returned view. The default is false,

        as this should be used with caution: the returned view contains the

        same memory location multiple times, so writing to one location will

        cause others to change.



    Returns

    -------

    view : ndarray

        Sliding window view of the array. The sliding window dimensions are

        inserted at the end, and the original dimensions are trimmed as

        required by the size of the sliding window.

        That is, ``view.shape = x_shape_trimmed + window_shape``, where

        ``x_shape_trimmed`` is ``x.shape`` with every entry reduced by one less

        than the corresponding window size.



    See Also

    --------

    lib.stride_tricks.as_strided: A lower-level and less safe routine for

        creating arbitrary views from custom shape and strides.

    broadcast_to: broadcast an array to a given shape.



    Notes

    -----

    For many applications using a sliding window view can be convenient, but

    potentially very slow. Often specialized solutions exist, for example:



    - `scipy.signal.fftconvolve`



    - filtering functions in `scipy.ndimage`



    - moving window functions provided by

      `bottleneck <https://github.com/pydata/bottleneck>`_.



    As a rough estimate, a sliding window approach with an input size of `N`

    and a window size of `W` will scale as `O(N*W)` where frequently a special

    algorithm can achieve `O(N)`. That means that the sliding window variant

    for a window size of 100 can be a 100 times slower than a more specialized

    version.



    Nevertheless, for small window sizes, when no custom algorithm exists, or

    as a prototyping and developing tool, this function can be a good solution.



    Examples

    --------

    >>> x = np.arange(6)

    >>> x.shape

    (6,)

    >>> v = sliding_window_view(x, 3)

    >>> v.shape

    (4, 3)

    >>> v

    array([[0, 1, 2],

           [1, 2, 3],

           [2, 3, 4],

           [3, 4, 5]])



    This also works in more dimensions, e.g.



    >>> i, j = np.ogrid[:3, :4]

    >>> x = 10*i + j

    >>> x.shape

    (3, 4)

    >>> x

    array([[ 0,  1,  2,  3],

           [10, 11, 12, 13],

           [20, 21, 22, 23]])

    >>> shape = (2,2)

    >>> v = sliding_window_view(x, shape)

    >>> v.shape

    (2, 3, 2, 2)

    >>> v

    array([[[[ 0,  1],

             [10, 11]],

            [[ 1,  2],

             [11, 12]],

            [[ 2,  3],

             [12, 13]]],

           [[[10, 11],

             [20, 21]],

            [[11, 12],

             [21, 22]],

            [[12, 13],

             [22, 23]]]])



    The axis can be specified explicitly:



    >>> v = sliding_window_view(x, 3, 0)

    >>> v.shape

    (1, 4, 3)

    >>> v

    array([[[ 0, 10, 20],

            [ 1, 11, 21],

            [ 2, 12, 22],

            [ 3, 13, 23]]])



    The same axis can be used several times. In that case, every use reduces

    the corresponding original dimension:



    >>> v = sliding_window_view(x, (2, 3), (1, 1))

    >>> v.shape

    (3, 1, 2, 3)

    >>> v

    array([[[[ 0,  1,  2],

             [ 1,  2,  3]]],

           [[[10, 11, 12],

             [11, 12, 13]]],

           [[[20, 21, 22],

             [21, 22, 23]]]])



    Combining with stepped slicing (`::step`), this can be used to take sliding

    views which skip elements:



    >>> x = np.arange(7)

    >>> sliding_window_view(x, 5)[:, ::2]

    array([[0, 2, 4],

           [1, 3, 5],

           [2, 4, 6]])



    or views which move by multiple elements



    >>> x = np.arange(7)

    >>> sliding_window_view(x, 3)[::2, :]

    array([[0, 1, 2],

           [2, 3, 4],

           [4, 5, 6]])



    A common application of `sliding_window_view` is the calculation of running

    statistics. The simplest example is the

    `moving average <https://en.wikipedia.org/wiki/Moving_average>`_:



    >>> x = np.arange(6)

    >>> x.shape

    (6,)

    >>> v = sliding_window_view(x, 3)

    >>> v.shape

    (4, 3)

    >>> v

    array([[0, 1, 2],

           [1, 2, 3],

           [2, 3, 4],

           [3, 4, 5]])

    >>> moving_average = v.mean(axis=-1)

    >>> moving_average

    array([1., 2., 3., 4.])



    Note that a sliding window approach is often **not** optimal (see Notes).

    """
    window_shape = (tuple(window_shape)
                    if np.iterable(window_shape)
                    else (window_shape,))
    # first convert input to array, possibly keeping subclass
    x = np.array(x, copy=False, subok=subok)

    window_shape_array = np.array(window_shape)
    if np.any(window_shape_array < 0):
        raise ValueError('`window_shape` cannot contain negative values')

    if axis is None:
        axis = tuple(range(x.ndim))
        if len(window_shape) != len(axis):
            raise ValueError(f'Since axis is `None`, must provide '
                             f'window_shape for all dimensions of `x`; '
                             f'got {len(window_shape)} window_shape elements '
                             f'and `x.ndim` is {x.ndim}.')
    else:
        axis = normalize_axis_tuple(axis, x.ndim, allow_duplicate=True)
        if len(window_shape) != len(axis):
            raise ValueError(f'Must provide matching length window_shape and '
                             f'axis; got {len(window_shape)} window_shape '
                             f'elements and {len(axis)} axes elements.')

    out_strides = x.strides + tuple(x.strides[ax] for ax in axis)

    # note: same axis can be windowed repeatedly
    x_shape_trimmed = list(x.shape)
    for ax, dim in zip(axis, window_shape):
        if x_shape_trimmed[ax] < dim:
            raise ValueError(
                'window shape cannot be larger than input array shape')
        x_shape_trimmed[ax] -= dim - 1
    out_shape = tuple(x_shape_trimmed) + window_shape
    return as_strided(x, strides=out_strides, shape=out_shape,
                      subok=subok, writeable=writeable)


def _broadcast_to(array, shape, subok, readonly):
    shape = tuple(shape) if np.iterable(shape) else (shape,)
    array = np.array(array, copy=False, subok=subok)
    if not shape and array.shape:
        raise ValueError('cannot broadcast a non-scalar to a scalar array')
    if any(size < 0 for size in shape):
        raise ValueError('all elements of broadcast shape must be non-'
                         'negative')
    extras = []
    it = np.nditer(
        (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras,
        op_flags=['readonly'], itershape=shape, order='C')
    with it:
        # never really has writebackifcopy semantics
        broadcast = it.itviews[0]
    result = _maybe_view_as_subclass(array, broadcast)
    # In a future version this will go away
    if not readonly and array.flags._writeable_no_warn:
        result.flags.writeable = True
        result.flags._warn_on_write = True
    return result


def _broadcast_to_dispatcher(array, shape, subok=None):
    return (array,)


@array_function_dispatch(_broadcast_to_dispatcher, module='numpy')
def broadcast_to(array, shape, subok=False):
    """Broadcast an array to a new shape.



    Parameters

    ----------

    array : array_like

        The array to broadcast.

    shape : tuple

        The shape of the desired array.

    subok : bool, optional

        If True, then sub-classes will be passed-through, otherwise

        the returned array will be forced to be a base-class array (default).



    Returns

    -------

    broadcast : array

        A readonly view on the original array with the given shape. It is

        typically not contiguous. Furthermore, more than one element of a

        broadcasted array may refer to a single memory location.



    Raises

    ------

    ValueError

        If the array is not compatible with the new shape according to NumPy's

        broadcasting rules.



    See Also

    --------

    broadcast

    broadcast_arrays

    broadcast_shapes



    Notes

    -----

    .. versionadded:: 1.10.0



    Examples

    --------

    >>> x = np.array([1, 2, 3])

    >>> np.broadcast_to(x, (3, 3))

    array([[1, 2, 3],

           [1, 2, 3],

           [1, 2, 3]])

    """
    return _broadcast_to(array, shape, subok=subok, readonly=True)


def _broadcast_shape(*args):
    """Returns the shape of the arrays that would result from broadcasting the

    supplied arrays against each other.

    """
    # use the old-iterator because np.nditer does not handle size 0 arrays
    # consistently
    b = np.broadcast(*args[:32])
    # unfortunately, it cannot handle 32 or more arguments directly
    for pos in range(32, len(args), 31):
        # ironically, np.broadcast does not properly handle np.broadcast
        # objects (it treats them as scalars)
        # use broadcasting to avoid allocating the full array
        b = broadcast_to(0, b.shape)
        b = np.broadcast(b, *args[pos:(pos + 31)])
    return b.shape


@set_module('numpy')
def broadcast_shapes(*args):
    """

    Broadcast the input shapes into a single shape.



    :ref:`Learn more about broadcasting here <basics.broadcasting>`.



    .. versionadded:: 1.20.0



    Parameters

    ----------

    `*args` : tuples of ints, or ints

        The shapes to be broadcast against each other.



    Returns

    -------

    tuple

        Broadcasted shape.



    Raises

    ------

    ValueError

        If the shapes are not compatible and cannot be broadcast according

        to NumPy's broadcasting rules.



    See Also

    --------

    broadcast

    broadcast_arrays

    broadcast_to



    Examples

    --------

    >>> np.broadcast_shapes((1, 2), (3, 1), (3, 2))

    (3, 2)



    >>> np.broadcast_shapes((6, 7), (5, 6, 1), (7,), (5, 1, 7))

    (5, 6, 7)

    """
    arrays = [np.empty(x, dtype=[]) for x in args]
    return _broadcast_shape(*arrays)


def _broadcast_arrays_dispatcher(*args, subok=None):
    return args


@array_function_dispatch(_broadcast_arrays_dispatcher, module='numpy')
def broadcast_arrays(*args, subok=False):
    """

    Broadcast any number of arrays against each other.



    Parameters

    ----------

    `*args` : array_likes

        The arrays to broadcast.



    subok : bool, optional

        If True, then sub-classes will be passed-through, otherwise

        the returned arrays will be forced to be a base-class array (default).



    Returns

    -------

    broadcasted : list of arrays

        These arrays are views on the original arrays.  They are typically

        not contiguous.  Furthermore, more than one element of a

        broadcasted array may refer to a single memory location. If you need

        to write to the arrays, make copies first. While you can set the

        ``writable`` flag True, writing to a single output value may end up

        changing more than one location in the output array.



        .. deprecated:: 1.17

            The output is currently marked so that if written to, a deprecation

            warning will be emitted. A future version will set the

            ``writable`` flag False so writing to it will raise an error.



    See Also

    --------

    broadcast

    broadcast_to

    broadcast_shapes



    Examples

    --------

    >>> x = np.array([[1,2,3]])

    >>> y = np.array([[4],[5]])

    >>> np.broadcast_arrays(x, y)

    [array([[1, 2, 3],

           [1, 2, 3]]), array([[4, 4, 4],

           [5, 5, 5]])]



    Here is a useful idiom for getting contiguous copies instead of

    non-contiguous views.



    >>> [np.array(a) for a in np.broadcast_arrays(x, y)]

    [array([[1, 2, 3],

           [1, 2, 3]]), array([[4, 4, 4],

           [5, 5, 5]])]



    """
    # nditer is not used here to avoid the limit of 32 arrays.
    # Otherwise, something like the following one-liner would suffice:
    # return np.nditer(args, flags=['multi_index', 'zerosize_ok'],
    #                  order='C').itviews

    args = [np.array(_m, copy=False, subok=subok) for _m in args]

    shape = _broadcast_shape(*args)

    if all(array.shape == shape for array in args):
        # Common case where nothing needs to be broadcasted.
        return args

    return [_broadcast_to(array, shape, subok=subok, readonly=False)
            for array in args]