File size: 32,367 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
"""

Binary serialization



NPY format

==========



A simple format for saving numpy arrays to disk with the full

information about them.



The ``.npy`` format is the standard binary file format in NumPy for

persisting a *single* arbitrary NumPy array on disk. The format stores all

of the shape and dtype information necessary to reconstruct the array

correctly even on another machine with a different architecture.

The format is designed to be as simple as possible while achieving

its limited goals.



The ``.npz`` format is the standard format for persisting *multiple* NumPy

arrays on disk. A ``.npz`` file is a zip file containing multiple ``.npy``

files, one for each array.



Capabilities

------------



- Can represent all NumPy arrays including nested record arrays and

  object arrays.



- Represents the data in its native binary form.



- Supports Fortran-contiguous arrays directly.



- Stores all of the necessary information to reconstruct the array

  including shape and dtype on a machine of a different

  architecture.  Both little-endian and big-endian arrays are

  supported, and a file with little-endian numbers will yield

  a little-endian array on any machine reading the file. The

  types are described in terms of their actual sizes. For example,

  if a machine with a 64-bit C "long int" writes out an array with

  "long ints", a reading machine with 32-bit C "long ints" will yield

  an array with 64-bit integers.



- Is straightforward to reverse engineer. Datasets often live longer than

  the programs that created them. A competent developer should be

  able to create a solution in their preferred programming language to

  read most ``.npy`` files that they have been given without much

  documentation.



- Allows memory-mapping of the data. See `open_memmep`.



- Can be read from a filelike stream object instead of an actual file.



- Stores object arrays, i.e. arrays containing elements that are arbitrary

  Python objects. Files with object arrays are not to be mmapable, but

  can be read and written to disk.



Limitations

-----------



- Arbitrary subclasses of numpy.ndarray are not completely preserved.

  Subclasses will be accepted for writing, but only the array data will

  be written out. A regular numpy.ndarray object will be created

  upon reading the file.



.. warning::



  Due to limitations in the interpretation of structured dtypes, dtypes

  with fields with empty names will have the names replaced by 'f0', 'f1',

  etc. Such arrays will not round-trip through the format entirely

  accurately. The data is intact; only the field names will differ. We are

  working on a fix for this. This fix will not require a change in the

  file format. The arrays with such structures can still be saved and

  restored, and the correct dtype may be restored by using the

  ``loadedarray.view(correct_dtype)`` method.



File extensions

---------------



We recommend using the ``.npy`` and ``.npz`` extensions for files saved

in this format. This is by no means a requirement; applications may wish

to use these file formats but use an extension specific to the

application. In the absence of an obvious alternative, however,

we suggest using ``.npy`` and ``.npz``.



Version numbering

-----------------



The version numbering of these formats is independent of NumPy version

numbering. If the format is upgraded, the code in `numpy.io` will still

be able to read and write Version 1.0 files.



Format Version 1.0

------------------



The first 6 bytes are a magic string: exactly ``\\x93NUMPY``.



The next 1 byte is an unsigned byte: the major version number of the file

format, e.g. ``\\x01``.



The next 1 byte is an unsigned byte: the minor version number of the file

format, e.g. ``\\x00``. Note: the version of the file format is not tied

to the version of the numpy package.



The next 2 bytes form a little-endian unsigned short int: the length of

the header data HEADER_LEN.



The next HEADER_LEN bytes form the header data describing the array's

format. It is an ASCII string which contains a Python literal expression

of a dictionary. It is terminated by a newline (``\\n``) and padded with

spaces (``\\x20``) to make the total of

``len(magic string) + 2 + len(length) + HEADER_LEN`` be evenly divisible

by 64 for alignment purposes.



The dictionary contains three keys:



    "descr" : dtype.descr

      An object that can be passed as an argument to the `numpy.dtype`

      constructor to create the array's dtype.

    "fortran_order" : bool

      Whether the array data is Fortran-contiguous or not. Since

      Fortran-contiguous arrays are a common form of non-C-contiguity,

      we allow them to be written directly to disk for efficiency.

    "shape" : tuple of int

      The shape of the array.



For repeatability and readability, the dictionary keys are sorted in

alphabetic order. This is for convenience only. A writer SHOULD implement

this if possible. A reader MUST NOT depend on this.



Following the header comes the array data. If the dtype contains Python

objects (i.e. ``dtype.hasobject is True``), then the data is a Python

pickle of the array. Otherwise the data is the contiguous (either C-

or Fortran-, depending on ``fortran_order``) bytes of the array.

Consumers can figure out the number of bytes by multiplying the number

of elements given by the shape (noting that ``shape=()`` means there is

1 element) by ``dtype.itemsize``.



Format Version 2.0

------------------



The version 1.0 format only allowed the array header to have a total size of

65535 bytes.  This can be exceeded by structured arrays with a large number of

columns.  The version 2.0 format extends the header size to 4 GiB.

`numpy.save` will automatically save in 2.0 format if the data requires it,

else it will always use the more compatible 1.0 format.



The description of the fourth element of the header therefore has become:

"The next 4 bytes form a little-endian unsigned int: the length of the header

data HEADER_LEN."



Format Version 3.0

------------------



This version replaces the ASCII string (which in practice was latin1) with

a utf8-encoded string, so supports structured types with any unicode field

names.



Notes

-----

The ``.npy`` format, including motivation for creating it and a comparison of

alternatives, is described in the

:doc:`"npy-format" NEP <neps:nep-0001-npy-format>`, however details have

evolved with time and this document is more current.



"""
import numpy
import io
import warnings
from numpy.lib.utils import safe_eval
from numpy.compat import (
    isfileobj, os_fspath, pickle
    )


__all__ = []


EXPECTED_KEYS = {'descr', 'fortran_order', 'shape'}
MAGIC_PREFIX = b'\x93NUMPY'
MAGIC_LEN = len(MAGIC_PREFIX) + 2
ARRAY_ALIGN = 64 # plausible values are powers of 2 between 16 and 4096
BUFFER_SIZE = 2**18  # size of buffer for reading npz files in bytes

# difference between version 1.0 and 2.0 is a 4 byte (I) header length
# instead of 2 bytes (H) allowing storage of large structured arrays
_header_size_info = {
    (1, 0): ('<H', 'latin1'),
    (2, 0): ('<I', 'latin1'),
    (3, 0): ('<I', 'utf8'),
}


def _check_version(version):
    if version not in [(1, 0), (2, 0), (3, 0), None]:
        msg = "we only support format version (1,0), (2,0), and (3,0), not %s"
        raise ValueError(msg % (version,))

def magic(major, minor):
    """ Return the magic string for the given file format version.



    Parameters

    ----------

    major : int in [0, 255]

    minor : int in [0, 255]



    Returns

    -------

    magic : str



    Raises

    ------

    ValueError if the version cannot be formatted.

    """
    if major < 0 or major > 255:
        raise ValueError("major version must be 0 <= major < 256")
    if minor < 0 or minor > 255:
        raise ValueError("minor version must be 0 <= minor < 256")
    return MAGIC_PREFIX + bytes([major, minor])

def read_magic(fp):
    """ Read the magic string to get the version of the file format.



    Parameters

    ----------

    fp : filelike object



    Returns

    -------

    major : int

    minor : int

    """
    magic_str = _read_bytes(fp, MAGIC_LEN, "magic string")
    if magic_str[:-2] != MAGIC_PREFIX:
        msg = "the magic string is not correct; expected %r, got %r"
        raise ValueError(msg % (MAGIC_PREFIX, magic_str[:-2]))
    major, minor = magic_str[-2:]
    return major, minor

def _has_metadata(dt):
    if dt.metadata is not None:
        return True
    elif dt.names is not None:
        return any(_has_metadata(dt[k]) for k in dt.names)
    elif dt.subdtype is not None:
        return _has_metadata(dt.base)
    else:
        return False

def dtype_to_descr(dtype):
    """

    Get a serializable descriptor from the dtype.



    The .descr attribute of a dtype object cannot be round-tripped through

    the dtype() constructor. Simple types, like dtype('float32'), have

    a descr which looks like a record array with one field with '' as

    a name. The dtype() constructor interprets this as a request to give

    a default name.  Instead, we construct descriptor that can be passed to

    dtype().



    Parameters

    ----------

    dtype : dtype

        The dtype of the array that will be written to disk.



    Returns

    -------

    descr : object

        An object that can be passed to `numpy.dtype()` in order to

        replicate the input dtype.



    """
    if _has_metadata(dtype):
        warnings.warn("metadata on a dtype may be saved or ignored, but will "
                      "raise if saved when read. Use another form of storage.",
                      UserWarning, stacklevel=2)
    if dtype.names is not None:
        # This is a record array. The .descr is fine.  XXX: parts of the
        # record array with an empty name, like padding bytes, still get
        # fiddled with. This needs to be fixed in the C implementation of
        # dtype().
        return dtype.descr
    else:
        return dtype.str

def descr_to_dtype(descr):
    """

    Returns a dtype based off the given description.



    This is essentially the reverse of `dtype_to_descr()`. It will remove

    the valueless padding fields created by, i.e. simple fields like

    dtype('float32'), and then convert the description to its corresponding

    dtype.



    Parameters

    ----------

    descr : object

        The object retreived by dtype.descr. Can be passed to

        `numpy.dtype()` in order to replicate the input dtype.



    Returns

    -------

    dtype : dtype

        The dtype constructed by the description.



    """
    if isinstance(descr, str):
        # No padding removal needed
        return numpy.dtype(descr)
    elif isinstance(descr, tuple):
        # subtype, will always have a shape descr[1]
        dt = descr_to_dtype(descr[0])
        return numpy.dtype((dt, descr[1]))

    titles = []
    names = []
    formats = []
    offsets = []
    offset = 0
    for field in descr:
        if len(field) == 2:
            name, descr_str = field
            dt = descr_to_dtype(descr_str)
        else:
            name, descr_str, shape = field
            dt = numpy.dtype((descr_to_dtype(descr_str), shape))

        # Ignore padding bytes, which will be void bytes with '' as name
        # Once support for blank names is removed, only "if name == ''" needed)
        is_pad = (name == '' and dt.type is numpy.void and dt.names is None)
        if not is_pad:
            title, name = name if isinstance(name, tuple) else (None, name)
            titles.append(title)
            names.append(name)
            formats.append(dt)
            offsets.append(offset)
        offset += dt.itemsize

    return numpy.dtype({'names': names, 'formats': formats, 'titles': titles,
                        'offsets': offsets, 'itemsize': offset})

def header_data_from_array_1_0(array):
    """ Get the dictionary of header metadata from a numpy.ndarray.



    Parameters

    ----------

    array : numpy.ndarray



    Returns

    -------

    d : dict

        This has the appropriate entries for writing its string representation

        to the header of the file.

    """
    d = {'shape': array.shape}
    if array.flags.c_contiguous:
        d['fortran_order'] = False
    elif array.flags.f_contiguous:
        d['fortran_order'] = True
    else:
        # Totally non-contiguous data. We will have to make it C-contiguous
        # before writing. Note that we need to test for C_CONTIGUOUS first
        # because a 1-D array is both C_CONTIGUOUS and F_CONTIGUOUS.
        d['fortran_order'] = False

    d['descr'] = dtype_to_descr(array.dtype)
    return d


def _wrap_header(header, version):
    """

    Takes a stringified header, and attaches the prefix and padding to it

    """
    import struct
    assert version is not None
    fmt, encoding = _header_size_info[version]
    if not isinstance(header, bytes):  # always true on python 3
        header = header.encode(encoding)
    hlen = len(header) + 1
    padlen = ARRAY_ALIGN - ((MAGIC_LEN + struct.calcsize(fmt) + hlen) % ARRAY_ALIGN)
    try:
        header_prefix = magic(*version) + struct.pack(fmt, hlen + padlen)
    except struct.error:
        msg = "Header length {} too big for version={}".format(hlen, version)
        raise ValueError(msg) from None

    # Pad the header with spaces and a final newline such that the magic
    # string, the header-length short and the header are aligned on a
    # ARRAY_ALIGN byte boundary.  This supports memory mapping of dtypes
    # aligned up to ARRAY_ALIGN on systems like Linux where mmap()
    # offset must be page-aligned (i.e. the beginning of the file).
    return header_prefix + header + b' '*padlen + b'\n'


def _wrap_header_guess_version(header):
    """

    Like `_wrap_header`, but chooses an appropriate version given the contents

    """
    try:
        return _wrap_header(header, (1, 0))
    except ValueError:
        pass

    try:
        ret = _wrap_header(header, (2, 0))
    except UnicodeEncodeError:
        pass
    else:
        warnings.warn("Stored array in format 2.0. It can only be"
                      "read by NumPy >= 1.9", UserWarning, stacklevel=2)
        return ret

    header = _wrap_header(header, (3, 0))
    warnings.warn("Stored array in format 3.0. It can only be "
                  "read by NumPy >= 1.17", UserWarning, stacklevel=2)
    return header


def _write_array_header(fp, d, version=None):
    """ Write the header for an array and returns the version used



    Parameters

    ----------

    fp : filelike object

    d : dict

        This has the appropriate entries for writing its string representation

        to the header of the file.

    version: tuple or None

        None means use oldest that works

        explicit version will raise a ValueError if the format does not

        allow saving this data.  Default: None

    """
    header = ["{"]
    for key, value in sorted(d.items()):
        # Need to use repr here, since we eval these when reading
        header.append("'%s': %s, " % (key, repr(value)))
    header.append("}")
    header = "".join(header)
    if version is None:
        header = _wrap_header_guess_version(header)
    else:
        header = _wrap_header(header, version)
    fp.write(header)

def write_array_header_1_0(fp, d):
    """ Write the header for an array using the 1.0 format.



    Parameters

    ----------

    fp : filelike object

    d : dict

        This has the appropriate entries for writing its string

        representation to the header of the file.

    """
    _write_array_header(fp, d, (1, 0))


def write_array_header_2_0(fp, d):
    """ Write the header for an array using the 2.0 format.

        The 2.0 format allows storing very large structured arrays.



    .. versionadded:: 1.9.0



    Parameters

    ----------

    fp : filelike object

    d : dict

        This has the appropriate entries for writing its string

        representation to the header of the file.

    """
    _write_array_header(fp, d, (2, 0))

def read_array_header_1_0(fp):
    """

    Read an array header from a filelike object using the 1.0 file format

    version.



    This will leave the file object located just after the header.



    Parameters

    ----------

    fp : filelike object

        A file object or something with a `.read()` method like a file.



    Returns

    -------

    shape : tuple of int

        The shape of the array.

    fortran_order : bool

        The array data will be written out directly if it is either

        C-contiguous or Fortran-contiguous. Otherwise, it will be made

        contiguous before writing it out.

    dtype : dtype

        The dtype of the file's data.



    Raises

    ------

    ValueError

        If the data is invalid.



    """
    return _read_array_header(fp, version=(1, 0))

def read_array_header_2_0(fp):
    """

    Read an array header from a filelike object using the 2.0 file format

    version.



    This will leave the file object located just after the header.



    .. versionadded:: 1.9.0



    Parameters

    ----------

    fp : filelike object

        A file object or something with a `.read()` method like a file.



    Returns

    -------

    shape : tuple of int

        The shape of the array.

    fortran_order : bool

        The array data will be written out directly if it is either

        C-contiguous or Fortran-contiguous. Otherwise, it will be made

        contiguous before writing it out.

    dtype : dtype

        The dtype of the file's data.



    Raises

    ------

    ValueError

        If the data is invalid.



    """
    return _read_array_header(fp, version=(2, 0))


def _filter_header(s):
    """Clean up 'L' in npz header ints.



    Cleans up the 'L' in strings representing integers. Needed to allow npz

    headers produced in Python2 to be read in Python3.



    Parameters

    ----------

    s : string

        Npy file header.



    Returns

    -------

    header : str

        Cleaned up header.



    """
    import tokenize
    from io import StringIO

    tokens = []
    last_token_was_number = False
    for token in tokenize.generate_tokens(StringIO(s).readline):
        token_type = token[0]
        token_string = token[1]
        if (last_token_was_number and
                token_type == tokenize.NAME and
                token_string == "L"):
            continue
        else:
            tokens.append(token)
        last_token_was_number = (token_type == tokenize.NUMBER)
    return tokenize.untokenize(tokens)


def _read_array_header(fp, version):
    """

    see read_array_header_1_0

    """
    # Read an unsigned, little-endian short int which has the length of the
    # header.
    import struct
    hinfo = _header_size_info.get(version)
    if hinfo is None:
        raise ValueError("Invalid version {!r}".format(version))
    hlength_type, encoding = hinfo

    hlength_str = _read_bytes(fp, struct.calcsize(hlength_type), "array header length")
    header_length = struct.unpack(hlength_type, hlength_str)[0]
    header = _read_bytes(fp, header_length, "array header")
    header = header.decode(encoding)

    # The header is a pretty-printed string representation of a literal
    # Python dictionary with trailing newlines padded to a ARRAY_ALIGN byte
    # boundary. The keys are strings.
    #   "shape" : tuple of int
    #   "fortran_order" : bool
    #   "descr" : dtype.descr
    # Versions (2, 0) and (1, 0) could have been created by a Python 2
    # implementation before header filtering was implemented.
    if version <= (2, 0):
        header = _filter_header(header)
    try:
        d = safe_eval(header)
    except SyntaxError as e:
        msg = "Cannot parse header: {!r}"
        raise ValueError(msg.format(header)) from e
    if not isinstance(d, dict):
        msg = "Header is not a dictionary: {!r}"
        raise ValueError(msg.format(d))

    if EXPECTED_KEYS != d.keys():
        keys = sorted(d.keys())
        msg = "Header does not contain the correct keys: {!r}"
        raise ValueError(msg.format(d.keys()))

    # Sanity-check the values.
    if (not isinstance(d['shape'], tuple) or
            not all(isinstance(x, int) for x in d['shape'])):
        msg = "shape is not valid: {!r}"
        raise ValueError(msg.format(d['shape']))
    if not isinstance(d['fortran_order'], bool):
        msg = "fortran_order is not a valid bool: {!r}"
        raise ValueError(msg.format(d['fortran_order']))
    try:
        dtype = descr_to_dtype(d['descr'])
    except TypeError as e:
        msg = "descr is not a valid dtype descriptor: {!r}"
        raise ValueError(msg.format(d['descr'])) from e

    return d['shape'], d['fortran_order'], dtype

def write_array(fp, array, version=None, allow_pickle=True, pickle_kwargs=None):
    """

    Write an array to an NPY file, including a header.



    If the array is neither C-contiguous nor Fortran-contiguous AND the

    file_like object is not a real file object, this function will have to

    copy data in memory.



    Parameters

    ----------

    fp : file_like object

        An open, writable file object, or similar object with a

        ``.write()`` method.

    array : ndarray

        The array to write to disk.

    version : (int, int) or None, optional

        The version number of the format. None means use the oldest

        supported version that is able to store the data.  Default: None

    allow_pickle : bool, optional

        Whether to allow writing pickled data. Default: True

    pickle_kwargs : dict, optional

        Additional keyword arguments to pass to pickle.dump, excluding

        'protocol'. These are only useful when pickling objects in object

        arrays on Python 3 to Python 2 compatible format.



    Raises

    ------

    ValueError

        If the array cannot be persisted. This includes the case of

        allow_pickle=False and array being an object array.

    Various other errors

        If the array contains Python objects as part of its dtype, the

        process of pickling them may raise various errors if the objects

        are not picklable.



    """
    _check_version(version)
    _write_array_header(fp, header_data_from_array_1_0(array), version)

    if array.itemsize == 0:
        buffersize = 0
    else:
        # Set buffer size to 16 MiB to hide the Python loop overhead.
        buffersize = max(16 * 1024 ** 2 // array.itemsize, 1)

    if array.dtype.hasobject:
        # We contain Python objects so we cannot write out the data
        # directly.  Instead, we will pickle it out
        if not allow_pickle:
            raise ValueError("Object arrays cannot be saved when "
                             "allow_pickle=False")
        if pickle_kwargs is None:
            pickle_kwargs = {}
        pickle.dump(array, fp, protocol=3, **pickle_kwargs)
    elif array.flags.f_contiguous and not array.flags.c_contiguous:
        if isfileobj(fp):
            array.T.tofile(fp)
        else:
            for chunk in numpy.nditer(
                    array, flags=['external_loop', 'buffered', 'zerosize_ok'],
                    buffersize=buffersize, order='F'):
                fp.write(chunk.tobytes('C'))
    else:
        if isfileobj(fp):
            array.tofile(fp)
        else:
            for chunk in numpy.nditer(
                    array, flags=['external_loop', 'buffered', 'zerosize_ok'],
                    buffersize=buffersize, order='C'):
                fp.write(chunk.tobytes('C'))


def read_array(fp, allow_pickle=False, pickle_kwargs=None):
    """

    Read an array from an NPY file.



    Parameters

    ----------

    fp : file_like object

        If this is not a real file object, then this may take extra memory

        and time.

    allow_pickle : bool, optional

        Whether to allow writing pickled data. Default: False



        .. versionchanged:: 1.16.3

            Made default False in response to CVE-2019-6446.



    pickle_kwargs : dict

        Additional keyword arguments to pass to pickle.load. These are only

        useful when loading object arrays saved on Python 2 when using

        Python 3.



    Returns

    -------

    array : ndarray

        The array from the data on disk.



    Raises

    ------

    ValueError

        If the data is invalid, or allow_pickle=False and the file contains

        an object array.



    """
    version = read_magic(fp)
    _check_version(version)
    shape, fortran_order, dtype = _read_array_header(fp, version)
    if len(shape) == 0:
        count = 1
    else:
        count = numpy.multiply.reduce(shape, dtype=numpy.int64)

    # Now read the actual data.
    if dtype.hasobject:
        # The array contained Python objects. We need to unpickle the data.
        if not allow_pickle:
            raise ValueError("Object arrays cannot be loaded when "
                             "allow_pickle=False")
        if pickle_kwargs is None:
            pickle_kwargs = {}
        try:
            array = pickle.load(fp, **pickle_kwargs)
        except UnicodeError as err:
            # Friendlier error message
            raise UnicodeError("Unpickling a python object failed: %r\n"
                               "You may need to pass the encoding= option "
                               "to numpy.load" % (err,)) from err
    else:
        if isfileobj(fp):
            # We can use the fast fromfile() function.
            array = numpy.fromfile(fp, dtype=dtype, count=count)
        else:
            # This is not a real file. We have to read it the
            # memory-intensive way.
            # crc32 module fails on reads greater than 2 ** 32 bytes,
            # breaking large reads from gzip streams. Chunk reads to
            # BUFFER_SIZE bytes to avoid issue and reduce memory overhead
            # of the read. In non-chunked case count < max_read_count, so
            # only one read is performed.

            # Use np.ndarray instead of np.empty since the latter does
            # not correctly instantiate zero-width string dtypes; see
            # https://github.com/numpy/numpy/pull/6430
            array = numpy.ndarray(count, dtype=dtype)

            if dtype.itemsize > 0:
                # If dtype.itemsize == 0 then there's nothing more to read
                max_read_count = BUFFER_SIZE // min(BUFFER_SIZE, dtype.itemsize)

                for i in range(0, count, max_read_count):
                    read_count = min(max_read_count, count - i)
                    read_size = int(read_count * dtype.itemsize)
                    data = _read_bytes(fp, read_size, "array data")
                    array[i:i+read_count] = numpy.frombuffer(data, dtype=dtype,
                                                             count=read_count)

        if fortran_order:
            array.shape = shape[::-1]
            array = array.transpose()
        else:
            array.shape = shape

    return array


def open_memmap(filename, mode='r+', dtype=None, shape=None,

                fortran_order=False, version=None):
    """

    Open a .npy file as a memory-mapped array.



    This may be used to read an existing file or create a new one.



    Parameters

    ----------

    filename : str or path-like

        The name of the file on disk.  This may *not* be a file-like

        object.

    mode : str, optional

        The mode in which to open the file; the default is 'r+'.  In

        addition to the standard file modes, 'c' is also accepted to mean

        "copy on write."  See `memmap` for the available mode strings.

    dtype : data-type, optional

        The data type of the array if we are creating a new file in "write"

        mode, if not, `dtype` is ignored.  The default value is None, which

        results in a data-type of `float64`.

    shape : tuple of int

        The shape of the array if we are creating a new file in "write"

        mode, in which case this parameter is required.  Otherwise, this

        parameter is ignored and is thus optional.

    fortran_order : bool, optional

        Whether the array should be Fortran-contiguous (True) or

        C-contiguous (False, the default) if we are creating a new file in

        "write" mode.

    version : tuple of int (major, minor) or None

        If the mode is a "write" mode, then this is the version of the file

        format used to create the file.  None means use the oldest

        supported version that is able to store the data.  Default: None



    Returns

    -------

    marray : memmap

        The memory-mapped array.



    Raises

    ------

    ValueError

        If the data or the mode is invalid.

    IOError

        If the file is not found or cannot be opened correctly.



    See Also

    --------

    numpy.memmap



    """
    if isfileobj(filename):
        raise ValueError("Filename must be a string or a path-like object."
                         "  Memmap cannot use existing file handles.")

    if 'w' in mode:
        # We are creating the file, not reading it.
        # Check if we ought to create the file.
        _check_version(version)
        # Ensure that the given dtype is an authentic dtype object rather
        # than just something that can be interpreted as a dtype object.
        dtype = numpy.dtype(dtype)
        if dtype.hasobject:
            msg = "Array can't be memory-mapped: Python objects in dtype."
            raise ValueError(msg)
        d = dict(
            descr=dtype_to_descr(dtype),
            fortran_order=fortran_order,
            shape=shape,
        )
        # If we got here, then it should be safe to create the file.
        with open(os_fspath(filename), mode+'b') as fp:
            _write_array_header(fp, d, version)
            offset = fp.tell()
    else:
        # Read the header of the file first.
        with open(os_fspath(filename), 'rb') as fp:
            version = read_magic(fp)
            _check_version(version)

            shape, fortran_order, dtype = _read_array_header(fp, version)
            if dtype.hasobject:
                msg = "Array can't be memory-mapped: Python objects in dtype."
                raise ValueError(msg)
            offset = fp.tell()

    if fortran_order:
        order = 'F'
    else:
        order = 'C'

    # We need to change a write-only mode to a read-write mode since we've
    # already written data to the file.
    if mode == 'w+':
        mode = 'r+'

    marray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order,
        mode=mode, offset=offset)

    return marray


def _read_bytes(fp, size, error_template="ran out of data"):
    """

    Read from file-like object until size bytes are read.

    Raises ValueError if not EOF is encountered before size bytes are read.

    Non-blocking objects only supported if they derive from io objects.



    Required as e.g. ZipExtFile in python 2.6 can return less data than

    requested.

    """
    data = bytes()
    while True:
        # io files (default in python3) return None or raise on
        # would-block, python2 file will truncate, probably nothing can be
        # done about that.  note that regular files can't be non-blocking
        try:
            r = fp.read(size - len(data))
            data += r
            if len(r) == 0 or len(data) == size:
                break
        except io.BlockingIOError:
            pass
    if len(data) != size:
        msg = "EOF: reading %s, expected %d bytes got %d"
        raise ValueError(msg % (error_template, size, len(data)))
    else:
        return data