File size: 107,768 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
import copy
import glob
import importlib
import importlib.abc
import os
import re
import shlex
import shutil
import setuptools
import subprocess
import sys
import sysconfig
import warnings
import collections
from pathlib import Path
import errno

import torch
import torch._appdirs
from .file_baton import FileBaton
from ._cpp_extension_versioner import ExtensionVersioner
from .hipify import hipify_python
from .hipify.hipify_python import GeneratedFileCleaner
from typing import Dict, List, Optional, Union, Tuple
from torch.torch_version import TorchVersion, Version

from setuptools.command.build_ext import build_ext

IS_WINDOWS = sys.platform == 'win32'
IS_MACOS = sys.platform.startswith('darwin')
IS_LINUX = sys.platform.startswith('linux')
LIB_EXT = '.pyd' if IS_WINDOWS else '.so'
EXEC_EXT = '.exe' if IS_WINDOWS else ''
CLIB_PREFIX = '' if IS_WINDOWS else 'lib'
CLIB_EXT = '.dll' if IS_WINDOWS else '.so'
SHARED_FLAG = '/DLL' if IS_WINDOWS else '-shared'

_HERE = os.path.abspath(__file__)
_TORCH_PATH = os.path.dirname(os.path.dirname(_HERE))
TORCH_LIB_PATH = os.path.join(_TORCH_PATH, 'lib')


SUBPROCESS_DECODE_ARGS = ('oem',) if IS_WINDOWS else ()
MINIMUM_GCC_VERSION = (5, 0, 0)
MINIMUM_MSVC_VERSION = (19, 0, 24215)

VersionRange = Tuple[Tuple[int, ...], Tuple[int, ...]]
VersionMap = Dict[str, VersionRange]
# The following values were taken from the following GitHub gist that
# summarizes the minimum valid major versions of g++/clang++ for each supported
# CUDA version: https://gist.github.com/ax3l/9489132
# Or from include/crt/host_config.h in the CUDA SDK
# The second value is the exclusive(!) upper bound, i.e. min <= version < max
CUDA_GCC_VERSIONS: VersionMap = {
    '11.0': (MINIMUM_GCC_VERSION, (10, 0)),
    '11.1': (MINIMUM_GCC_VERSION, (11, 0)),
    '11.2': (MINIMUM_GCC_VERSION, (11, 0)),
    '11.3': (MINIMUM_GCC_VERSION, (11, 0)),
    '11.4': ((6, 0, 0), (12, 0)),
    '11.5': ((6, 0, 0), (12, 0)),
    '11.6': ((6, 0, 0), (12, 0)),
    '11.7': ((6, 0, 0), (12, 0)),
}

MINIMUM_CLANG_VERSION = (3, 3, 0)
CUDA_CLANG_VERSIONS: VersionMap = {
    '11.1': (MINIMUM_CLANG_VERSION, (11, 0)),
    '11.2': (MINIMUM_CLANG_VERSION, (12, 0)),
    '11.3': (MINIMUM_CLANG_VERSION, (12, 0)),
    '11.4': (MINIMUM_CLANG_VERSION, (13, 0)),
    '11.5': (MINIMUM_CLANG_VERSION, (13, 0)),
    '11.6': (MINIMUM_CLANG_VERSION, (14, 0)),
    '11.7': (MINIMUM_CLANG_VERSION, (14, 0)),
}

__all__ = ["get_default_build_root", "check_compiler_ok_for_platform", "get_compiler_abi_compatibility_and_version", "BuildExtension",
           "CppExtension", "CUDAExtension", "include_paths", "library_paths", "load", "load_inline", "is_ninja_available",
           "verify_ninja_availability", "remove_extension_h_precompiler_headers", "get_cxx_compiler", "check_compiler_is_gcc"]
# Taken directly from python stdlib < 3.9
# See https://github.com/pytorch/pytorch/issues/48617
def _nt_quote_args(args: Optional[List[str]]) -> List[str]:
    """Quote command-line arguments for DOS/Windows conventions.



    Just wraps every argument which contains blanks in double quotes, and

    returns a new argument list.

    """
    # Cover None-type
    if not args:
        return []
    return [f'"{arg}"' if ' ' in arg else arg for arg in args]

def _find_cuda_home() -> Optional[str]:
    """Find the CUDA install path."""
    # Guess #1
    cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
    if cuda_home is None:
        # Guess #2
        try:
            which = 'where' if IS_WINDOWS else 'which'
            with open(os.devnull, 'w') as devnull:
                nvcc = subprocess.check_output([which, 'nvcc'],
                                               stderr=devnull).decode(*SUBPROCESS_DECODE_ARGS).rstrip('\r\n')
                cuda_home = os.path.dirname(os.path.dirname(nvcc))
        except Exception:
            # Guess #3
            if IS_WINDOWS:
                cuda_homes = glob.glob(
                    'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*')
                if len(cuda_homes) == 0:
                    cuda_home = ''
                else:
                    cuda_home = cuda_homes[0]
            else:
                cuda_home = '/usr/local/cuda'
            if not os.path.exists(cuda_home):
                cuda_home = None
    if cuda_home and not torch.cuda.is_available():
        print(f"No CUDA runtime is found, using CUDA_HOME='{cuda_home}'",
              file=sys.stderr)
    return cuda_home

def _find_rocm_home() -> Optional[str]:
    """Find the ROCm install path."""
    # Guess #1
    rocm_home = os.environ.get('ROCM_HOME') or os.environ.get('ROCM_PATH')
    if rocm_home is None:
        # Guess #2
        hipcc_path = shutil.which('hipcc')
        if hipcc_path is not None:
            rocm_home = os.path.dirname(os.path.dirname(
                os.path.realpath(hipcc_path)))
            # can be either <ROCM_HOME>/hip/bin/hipcc or <ROCM_HOME>/bin/hipcc
            if os.path.basename(rocm_home) == 'hip':
                rocm_home = os.path.dirname(rocm_home)
        else:
            # Guess #3
            fallback_path = '/opt/rocm'
            if os.path.exists(fallback_path):
                rocm_home = fallback_path
    if rocm_home and torch.version.hip is None:
        print(f"No ROCm runtime is found, using ROCM_HOME='{rocm_home}'",
              file=sys.stderr)
    return rocm_home


def _join_rocm_home(*paths) -> str:
    """

    Join paths with ROCM_HOME, or raises an error if it ROCM_HOME is not set.



    This is basically a lazy way of raising an error for missing $ROCM_HOME

    only once we need to get any ROCm-specific path.

    """
    if ROCM_HOME is None:
        raise OSError('ROCM_HOME environment variable is not set. '
                      'Please set it to your ROCm install root.')
    elif IS_WINDOWS:
        raise OSError('Building PyTorch extensions using '
                      'ROCm and Windows is not supported.')
    return os.path.join(ROCM_HOME, *paths)


ABI_INCOMPATIBILITY_WARNING = '''



                               !! WARNING !!



!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Your compiler ({}) may be ABI-incompatible with PyTorch!

Please use a compiler that is ABI-compatible with GCC 5.0 and above.

See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html.



See https://gist.github.com/goldsborough/d466f43e8ffc948ff92de7486c5216d6

for instructions on how to install GCC 5 or higher.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!



                              !! WARNING !!

'''
WRONG_COMPILER_WARNING = '''



                               !! WARNING !!



!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Your compiler ({user_compiler}) is not compatible with the compiler Pytorch was

built with for this platform, which is {pytorch_compiler} on {platform}. Please

use {pytorch_compiler} to to compile your extension. Alternatively, you may

compile PyTorch from source using {user_compiler}, and then you can also use

{user_compiler} to compile your extension.



See https://github.com/pytorch/pytorch/blob/master/CONTRIBUTING.md for help

with compiling PyTorch from source.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!



                              !! WARNING !!

'''
CUDA_MISMATCH_MESSAGE = '''

The detected CUDA version ({0}) mismatches the version that was used to compile

PyTorch ({1}). Please make sure to use the same CUDA versions.

'''
CUDA_MISMATCH_WARN = "The detected CUDA version ({0}) has a minor version mismatch with the version that was used to compile PyTorch ({1}). Most likely this shouldn't be a problem."
CUDA_NOT_FOUND_MESSAGE = '''

CUDA was not found on the system, please set the CUDA_HOME or the CUDA_PATH

environment variable or add NVCC to your system PATH. The extension compilation will fail.

'''
ROCM_HOME = _find_rocm_home()
HIP_HOME = _join_rocm_home('hip') if ROCM_HOME else None
IS_HIP_EXTENSION = True if ((ROCM_HOME is not None) and (torch.version.hip is not None)) else False
ROCM_VERSION = None
if torch.version.hip is not None:
    ROCM_VERSION = tuple(int(v) for v in torch.version.hip.split('.')[:2])

CUDA_HOME = _find_cuda_home() if torch.cuda._is_compiled() else None
CUDNN_HOME = os.environ.get('CUDNN_HOME') or os.environ.get('CUDNN_PATH')
# PyTorch releases have the version pattern major.minor.patch, whereas when
# PyTorch is built from source, we append the git commit hash, which gives
# it the below pattern.
BUILT_FROM_SOURCE_VERSION_PATTERN = re.compile(r'\d+\.\d+\.\d+\w+\+\w+')

COMMON_MSVC_FLAGS = ['/MD', '/wd4819', '/wd4251', '/wd4244', '/wd4267', '/wd4275', '/wd4018', '/wd4190', '/wd4624', '/wd4067', '/wd4068', '/EHsc']

MSVC_IGNORE_CUDAFE_WARNINGS = [
    'base_class_has_different_dll_interface',
    'field_without_dll_interface',
    'dll_interface_conflict_none_assumed',
    'dll_interface_conflict_dllexport_assumed'
]

COMMON_NVCC_FLAGS = [
    '-D__CUDA_NO_HALF_OPERATORS__',
    '-D__CUDA_NO_HALF_CONVERSIONS__',
    '-D__CUDA_NO_BFLOAT16_CONVERSIONS__',
    '-D__CUDA_NO_HALF2_OPERATORS__',
    '--expt-relaxed-constexpr'
]

COMMON_HIP_FLAGS = [
    '-fPIC',
    '-D__HIP_PLATFORM_AMD__=1',
    '-DUSE_ROCM=1',
]

if ROCM_VERSION is not None and ROCM_VERSION >= (6, 0):
    COMMON_HIP_FLAGS.append('-DHIPBLAS_V2')

COMMON_HIPCC_FLAGS = [
    '-DCUDA_HAS_FP16=1',
    '-D__HIP_NO_HALF_OPERATORS__=1',
    '-D__HIP_NO_HALF_CONVERSIONS__=1',
]

JIT_EXTENSION_VERSIONER = ExtensionVersioner()

PLAT_TO_VCVARS = {
    'win32' : 'x86',
    'win-amd64' : 'x86_amd64',
}

def get_cxx_compiler():
    if IS_WINDOWS:
        compiler = os.environ.get('CXX', 'cl')
    else:
        compiler = os.environ.get('CXX', 'c++')
    return compiler

def _is_binary_build() -> bool:
    return not BUILT_FROM_SOURCE_VERSION_PATTERN.match(torch.version.__version__)


def _accepted_compilers_for_platform() -> List[str]:
    # gnu-c++ and gnu-cc are the conda gcc compilers
    return ['clang++', 'clang'] if IS_MACOS else ['g++', 'gcc', 'gnu-c++', 'gnu-cc', 'clang++', 'clang']

def _maybe_write(filename, new_content):
    r'''

    Equivalent to writing the content into the file but will not touch the file

    if it already had the right content (to avoid triggering recompile).

    '''
    if os.path.exists(filename):
        with open(filename) as f:
            content = f.read()

        if content == new_content:
            # The file already contains the right thing!
            return

    with open(filename, 'w') as source_file:
        source_file.write(new_content)

def get_default_build_root() -> str:
    """

    Return the path to the root folder under which extensions will built.



    For each extension module built, there will be one folder underneath the

    folder returned by this function. For example, if ``p`` is the path

    returned by this function and ``ext`` the name of an extension, the build

    folder for the extension will be ``p/ext``.



    This directory is **user-specific** so that multiple users on the same

    machine won't meet permission issues.

    """
    return os.path.realpath(torch._appdirs.user_cache_dir(appname='torch_extensions'))


def check_compiler_ok_for_platform(compiler: str) -> bool:
    """

    Verify that the compiler is the expected one for the current platform.



    Args:

        compiler (str): The compiler executable to check.



    Returns:

        True if the compiler is gcc/g++ on Linux or clang/clang++ on macOS,

        and always True for Windows.

    """
    if IS_WINDOWS:
        return True
    which = subprocess.check_output(['which', compiler], stderr=subprocess.STDOUT)
    # Use os.path.realpath to resolve any symlinks, in particular from 'c++' to e.g. 'g++'.
    compiler_path = os.path.realpath(which.decode(*SUBPROCESS_DECODE_ARGS).strip())
    # Check the compiler name
    if any(name in compiler_path for name in _accepted_compilers_for_platform()):
        return True
    # If compiler wrapper is used try to infer the actual compiler by invoking it with -v flag
    env = os.environ.copy()
    env['LC_ALL'] = 'C'  # Don't localize output
    version_string = subprocess.check_output([compiler, '-v'], stderr=subprocess.STDOUT, env=env).decode(*SUBPROCESS_DECODE_ARGS)
    if IS_LINUX:
        # Check for 'gcc' or 'g++' for sccache wrapper
        pattern = re.compile("^COLLECT_GCC=(.*)$", re.MULTILINE)
        results = re.findall(pattern, version_string)
        if len(results) != 1:
            # Clang is also a supported compiler on Linux
            # Though on Ubuntu it's sometimes called "Ubuntu clang version"
            return 'clang version' in version_string
        compiler_path = os.path.realpath(results[0].strip())
        # On RHEL/CentOS c++ is a gcc compiler wrapper
        if os.path.basename(compiler_path) == 'c++' and 'gcc version' in version_string:
            return True
        return any(name in compiler_path for name in _accepted_compilers_for_platform())
    if IS_MACOS:
        # Check for 'clang' or 'clang++'
        return version_string.startswith("Apple clang")
    return False


def get_compiler_abi_compatibility_and_version(compiler) -> Tuple[bool, TorchVersion]:
    """

    Determine if the given compiler is ABI-compatible with PyTorch alongside its version.



    Args:

        compiler (str): The compiler executable name to check (e.g. ``g++``).

            Must be executable in a shell process.



    Returns:

        A tuple that contains a boolean that defines if the compiler is (likely) ABI-incompatible with PyTorch,

        followed by a `TorchVersion` string that contains the compiler version separated by dots.

    """
    if not _is_binary_build():
        return (True, TorchVersion('0.0.0'))
    if os.environ.get('TORCH_DONT_CHECK_COMPILER_ABI') in ['ON', '1', 'YES', 'TRUE', 'Y']:
        return (True, TorchVersion('0.0.0'))

    # First check if the compiler is one of the expected ones for the particular platform.
    if not check_compiler_ok_for_platform(compiler):
        warnings.warn(WRONG_COMPILER_WARNING.format(
            user_compiler=compiler,
            pytorch_compiler=_accepted_compilers_for_platform()[0],
            platform=sys.platform))
        return (False, TorchVersion('0.0.0'))

    if IS_MACOS:
        # There is no particular minimum version we need for clang, so we're good here.
        return (True, TorchVersion('0.0.0'))
    try:
        if IS_LINUX:
            minimum_required_version = MINIMUM_GCC_VERSION
            versionstr = subprocess.check_output([compiler, '-dumpfullversion', '-dumpversion'])
            version = versionstr.decode(*SUBPROCESS_DECODE_ARGS).strip().split('.')
        else:
            minimum_required_version = MINIMUM_MSVC_VERSION
            compiler_info = subprocess.check_output(compiler, stderr=subprocess.STDOUT)
            match = re.search(r'(\d+)\.(\d+)\.(\d+)', compiler_info.decode(*SUBPROCESS_DECODE_ARGS).strip())
            version = ['0', '0', '0'] if match is None else list(match.groups())
    except Exception:
        _, error, _ = sys.exc_info()
        warnings.warn(f'Error checking compiler version for {compiler}: {error}')
        return (False, TorchVersion('0.0.0'))

    if tuple(map(int, version)) >= minimum_required_version:
        return (True, TorchVersion('.'.join(version)))

    compiler = f'{compiler} {".".join(version)}'
    warnings.warn(ABI_INCOMPATIBILITY_WARNING.format(compiler))

    return (False, TorchVersion('.'.join(version)))


def _check_cuda_version(compiler_name: str, compiler_version: TorchVersion) -> None:
    if not CUDA_HOME:
        raise RuntimeError(CUDA_NOT_FOUND_MESSAGE)

    nvcc = os.path.join(CUDA_HOME, 'bin', 'nvcc')
    cuda_version_str = subprocess.check_output([nvcc, '--version']).strip().decode(*SUBPROCESS_DECODE_ARGS)
    cuda_version = re.search(r'release (\d+[.]\d+)', cuda_version_str)
    if cuda_version is None:
        return

    cuda_str_version = cuda_version.group(1)
    cuda_ver = Version(cuda_str_version)
    if torch.version.cuda is None:
        return

    torch_cuda_version = Version(torch.version.cuda)
    if cuda_ver != torch_cuda_version:
        # major/minor attributes are only available in setuptools>=49.4.0
        if getattr(cuda_ver, "major", None) is None:
            raise ValueError("setuptools>=49.4.0 is required")
        if cuda_ver.major != torch_cuda_version.major:
            raise RuntimeError(CUDA_MISMATCH_MESSAGE.format(cuda_str_version, torch.version.cuda))
        warnings.warn(CUDA_MISMATCH_WARN.format(cuda_str_version, torch.version.cuda))

    if not (sys.platform.startswith('linux') and
            os.environ.get('TORCH_DONT_CHECK_COMPILER_ABI') not in ['ON', '1', 'YES', 'TRUE', 'Y'] and
            _is_binary_build()):
        return

    cuda_compiler_bounds: VersionMap = CUDA_CLANG_VERSIONS if compiler_name.startswith('clang') else CUDA_GCC_VERSIONS

    if cuda_str_version not in cuda_compiler_bounds:
        warnings.warn(f'There are no {compiler_name} version bounds defined for CUDA version {cuda_str_version}')
    else:
        min_compiler_version, max_excl_compiler_version = cuda_compiler_bounds[cuda_str_version]
        # Special case for 11.4.0, which has lower compiler bounds than 11.4.1
        if "V11.4.48" in cuda_version_str and cuda_compiler_bounds == CUDA_GCC_VERSIONS:
            max_excl_compiler_version = (11, 0)
        min_compiler_version_str = '.'.join(map(str, min_compiler_version))
        max_excl_compiler_version_str = '.'.join(map(str, max_excl_compiler_version))

        version_bound_str = f'>={min_compiler_version_str}, <{max_excl_compiler_version_str}'

        if compiler_version < TorchVersion(min_compiler_version_str):
            raise RuntimeError(
                f'The current installed version of {compiler_name} ({compiler_version}) is less '
                f'than the minimum required version by CUDA {cuda_str_version} ({min_compiler_version_str}). '
                f'Please make sure to use an adequate version of {compiler_name} ({version_bound_str}).'
            )
        if compiler_version >= TorchVersion(max_excl_compiler_version_str):
            raise RuntimeError(
                f'The current installed version of {compiler_name} ({compiler_version}) is greater '
                f'than the maximum required version by CUDA {cuda_str_version}. '
                f'Please make sure to use an adequate version of {compiler_name} ({version_bound_str}).'
            )


class BuildExtension(build_ext):
    """

    A custom :mod:`setuptools` build extension .



    This :class:`setuptools.build_ext` subclass takes care of passing the

    minimum required compiler flags (e.g. ``-std=c++17``) as well as mixed

    C++/CUDA compilation (and support for CUDA files in general).



    When using :class:`BuildExtension`, it is allowed to supply a dictionary

    for ``extra_compile_args`` (rather than the usual list) that maps from

    languages (``cxx`` or ``nvcc``) to a list of additional compiler flags to

    supply to the compiler. This makes it possible to supply different flags to

    the C++ and CUDA compiler during mixed compilation.



    ``use_ninja`` (bool): If ``use_ninja`` is ``True`` (default), then we

    attempt to build using the Ninja backend. Ninja greatly speeds up

    compilation compared to the standard ``setuptools.build_ext``.

    Fallbacks to the standard distutils backend if Ninja is not available.



    .. note::

        By default, the Ninja backend uses #CPUS + 2 workers to build the

        extension. This may use up too many resources on some systems. One

        can control the number of workers by setting the `MAX_JOBS` environment

        variable to a non-negative number.

    """

    @classmethod
    def with_options(cls, **options):
        """Return a subclass with alternative constructor that extends any original keyword arguments to the original constructor with the given options."""
        class cls_with_options(cls):  # type: ignore[misc, valid-type]
            def __init__(self, *args, **kwargs):
                kwargs.update(options)
                super().__init__(*args, **kwargs)

        return cls_with_options

    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.no_python_abi_suffix = kwargs.get("no_python_abi_suffix", False)

        self.use_ninja = kwargs.get('use_ninja', True)
        if self.use_ninja:
            # Test if we can use ninja. Fallback otherwise.
            msg = ('Attempted to use ninja as the BuildExtension backend but '
                   '{}. Falling back to using the slow distutils backend.')
            if not is_ninja_available():
                warnings.warn(msg.format('we could not find ninja.'))
                self.use_ninja = False

    def finalize_options(self) -> None:
        super().finalize_options()
        if self.use_ninja:
            self.force = True

    def build_extensions(self) -> None:
        compiler_name, compiler_version = self._check_abi()

        cuda_ext = False
        extension_iter = iter(self.extensions)
        extension = next(extension_iter, None)
        while not cuda_ext and extension:
            for source in extension.sources:
                _, ext = os.path.splitext(source)
                if ext == '.cu':
                    cuda_ext = True
                    break
            extension = next(extension_iter, None)

        if cuda_ext and not IS_HIP_EXTENSION:
            _check_cuda_version(compiler_name, compiler_version)

        for extension in self.extensions:
            # Ensure at least an empty list of flags for 'cxx' and 'nvcc' when
            # extra_compile_args is a dict. Otherwise, default torch flags do
            # not get passed. Necessary when only one of 'cxx' and 'nvcc' is
            # passed to extra_compile_args in CUDAExtension, i.e.
            #   CUDAExtension(..., extra_compile_args={'cxx': [...]})
            # or
            #   CUDAExtension(..., extra_compile_args={'nvcc': [...]})
            if isinstance(extension.extra_compile_args, dict):
                for ext in ['cxx', 'nvcc']:
                    if ext not in extension.extra_compile_args:
                        extension.extra_compile_args[ext] = []

            self._add_compile_flag(extension, '-DTORCH_API_INCLUDE_EXTENSION_H')
            # See note [Pybind11 ABI constants]
            for name in ["COMPILER_TYPE", "STDLIB", "BUILD_ABI"]:
                val = getattr(torch._C, f"_PYBIND11_{name}")
                if val is not None and not IS_WINDOWS:
                    self._add_compile_flag(extension, f'-DPYBIND11_{name}="{val}"')
            self._define_torch_extension_name(extension)
            self._add_gnu_cpp_abi_flag(extension)

            if 'nvcc_dlink' in extension.extra_compile_args:
                assert self.use_ninja, f"With dlink=True, ninja is required to build cuda extension {extension.name}."

        # Register .cu, .cuh, .hip, and .mm as valid source extensions.
        self.compiler.src_extensions += ['.cu', '.cuh', '.hip']
        if torch.backends.mps.is_built():
            self.compiler.src_extensions += ['.mm']
        # Save the original _compile method for later.
        if self.compiler.compiler_type == 'msvc':
            self.compiler._cpp_extensions += ['.cu', '.cuh']
            original_compile = self.compiler.compile
            original_spawn = self.compiler.spawn
        else:
            original_compile = self.compiler._compile

        def append_std17_if_no_std_present(cflags) -> None:
            # NVCC does not allow multiple -std to be passed, so we avoid
            # overriding the option if the user explicitly passed it.
            cpp_format_prefix = '/{}:' if self.compiler.compiler_type == 'msvc' else '-{}='
            cpp_flag_prefix = cpp_format_prefix.format('std')
            cpp_flag = cpp_flag_prefix + 'c++17'
            if not any(flag.startswith(cpp_flag_prefix) for flag in cflags):
                cflags.append(cpp_flag)

        def unix_cuda_flags(cflags):
            cflags = (COMMON_NVCC_FLAGS +
                      ['--compiler-options', "'-fPIC'"] +
                      cflags + _get_cuda_arch_flags(cflags))

            # NVCC does not allow multiple -ccbin/--compiler-bindir to be passed, so we avoid
            # overriding the option if the user explicitly passed it.
            _ccbin = os.getenv("CC")
            if (
                _ccbin is not None
                and not any(flag.startswith(('-ccbin', '--compiler-bindir')) for flag in cflags)
            ):
                cflags.extend(['-ccbin', _ccbin])

            return cflags

        def convert_to_absolute_paths_inplace(paths):
            # Helper function. See Note [Absolute include_dirs]
            if paths is not None:
                for i in range(len(paths)):
                    if not os.path.isabs(paths[i]):
                        paths[i] = os.path.abspath(paths[i])

        def unix_wrap_single_compile(obj, src, ext, cc_args, extra_postargs, pp_opts) -> None:
            # Copy before we make any modifications.
            cflags = copy.deepcopy(extra_postargs)
            try:
                original_compiler = self.compiler.compiler_so
                if _is_cuda_file(src):
                    nvcc = [_join_rocm_home('bin', 'hipcc') if IS_HIP_EXTENSION else _join_cuda_home('bin', 'nvcc')]
                    self.compiler.set_executable('compiler_so', nvcc)
                    if isinstance(cflags, dict):
                        cflags = cflags['nvcc']
                    if IS_HIP_EXTENSION:
                        cflags = COMMON_HIPCC_FLAGS + cflags + _get_rocm_arch_flags(cflags)
                    else:
                        cflags = unix_cuda_flags(cflags)
                elif isinstance(cflags, dict):
                    cflags = cflags['cxx']
                if IS_HIP_EXTENSION:
                    cflags = COMMON_HIP_FLAGS + cflags
                append_std17_if_no_std_present(cflags)

                original_compile(obj, src, ext, cc_args, cflags, pp_opts)
            finally:
                # Put the original compiler back in place.
                self.compiler.set_executable('compiler_so', original_compiler)

        def unix_wrap_ninja_compile(sources,

                                    output_dir=None,

                                    macros=None,

                                    include_dirs=None,

                                    debug=0,

                                    extra_preargs=None,

                                    extra_postargs=None,

                                    depends=None):
            r"""Compiles sources by outputting a ninja file and running it."""
            # NB: I copied some lines from self.compiler (which is an instance
            # of distutils.UnixCCompiler). See the following link.
            # https://github.com/python/cpython/blob/f03a8f8d5001963ad5b5b28dbd95497e9cc15596/Lib/distutils/ccompiler.py#L564-L567
            # This can be fragile, but a lot of other repos also do this
            # (see https://github.com/search?q=_setup_compile&type=Code)
            # so it is probably OK; we'll also get CI signal if/when
            # we update our python version (which is when distutils can be
            # upgraded)

            # Use absolute path for output_dir so that the object file paths
            # (`objects`) get generated with absolute paths.
            output_dir = os.path.abspath(output_dir)

            # See Note [Absolute include_dirs]
            convert_to_absolute_paths_inplace(self.compiler.include_dirs)

            _, objects, extra_postargs, pp_opts, _ = \
                self.compiler._setup_compile(output_dir, macros,
                                             include_dirs, sources,
                                             depends, extra_postargs)
            common_cflags = self.compiler._get_cc_args(pp_opts, debug, extra_preargs)
            extra_cc_cflags = self.compiler.compiler_so[1:]
            with_cuda = any(map(_is_cuda_file, sources))

            # extra_postargs can be either:
            # - a dict mapping cxx/nvcc to extra flags
            # - a list of extra flags.
            if isinstance(extra_postargs, dict):
                post_cflags = extra_postargs['cxx']
            else:
                post_cflags = list(extra_postargs)
            if IS_HIP_EXTENSION:
                post_cflags = COMMON_HIP_FLAGS + post_cflags
            append_std17_if_no_std_present(post_cflags)

            cuda_post_cflags = None
            cuda_cflags = None
            if with_cuda:
                cuda_cflags = common_cflags
                if isinstance(extra_postargs, dict):
                    cuda_post_cflags = extra_postargs['nvcc']
                else:
                    cuda_post_cflags = list(extra_postargs)
                if IS_HIP_EXTENSION:
                    cuda_post_cflags = cuda_post_cflags + _get_rocm_arch_flags(cuda_post_cflags)
                    cuda_post_cflags = COMMON_HIP_FLAGS + COMMON_HIPCC_FLAGS + cuda_post_cflags
                else:
                    cuda_post_cflags = unix_cuda_flags(cuda_post_cflags)
                append_std17_if_no_std_present(cuda_post_cflags)
                cuda_cflags = [shlex.quote(f) for f in cuda_cflags]
                cuda_post_cflags = [shlex.quote(f) for f in cuda_post_cflags]

            if isinstance(extra_postargs, dict) and 'nvcc_dlink' in extra_postargs:
                cuda_dlink_post_cflags = unix_cuda_flags(extra_postargs['nvcc_dlink'])
            else:
                cuda_dlink_post_cflags = None
            _write_ninja_file_and_compile_objects(
                sources=sources,
                objects=objects,
                cflags=[shlex.quote(f) for f in extra_cc_cflags + common_cflags],
                post_cflags=[shlex.quote(f) for f in post_cflags],
                cuda_cflags=cuda_cflags,
                cuda_post_cflags=cuda_post_cflags,
                cuda_dlink_post_cflags=cuda_dlink_post_cflags,
                build_directory=output_dir,
                verbose=True,
                with_cuda=with_cuda)

            # Return *all* object filenames, not just the ones we just built.
            return objects

        def win_cuda_flags(cflags):
            return (COMMON_NVCC_FLAGS +
                    cflags + _get_cuda_arch_flags(cflags))

        def win_wrap_single_compile(sources,

                                    output_dir=None,

                                    macros=None,

                                    include_dirs=None,

                                    debug=0,

                                    extra_preargs=None,

                                    extra_postargs=None,

                                    depends=None):

            self.cflags = copy.deepcopy(extra_postargs)
            extra_postargs = None

            def spawn(cmd):
                # Using regex to match src, obj and include files
                src_regex = re.compile('/T(p|c)(.*)')
                src_list = [
                    m.group(2) for m in (src_regex.match(elem) for elem in cmd)
                    if m
                ]

                obj_regex = re.compile('/Fo(.*)')
                obj_list = [
                    m.group(1) for m in (obj_regex.match(elem) for elem in cmd)
                    if m
                ]

                include_regex = re.compile(r'((\-|\/)I.*)')
                include_list = [
                    m.group(1)
                    for m in (include_regex.match(elem) for elem in cmd) if m
                ]

                if len(src_list) >= 1 and len(obj_list) >= 1:
                    src = src_list[0]
                    obj = obj_list[0]
                    if _is_cuda_file(src):
                        nvcc = _join_cuda_home('bin', 'nvcc')
                        if isinstance(self.cflags, dict):
                            cflags = self.cflags['nvcc']
                        elif isinstance(self.cflags, list):
                            cflags = self.cflags
                        else:
                            cflags = []

                        cflags = win_cuda_flags(cflags) + ['-std=c++17', '--use-local-env']
                        for flag in COMMON_MSVC_FLAGS:
                            cflags = ['-Xcompiler', flag] + cflags
                        for ignore_warning in MSVC_IGNORE_CUDAFE_WARNINGS:
                            cflags = ['-Xcudafe', '--diag_suppress=' + ignore_warning] + cflags
                        cmd = [nvcc, '-c', src, '-o', obj] + include_list + cflags
                    elif isinstance(self.cflags, dict):
                        cflags = COMMON_MSVC_FLAGS + self.cflags['cxx']
                        append_std17_if_no_std_present(cflags)
                        cmd += cflags
                    elif isinstance(self.cflags, list):
                        cflags = COMMON_MSVC_FLAGS + self.cflags
                        append_std17_if_no_std_present(cflags)
                        cmd += cflags

                return original_spawn(cmd)

            try:
                self.compiler.spawn = spawn
                return original_compile(sources, output_dir, macros,
                                        include_dirs, debug, extra_preargs,
                                        extra_postargs, depends)
            finally:
                self.compiler.spawn = original_spawn

        def win_wrap_ninja_compile(sources,

                                   output_dir=None,

                                   macros=None,

                                   include_dirs=None,

                                   debug=0,

                                   extra_preargs=None,

                                   extra_postargs=None,

                                   depends=None):

            if not self.compiler.initialized:
                self.compiler.initialize()
            output_dir = os.path.abspath(output_dir)

            # Note [Absolute include_dirs]
            # Convert relative path in self.compiler.include_dirs to absolute path if any,
            # For ninja build, the build location is not local, the build happens
            # in a in script created build folder, relative path lost their correctness.
            # To be consistent with jit extension, we allow user to enter relative include_dirs
            # in setuptools.setup, and we convert the relative path to absolute path here
            convert_to_absolute_paths_inplace(self.compiler.include_dirs)

            _, objects, extra_postargs, pp_opts, _ = \
                self.compiler._setup_compile(output_dir, macros,
                                             include_dirs, sources,
                                             depends, extra_postargs)
            common_cflags = extra_preargs or []
            cflags = []
            if debug:
                cflags.extend(self.compiler.compile_options_debug)
            else:
                cflags.extend(self.compiler.compile_options)
            common_cflags.extend(COMMON_MSVC_FLAGS)
            cflags = cflags + common_cflags + pp_opts
            with_cuda = any(map(_is_cuda_file, sources))

            # extra_postargs can be either:
            # - a dict mapping cxx/nvcc to extra flags
            # - a list of extra flags.
            if isinstance(extra_postargs, dict):
                post_cflags = extra_postargs['cxx']
            else:
                post_cflags = list(extra_postargs)
            append_std17_if_no_std_present(post_cflags)

            cuda_post_cflags = None
            cuda_cflags = None
            if with_cuda:
                cuda_cflags = ['-std=c++17', '--use-local-env']
                for common_cflag in common_cflags:
                    cuda_cflags.append('-Xcompiler')
                    cuda_cflags.append(common_cflag)
                for ignore_warning in MSVC_IGNORE_CUDAFE_WARNINGS:
                    cuda_cflags.append('-Xcudafe')
                    cuda_cflags.append('--diag_suppress=' + ignore_warning)
                cuda_cflags.extend(pp_opts)
                if isinstance(extra_postargs, dict):
                    cuda_post_cflags = extra_postargs['nvcc']
                else:
                    cuda_post_cflags = list(extra_postargs)
                cuda_post_cflags = win_cuda_flags(cuda_post_cflags)

            cflags = _nt_quote_args(cflags)
            post_cflags = _nt_quote_args(post_cflags)
            if with_cuda:
                cuda_cflags = _nt_quote_args(cuda_cflags)
                cuda_post_cflags = _nt_quote_args(cuda_post_cflags)
            if isinstance(extra_postargs, dict) and 'nvcc_dlink' in extra_postargs:
                cuda_dlink_post_cflags = win_cuda_flags(extra_postargs['nvcc_dlink'])
            else:
                cuda_dlink_post_cflags = None

            _write_ninja_file_and_compile_objects(
                sources=sources,
                objects=objects,
                cflags=cflags,
                post_cflags=post_cflags,
                cuda_cflags=cuda_cflags,
                cuda_post_cflags=cuda_post_cflags,
                cuda_dlink_post_cflags=cuda_dlink_post_cflags,
                build_directory=output_dir,
                verbose=True,
                with_cuda=with_cuda)

            # Return *all* object filenames, not just the ones we just built.
            return objects

        # Monkey-patch the _compile or compile method.
        # https://github.com/python/cpython/blob/dc0284ee8f7a270b6005467f26d8e5773d76e959/Lib/distutils/ccompiler.py#L511
        if self.compiler.compiler_type == 'msvc':
            if self.use_ninja:
                self.compiler.compile = win_wrap_ninja_compile
            else:
                self.compiler.compile = win_wrap_single_compile
        else:
            if self.use_ninja:
                self.compiler.compile = unix_wrap_ninja_compile
            else:
                self.compiler._compile = unix_wrap_single_compile

        build_ext.build_extensions(self)

    def get_ext_filename(self, ext_name):
        # Get the original shared library name. For Python 3, this name will be
        # suffixed with "<SOABI>.so", where <SOABI> will be something like
        # cpython-37m-x86_64-linux-gnu.
        ext_filename = super().get_ext_filename(ext_name)
        # If `no_python_abi_suffix` is `True`, we omit the Python 3 ABI
        # component. This makes building shared libraries with setuptools that
        # aren't Python modules nicer.
        if self.no_python_abi_suffix:
            # The parts will be e.g. ["my_extension", "cpython-37m-x86_64-linux-gnu", "so"].
            ext_filename_parts = ext_filename.split('.')
            # Omit the second to last element.
            without_abi = ext_filename_parts[:-2] + ext_filename_parts[-1:]
            ext_filename = '.'.join(without_abi)
        return ext_filename

    def _check_abi(self) -> Tuple[str, TorchVersion]:
        # On some platforms, like Windows, compiler_cxx is not available.
        if hasattr(self.compiler, 'compiler_cxx'):
            compiler = self.compiler.compiler_cxx[0]
        else:
            compiler = get_cxx_compiler()
        _, version = get_compiler_abi_compatibility_and_version(compiler)
        # Warn user if VC env is activated but `DISTUILS_USE_SDK` is not set.
        if IS_WINDOWS and 'VSCMD_ARG_TGT_ARCH' in os.environ and 'DISTUTILS_USE_SDK' not in os.environ:
            msg = ('It seems that the VC environment is activated but DISTUTILS_USE_SDK is not set.'
                   'This may lead to multiple activations of the VC env.'
                   'Please set `DISTUTILS_USE_SDK=1` and try again.')
            raise UserWarning(msg)
        return compiler, version

    def _add_compile_flag(self, extension, flag):
        extension.extra_compile_args = copy.deepcopy(extension.extra_compile_args)
        if isinstance(extension.extra_compile_args, dict):
            for args in extension.extra_compile_args.values():
                args.append(flag)
        else:
            extension.extra_compile_args.append(flag)

    def _define_torch_extension_name(self, extension):
        # pybind11 doesn't support dots in the names
        # so in order to support extensions in the packages
        # like torch._C, we take the last part of the string
        # as the library name
        names = extension.name.split('.')
        name = names[-1]
        define = f'-DTORCH_EXTENSION_NAME={name}'
        self._add_compile_flag(extension, define)

    def _add_gnu_cpp_abi_flag(self, extension):
        # use the same CXX ABI as what PyTorch was compiled with
        self._add_compile_flag(extension, '-D_GLIBCXX_USE_CXX11_ABI=' + str(int(torch._C._GLIBCXX_USE_CXX11_ABI)))


def CppExtension(name, sources, *args, **kwargs):
    """

    Create a :class:`setuptools.Extension` for C++.



    Convenience method that creates a :class:`setuptools.Extension` with the

    bare minimum (but often sufficient) arguments to build a C++ extension.



    All arguments are forwarded to the :class:`setuptools.Extension`

    constructor. Full list arguments can be found at

    https://setuptools.pypa.io/en/latest/userguide/ext_modules.html#extension-api-reference



    Example:

        >>> # xdoctest: +SKIP

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)

        >>> from setuptools import setup

        >>> from torch.utils.cpp_extension import BuildExtension, CppExtension

        >>> setup(

        ...     name='extension',

        ...     ext_modules=[

        ...         CppExtension(

        ...             name='extension',

        ...             sources=['extension.cpp'],

        ...             extra_compile_args=['-g'],

        ...             extra_link_flags=['-Wl,--no-as-needed', '-lm'])

        ...     ],

        ...     cmdclass={

        ...         'build_ext': BuildExtension

        ...     })

    """
    include_dirs = kwargs.get('include_dirs', [])
    include_dirs += include_paths()
    kwargs['include_dirs'] = include_dirs

    library_dirs = kwargs.get('library_dirs', [])
    library_dirs += library_paths()
    kwargs['library_dirs'] = library_dirs

    libraries = kwargs.get('libraries', [])
    libraries.append('c10')
    libraries.append('torch')
    libraries.append('torch_cpu')
    libraries.append('torch_python')
    kwargs['libraries'] = libraries

    kwargs['language'] = 'c++'
    return setuptools.Extension(name, sources, *args, **kwargs)


def CUDAExtension(name, sources, *args, **kwargs):
    """

    Create a :class:`setuptools.Extension` for CUDA/C++.



    Convenience method that creates a :class:`setuptools.Extension` with the

    bare minimum (but often sufficient) arguments to build a CUDA/C++

    extension. This includes the CUDA include path, library path and runtime

    library.



    All arguments are forwarded to the :class:`setuptools.Extension`

    constructor. Full list arguments can be found at

    https://setuptools.pypa.io/en/latest/userguide/ext_modules.html#extension-api-reference



    Example:

        >>> # xdoctest: +SKIP

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)

        >>> from setuptools import setup

        >>> from torch.utils.cpp_extension import BuildExtension, CUDAExtension

        >>> setup(

        ...     name='cuda_extension',

        ...     ext_modules=[

        ...         CUDAExtension(

        ...                 name='cuda_extension',

        ...                 sources=['extension.cpp', 'extension_kernel.cu'],

        ...                 extra_compile_args={'cxx': ['-g'],

        ...                                     'nvcc': ['-O2']},

        ...                 extra_link_flags=['-Wl,--no-as-needed', '-lcuda'])

        ...     ],

        ...     cmdclass={

        ...         'build_ext': BuildExtension

        ...     })



    Compute capabilities:



    By default the extension will be compiled to run on all archs of the cards visible during the

    building process of the extension, plus PTX. If down the road a new card is installed the

    extension may need to be recompiled. If a visible card has a compute capability (CC) that's

    newer than the newest version for which your nvcc can build fully-compiled binaries, Pytorch

    will make nvcc fall back to building kernels with the newest version of PTX your nvcc does

    support (see below for details on PTX).



    You can override the default behavior using `TORCH_CUDA_ARCH_LIST` to explicitly specify which

    CCs you want the extension to support:



    ``TORCH_CUDA_ARCH_LIST="6.1 8.6" python build_my_extension.py``

    ``TORCH_CUDA_ARCH_LIST="5.2 6.0 6.1 7.0 7.5 8.0 8.6+PTX" python build_my_extension.py``



    The +PTX option causes extension kernel binaries to include PTX instructions for the specified

    CC. PTX is an intermediate representation that allows kernels to runtime-compile for any CC >=

    the specified CC (for example, 8.6+PTX generates PTX that can runtime-compile for any GPU with

    CC >= 8.6). This improves your binary's forward compatibility. However, relying on older PTX to

    provide forward compat by runtime-compiling for newer CCs can modestly reduce performance on

    those newer CCs. If you know exact CC(s) of the GPUs you want to target, you're always better

    off specifying them individually. For example, if you want your extension to run on 8.0 and 8.6,

    "8.0+PTX" would work functionally because it includes PTX that can runtime-compile for 8.6, but

    "8.0 8.6" would be better.



    Note that while it's possible to include all supported archs, the more archs get included the

    slower the building process will be, as it will build a separate kernel image for each arch.



    Note that CUDA-11.5 nvcc will hit internal compiler error while parsing torch/extension.h on Windows.

    To workaround the issue, move python binding logic to pure C++ file.



    Example use:

        #include <ATen/ATen.h>

        at::Tensor SigmoidAlphaBlendForwardCuda(....)



    Instead of:

        #include <torch/extension.h>

        torch::Tensor SigmoidAlphaBlendForwardCuda(...)



    Currently open issue for nvcc bug: https://github.com/pytorch/pytorch/issues/69460

    Complete workaround code example: https://github.com/facebookresearch/pytorch3d/commit/cb170ac024a949f1f9614ffe6af1c38d972f7d48



    Relocatable device code linking:



    If you want to reference device symbols across compilation units (across object files),

    the object files need to be built with `relocatable device code` (-rdc=true or -dc).

    An exception to this rule is "dynamic parallelism" (nested kernel launches)  which is not used a lot anymore.

    `Relocatable device code` is less optimized so it needs to be used only on object files that need it.

    Using `-dlto` (Device Link Time Optimization) at the device code compilation step and `dlink` step

    help reduce the protentional perf degradation of `-rdc`.

    Note that it needs to be used at both steps to be useful.



    If you have `rdc` objects you need to have an extra `-dlink` (device linking) step before the CPU symbol linking step.

    There is also a case where `-dlink` is used without `-rdc`:

    when an extension is linked against a static lib containing rdc-compiled objects

    like the [NVSHMEM library](https://developer.nvidia.com/nvshmem).



    Note: Ninja is required to build a CUDA Extension with RDC linking.



    Example:

        >>> # xdoctest: +SKIP

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)

        >>> CUDAExtension(

        ...        name='cuda_extension',

        ...        sources=['extension.cpp', 'extension_kernel.cu'],

        ...        dlink=True,

        ...        dlink_libraries=["dlink_lib"],

        ...        extra_compile_args={'cxx': ['-g'],

        ...                            'nvcc': ['-O2', '-rdc=true']})

    """
    library_dirs = kwargs.get('library_dirs', [])
    library_dirs += library_paths(cuda=True)
    kwargs['library_dirs'] = library_dirs

    libraries = kwargs.get('libraries', [])
    libraries.append('c10')
    libraries.append('torch')
    libraries.append('torch_cpu')
    libraries.append('torch_python')
    if IS_HIP_EXTENSION:
        assert ROCM_VERSION is not None
        libraries.append('amdhip64' if ROCM_VERSION >= (3, 5) else 'hip_hcc')
        libraries.append('c10_hip')
        libraries.append('torch_hip')
    else:
        libraries.append('cudart')
        libraries.append('c10_cuda')
        libraries.append('torch_cuda')
    kwargs['libraries'] = libraries

    include_dirs = kwargs.get('include_dirs', [])

    if IS_HIP_EXTENSION:
        build_dir = os.getcwd()
        hipify_result = hipify_python.hipify(
            project_directory=build_dir,
            output_directory=build_dir,
            header_include_dirs=include_dirs,
            includes=[os.path.join(build_dir, '*')],  # limit scope to build_dir only
            extra_files=[os.path.abspath(s) for s in sources],
            show_detailed=True,
            is_pytorch_extension=True,
            hipify_extra_files_only=True,  # don't hipify everything in includes path
        )

        hipified_sources = set()
        for source in sources:
            s_abs = os.path.abspath(source)
            hipified_s_abs = (hipify_result[s_abs].hipified_path if (s_abs in hipify_result and
                              hipify_result[s_abs].hipified_path is not None) else s_abs)
            # setup() arguments must *always* be /-separated paths relative to the setup.py directory,
            # *never* absolute paths
            hipified_sources.add(os.path.relpath(hipified_s_abs, build_dir))

        sources = list(hipified_sources)

    include_dirs += include_paths(cuda=True)
    kwargs['include_dirs'] = include_dirs

    kwargs['language'] = 'c++'

    dlink_libraries = kwargs.get('dlink_libraries', [])
    dlink = kwargs.get('dlink', False) or dlink_libraries
    if dlink:
        extra_compile_args = kwargs.get('extra_compile_args', {})

        extra_compile_args_dlink = extra_compile_args.get('nvcc_dlink', [])
        extra_compile_args_dlink += ['-dlink']
        extra_compile_args_dlink += [f'-L{x}' for x in library_dirs]
        extra_compile_args_dlink += [f'-l{x}' for x in dlink_libraries]

        if (torch.version.cuda is not None) and TorchVersion(torch.version.cuda) >= '11.2':
            extra_compile_args_dlink += ['-dlto']   # Device Link Time Optimization started from cuda 11.2

        extra_compile_args['nvcc_dlink'] = extra_compile_args_dlink

        kwargs['extra_compile_args'] = extra_compile_args

    return setuptools.Extension(name, sources, *args, **kwargs)


def include_paths(cuda: bool = False) -> List[str]:
    """

    Get the include paths required to build a C++ or CUDA extension.



    Args:

        cuda: If `True`, includes CUDA-specific include paths.



    Returns:

        A list of include path strings.

    """
    lib_include = os.path.join(_TORCH_PATH, 'include')
    paths = [
        lib_include,
        # Remove this once torch/torch.h is officially no longer supported for C++ extensions.
        os.path.join(lib_include, 'torch', 'csrc', 'api', 'include'),
        # Some internal (old) Torch headers don't properly prefix their includes,
        # so we need to pass -Itorch/lib/include/TH as well.
        os.path.join(lib_include, 'TH'),
        os.path.join(lib_include, 'THC')
    ]
    if cuda and IS_HIP_EXTENSION:
        paths.append(os.path.join(lib_include, 'THH'))
        paths.append(_join_rocm_home('include'))
    elif cuda:
        cuda_home_include = _join_cuda_home('include')
        # if we have the Debian/Ubuntu packages for cuda, we get /usr as cuda home.
        # but gcc doesn't like having /usr/include passed explicitly
        if cuda_home_include != '/usr/include':
            paths.append(cuda_home_include)
        if CUDNN_HOME is not None:
            paths.append(os.path.join(CUDNN_HOME, 'include'))
    return paths


def library_paths(cuda: bool = False) -> List[str]:
    """

    Get the library paths required to build a C++ or CUDA extension.



    Args:

        cuda: If `True`, includes CUDA-specific library paths.



    Returns:

        A list of library path strings.

    """
    # We need to link against libtorch.so
    paths = [TORCH_LIB_PATH]

    if cuda and IS_HIP_EXTENSION:
        lib_dir = 'lib'
        paths.append(_join_rocm_home(lib_dir))
        if HIP_HOME is not None:
            paths.append(os.path.join(HIP_HOME, 'lib'))
    elif cuda:
        if IS_WINDOWS:
            lib_dir = os.path.join('lib', 'x64')
        else:
            lib_dir = 'lib64'
            if (not os.path.exists(_join_cuda_home(lib_dir)) and
                    os.path.exists(_join_cuda_home('lib'))):
                # 64-bit CUDA may be installed in 'lib' (see e.g. gh-16955)
                # Note that it's also possible both don't exist (see
                # _find_cuda_home) - in that case we stay with 'lib64'.
                lib_dir = 'lib'

        paths.append(_join_cuda_home(lib_dir))
        if CUDNN_HOME is not None:
            paths.append(os.path.join(CUDNN_HOME, lib_dir))
    return paths


def load(name,

         sources: Union[str, List[str]],

         extra_cflags=None,

         extra_cuda_cflags=None,

         extra_ldflags=None,

         extra_include_paths=None,

         build_directory=None,

         verbose=False,

         with_cuda: Optional[bool] = None,

         is_python_module=True,

         is_standalone=False,

         keep_intermediates=True):
    """

    Load a PyTorch C++ extension just-in-time (JIT).



    To load an extension, a Ninja build file is emitted, which is used to

    compile the given sources into a dynamic library. This library is

    subsequently loaded into the current Python process as a module and

    returned from this function, ready for use.



    By default, the directory to which the build file is emitted and the

    resulting library compiled to is ``<tmp>/torch_extensions/<name>``, where

    ``<tmp>`` is the temporary folder on the current platform and ``<name>``

    the name of the extension. This location can be overridden in two ways.

    First, if the ``TORCH_EXTENSIONS_DIR`` environment variable is set, it

    replaces ``<tmp>/torch_extensions`` and all extensions will be compiled

    into subfolders of this directory. Second, if the ``build_directory``

    argument to this function is supplied, it overrides the entire path, i.e.

    the library will be compiled into that folder directly.



    To compile the sources, the default system compiler (``c++``) is used,

    which can be overridden by setting the ``CXX`` environment variable. To pass

    additional arguments to the compilation process, ``extra_cflags`` or

    ``extra_ldflags`` can be provided. For example, to compile your extension

    with optimizations, pass ``extra_cflags=['-O3']``. You can also use

    ``extra_cflags`` to pass further include directories.



    CUDA support with mixed compilation is provided. Simply pass CUDA source

    files (``.cu`` or ``.cuh``) along with other sources. Such files will be

    detected and compiled with nvcc rather than the C++ compiler. This includes

    passing the CUDA lib64 directory as a library directory, and linking

    ``cudart``. You can pass additional flags to nvcc via

    ``extra_cuda_cflags``, just like with ``extra_cflags`` for C++. Various

    heuristics for finding the CUDA install directory are used, which usually

    work fine. If not, setting the ``CUDA_HOME`` environment variable is the

    safest option.



    Args:

        name: The name of the extension to build. This MUST be the same as the

            name of the pybind11 module!

        sources: A list of relative or absolute paths to C++ source files.

        extra_cflags: optional list of compiler flags to forward to the build.

        extra_cuda_cflags: optional list of compiler flags to forward to nvcc

            when building CUDA sources.

        extra_ldflags: optional list of linker flags to forward to the build.

        extra_include_paths: optional list of include directories to forward

            to the build.

        build_directory: optional path to use as build workspace.

        verbose: If ``True``, turns on verbose logging of load steps.

        with_cuda: Determines whether CUDA headers and libraries are added to

            the build. If set to ``None`` (default), this value is

            automatically determined based on the existence of ``.cu`` or

            ``.cuh`` in ``sources``. Set it to `True`` to force CUDA headers

            and libraries to be included.

        is_python_module: If ``True`` (default), imports the produced shared

            library as a Python module. If ``False``, behavior depends on

            ``is_standalone``.

        is_standalone: If ``False`` (default) loads the constructed extension

            into the process as a plain dynamic library. If ``True``, build a

            standalone executable.



    Returns:

        If ``is_python_module`` is ``True``:

            Returns the loaded PyTorch extension as a Python module.



        If ``is_python_module`` is ``False`` and ``is_standalone`` is ``False``:

            Returns nothing. (The shared library is loaded into the process as

            a side effect.)



        If ``is_standalone`` is ``True``.

            Return the path to the executable. (On Windows, TORCH_LIB_PATH is

            added to the PATH environment variable as a side effect.)



    Example:

        >>> # xdoctest: +SKIP

        >>> from torch.utils.cpp_extension import load

        >>> module = load(

        ...     name='extension',

        ...     sources=['extension.cpp', 'extension_kernel.cu'],

        ...     extra_cflags=['-O2'],

        ...     verbose=True)

    """
    return _jit_compile(
        name,
        [sources] if isinstance(sources, str) else sources,
        extra_cflags,
        extra_cuda_cflags,
        extra_ldflags,
        extra_include_paths,
        build_directory or _get_build_directory(name, verbose),
        verbose,
        with_cuda,
        is_python_module,
        is_standalone,
        keep_intermediates=keep_intermediates)

def _get_pybind11_abi_build_flags():
    # Note [Pybind11 ABI constants]
    #
    # Pybind11 before 2.4 used to build an ABI strings using the following pattern:
    # f"__pybind11_internals_v{PYBIND11_INTERNALS_VERSION}{PYBIND11_INTERNALS_KIND}{PYBIND11_BUILD_TYPE}__"
    # Since 2.4 compier type, stdlib and build abi parameters are also encoded like this:
    # f"__pybind11_internals_v{PYBIND11_INTERNALS_VERSION}{PYBIND11_INTERNALS_KIND}{PYBIND11_COMPILER_TYPE}{PYBIND11_STDLIB}{PYBIND11_BUILD_ABI}{PYBIND11_BUILD_TYPE}__"
    #
    # This was done in order to further narrow down the chances of compiler ABI incompatibility
    # that can cause a hard to debug segfaults.
    # For PyTorch extensions we want to relax those restrictions and pass compiler, stdlib and abi properties
    # captured during PyTorch native library compilation in torch/csrc/Module.cpp

    abi_cflags = []
    for pname in ["COMPILER_TYPE", "STDLIB", "BUILD_ABI"]:
        pval = getattr(torch._C, f"_PYBIND11_{pname}")
        if pval is not None and not IS_WINDOWS:
            abi_cflags.append(f'-DPYBIND11_{pname}=\\"{pval}\\"')
    return abi_cflags

def _get_glibcxx_abi_build_flags():
    glibcxx_abi_cflags = ['-D_GLIBCXX_USE_CXX11_ABI=' + str(int(torch._C._GLIBCXX_USE_CXX11_ABI))]
    return glibcxx_abi_cflags

def check_compiler_is_gcc(compiler):
    if not IS_LINUX:
        return False

    env = os.environ.copy()
    env['LC_ALL'] = 'C'  # Don't localize output
    try:
        version_string = subprocess.check_output([compiler, '-v'], stderr=subprocess.STDOUT, env=env).decode(*SUBPROCESS_DECODE_ARGS)
    except Exception as e:
        try:
            version_string = subprocess.check_output([compiler, '--version'], stderr=subprocess.STDOUT, env=env).decode(*SUBPROCESS_DECODE_ARGS)
        except Exception as e:
            return False
    # Check for 'gcc' or 'g++' for sccache wrapper
    pattern = re.compile("^COLLECT_GCC=(.*)$", re.MULTILINE)
    results = re.findall(pattern, version_string)
    if len(results) != 1:
        return False
    compiler_path = os.path.realpath(results[0].strip())
    # On RHEL/CentOS c++ is a gcc compiler wrapper
    if os.path.basename(compiler_path) == 'c++' and 'gcc version' in version_string:
        return True
    return False

def _check_and_build_extension_h_precompiler_headers(

        extra_cflags,

        extra_include_paths,

        is_standalone=False):
    r'''

    Precompiled Headers(PCH) can pre-build the same headers and reduce build time for pytorch load_inline modules.

    GCC offical manual: https://gcc.gnu.org/onlinedocs/gcc-4.0.4/gcc/Precompiled-Headers.html

    PCH only works when built pch file(header.h.gch) and build target have the same build parameters. So, We need

    add a signature file to record PCH file parameters. If the build parameters(signature) changed, it should rebuild

    PCH file.



    Note:

    1. Windows and MacOS have different PCH mechanism. We only support Linux currently.

    2. It only works on GCC/G++.

    '''
    if not IS_LINUX:
        return

    compiler = get_cxx_compiler()

    b_is_gcc = check_compiler_is_gcc(compiler)
    if b_is_gcc is False:
        return

    head_file = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h')
    head_file_pch = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h.gch')
    head_file_signature = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h.sign')

    def listToString(s):
        # initialize an empty string
        string = ""
        if s is None:
            return string

        # traverse in the string
        for element in s:
            string += (element + ' ')
        # return string
        return string

    def format_precompiler_header_cmd(compiler, head_file, head_file_pch, common_cflags, torch_include_dirs, extra_cflags, extra_include_paths):
        return re.sub(
            r"[ \n]+",
            " ",
            f"""

                {compiler} -x c++-header {head_file} -o {head_file_pch} {torch_include_dirs} {extra_include_paths} {extra_cflags} {common_cflags}

            """,
        ).strip()

    def command_to_signature(cmd):
        signature = cmd.replace(' ', '_')
        return signature

    def check_pch_signature_in_file(file_path, signature):
        b_exist = os.path.isfile(file_path)
        if b_exist is False:
            return False

        with open(file_path) as file:
            # read all content of a file
            content = file.read()
            # check if string present in a file
            if signature == content:
                return True
            else:
                return False

    def _create_if_not_exist(path_dir):
        if not os.path.exists(path_dir):
            try:
                Path(path_dir).mkdir(parents=True, exist_ok=True)
            except OSError as exc:  # Guard against race condition
                if exc.errno != errno.EEXIST:
                    raise RuntimeError(f"Fail to create path {path_dir}") from exc

    def write_pch_signature_to_file(file_path, pch_sign):
        _create_if_not_exist(os.path.dirname(file_path))
        with open(file_path, "w") as f:
            f.write(pch_sign)
            f.close()

    def build_precompile_header(pch_cmd):
        try:
            subprocess.check_output(pch_cmd, shell=True, stderr=subprocess.STDOUT)
        except subprocess.CalledProcessError as e:
            raise RuntimeError(f"Compile PreCompile Header fail, command: {pch_cmd}") from e

    extra_cflags_str = listToString(extra_cflags)
    extra_include_paths_str = " ".join(
        [f"-I{include}" for include in extra_include_paths] if extra_include_paths else []
    )

    lib_include = os.path.join(_TORCH_PATH, 'include')
    torch_include_dirs = [
        f"-I {lib_include}",
        # Python.h
        "-I {}".format(sysconfig.get_path("include")),
        # torch/all.h
        "-I {}".format(os.path.join(lib_include, 'torch', 'csrc', 'api', 'include')),
    ]

    torch_include_dirs_str = listToString(torch_include_dirs)

    common_cflags = []
    if not is_standalone:
        common_cflags += ['-DTORCH_API_INCLUDE_EXTENSION_H']

    common_cflags += ['-std=c++17', '-fPIC']
    common_cflags += [f"{x}" for x in _get_pybind11_abi_build_flags()]
    common_cflags += [f"{x}" for x in _get_glibcxx_abi_build_flags()]
    common_cflags_str = listToString(common_cflags)

    pch_cmd = format_precompiler_header_cmd(compiler, head_file, head_file_pch, common_cflags_str, torch_include_dirs_str, extra_cflags_str, extra_include_paths_str)
    pch_sign = command_to_signature(pch_cmd)

    if os.path.isfile(head_file_pch) is not True:
        build_precompile_header(pch_cmd)
        write_pch_signature_to_file(head_file_signature, pch_sign)
    else:
        b_same_sign = check_pch_signature_in_file(head_file_signature, pch_sign)
        if b_same_sign is False:
            build_precompile_header(pch_cmd)
            write_pch_signature_to_file(head_file_signature, pch_sign)

def remove_extension_h_precompiler_headers():
    def _remove_if_file_exists(path_file):
        if os.path.exists(path_file):
            os.remove(path_file)

    head_file_pch = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h.gch')
    head_file_signature = os.path.join(_TORCH_PATH, 'include', 'torch', 'extension.h.sign')

    _remove_if_file_exists(head_file_pch)
    _remove_if_file_exists(head_file_signature)

def load_inline(name,

                cpp_sources,

                cuda_sources=None,

                functions=None,

                extra_cflags=None,

                extra_cuda_cflags=None,

                extra_ldflags=None,

                extra_include_paths=None,

                build_directory=None,

                verbose=False,

                with_cuda=None,

                is_python_module=True,

                with_pytorch_error_handling=True,

                keep_intermediates=True,

                use_pch=False):
    r'''

    Load a PyTorch C++ extension just-in-time (JIT) from string sources.



    This function behaves exactly like :func:`load`, but takes its sources as

    strings rather than filenames. These strings are stored to files in the

    build directory, after which the behavior of :func:`load_inline` is

    identical to :func:`load`.



    See `the

    tests <https://github.com/pytorch/pytorch/blob/master/test/test_cpp_extensions_jit.py>`_

    for good examples of using this function.



    Sources may omit two required parts of a typical non-inline C++ extension:

    the necessary header includes, as well as the (pybind11) binding code. More

    precisely, strings passed to ``cpp_sources`` are first concatenated into a

    single ``.cpp`` file. This file is then prepended with ``#include

    <torch/extension.h>``.



    Furthermore, if the ``functions`` argument is supplied, bindings will be

    automatically generated for each function specified. ``functions`` can

    either be a list of function names, or a dictionary mapping from function

    names to docstrings. If a list is given, the name of each function is used

    as its docstring.



    The sources in ``cuda_sources`` are concatenated into a separate ``.cu``

    file and  prepended with ``torch/types.h``, ``cuda.h`` and

    ``cuda_runtime.h`` includes. The ``.cpp`` and ``.cu`` files are compiled

    separately, but ultimately linked into a single library. Note that no

    bindings are generated for functions in ``cuda_sources`` per  se. To bind

    to a CUDA kernel, you must create a C++ function that calls it, and either

    declare or define this C++ function in one of the ``cpp_sources`` (and

    include its name in ``functions``).



    See :func:`load` for a description of arguments omitted below.



    Args:

        cpp_sources: A string, or list of strings, containing C++ source code.

        cuda_sources: A string, or list of strings, containing CUDA source code.

        functions: A list of function names for which to generate function

            bindings. If a dictionary is given, it should map function names to

            docstrings (which are otherwise just the function names).

        with_cuda: Determines whether CUDA headers and libraries are added to

            the build. If set to ``None`` (default), this value is

            automatically determined based on whether ``cuda_sources`` is

            provided. Set it to ``True`` to force CUDA headers

            and libraries to be included.

        with_pytorch_error_handling: Determines whether pytorch error and

            warning macros are handled by pytorch instead of pybind. To do

            this, each function ``foo`` is called via an intermediary ``_safe_foo``

            function. This redirection might cause issues in obscure cases

            of cpp. This flag should be set to ``False`` when this redirect

            causes issues.



    Example:

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CPP_EXT)

        >>> from torch.utils.cpp_extension import load_inline

        >>> source = """

        at::Tensor sin_add(at::Tensor x, at::Tensor y) {

          return x.sin() + y.sin();

        }

        """

        >>> module = load_inline(name='inline_extension',

        ...                      cpp_sources=[source],

        ...                      functions=['sin_add'])



    .. note::

        By default, the Ninja backend uses #CPUS + 2 workers to build the

        extension. This may use up too many resources on some systems. One

        can control the number of workers by setting the `MAX_JOBS` environment

        variable to a non-negative number.

    '''
    build_directory = build_directory or _get_build_directory(name, verbose)

    if isinstance(cpp_sources, str):
        cpp_sources = [cpp_sources]
    cuda_sources = cuda_sources or []
    if isinstance(cuda_sources, str):
        cuda_sources = [cuda_sources]

    cpp_sources.insert(0, '#include <torch/extension.h>')

    if use_pch is True:
        # Using PreCompile Header('torch/extension.h') to reduce compile time.
        _check_and_build_extension_h_precompiler_headers(extra_cflags, extra_include_paths)
    else:
        remove_extension_h_precompiler_headers()

    # If `functions` is supplied, we create the pybind11 bindings for the user.
    # Here, `functions` is (or becomes, after some processing) a map from
    # function names to function docstrings.
    if functions is not None:
        module_def = []
        module_def.append('PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {')
        if isinstance(functions, str):
            functions = [functions]
        if isinstance(functions, list):
            # Make the function docstring the same as the function name.
            functions = {f: f for f in functions}
        elif not isinstance(functions, dict):
            raise ValueError(f"Expected 'functions' to be a list or dict, but was {type(functions)}")
        for function_name, docstring in functions.items():
            if with_pytorch_error_handling:
                module_def.append(f'm.def("{function_name}", torch::wrap_pybind_function({function_name}), "{docstring}");')
            else:
                module_def.append(f'm.def("{function_name}", {function_name}, "{docstring}");')
        module_def.append('}')
        cpp_sources += module_def

    cpp_source_path = os.path.join(build_directory, 'main.cpp')
    _maybe_write(cpp_source_path, "\n".join(cpp_sources))

    sources = [cpp_source_path]

    if cuda_sources:
        cuda_sources.insert(0, '#include <torch/types.h>')
        cuda_sources.insert(1, '#include <cuda.h>')
        cuda_sources.insert(2, '#include <cuda_runtime.h>')

        cuda_source_path = os.path.join(build_directory, 'cuda.cu')
        _maybe_write(cuda_source_path, "\n".join(cuda_sources))

        sources.append(cuda_source_path)

    return _jit_compile(
        name,
        sources,
        extra_cflags,
        extra_cuda_cflags,
        extra_ldflags,
        extra_include_paths,
        build_directory,
        verbose,
        with_cuda,
        is_python_module,
        is_standalone=False,
        keep_intermediates=keep_intermediates)


def _jit_compile(name,

                 sources,

                 extra_cflags,

                 extra_cuda_cflags,

                 extra_ldflags,

                 extra_include_paths,

                 build_directory: str,

                 verbose: bool,

                 with_cuda: Optional[bool],

                 is_python_module,

                 is_standalone,

                 keep_intermediates=True) -> None:
    if is_python_module and is_standalone:
        raise ValueError("`is_python_module` and `is_standalone` are mutually exclusive.")

    if with_cuda is None:
        with_cuda = any(map(_is_cuda_file, sources))
    with_cudnn = any('cudnn' in f for f in extra_ldflags or [])
    old_version = JIT_EXTENSION_VERSIONER.get_version(name)
    version = JIT_EXTENSION_VERSIONER.bump_version_if_changed(
        name,
        sources,
        build_arguments=[extra_cflags, extra_cuda_cflags, extra_ldflags, extra_include_paths],
        build_directory=build_directory,
        with_cuda=with_cuda,
        is_python_module=is_python_module,
        is_standalone=is_standalone,
    )
    if version > 0:
        if version != old_version and verbose:
            print(f'The input conditions for extension module {name} have changed. ' +
                  f'Bumping to version {version} and re-building as {name}_v{version}...',
                  file=sys.stderr)
        name = f'{name}_v{version}'

    if version != old_version:
        baton = FileBaton(os.path.join(build_directory, 'lock'))
        if baton.try_acquire():
            try:
                with GeneratedFileCleaner(keep_intermediates=keep_intermediates) as clean_ctx:
                    if IS_HIP_EXTENSION and (with_cuda or with_cudnn):
                        hipify_result = hipify_python.hipify(
                            project_directory=build_directory,
                            output_directory=build_directory,
                            header_include_dirs=(extra_include_paths if extra_include_paths is not None else []),
                            extra_files=[os.path.abspath(s) for s in sources],
                            ignores=[_join_rocm_home('*'), os.path.join(_TORCH_PATH, '*')],  # no need to hipify ROCm or PyTorch headers
                            show_detailed=verbose,
                            show_progress=verbose,
                            is_pytorch_extension=True,
                            clean_ctx=clean_ctx
                        )

                        hipified_sources = set()
                        for source in sources:
                            s_abs = os.path.abspath(source)
                            hipified_sources.add(hipify_result[s_abs].hipified_path if s_abs in hipify_result else s_abs)

                        sources = list(hipified_sources)

                    _write_ninja_file_and_build_library(
                        name=name,
                        sources=sources,
                        extra_cflags=extra_cflags or [],
                        extra_cuda_cflags=extra_cuda_cflags or [],
                        extra_ldflags=extra_ldflags or [],
                        extra_include_paths=extra_include_paths or [],
                        build_directory=build_directory,
                        verbose=verbose,
                        with_cuda=with_cuda,
                        is_standalone=is_standalone)
            finally:
                baton.release()
        else:
            baton.wait()
    elif verbose:
        print('No modifications detected for re-loaded extension '
              f'module {name}, skipping build step...',
              file=sys.stderr)

    if verbose:
        print(f'Loading extension module {name}...', file=sys.stderr)

    if is_standalone:
        return _get_exec_path(name, build_directory)

    return _import_module_from_library(name, build_directory, is_python_module)


def _write_ninja_file_and_compile_objects(

        sources: List[str],

        objects,

        cflags,

        post_cflags,

        cuda_cflags,

        cuda_post_cflags,

        cuda_dlink_post_cflags,

        build_directory: str,

        verbose: bool,

        with_cuda: Optional[bool]) -> None:
    verify_ninja_availability()

    compiler = get_cxx_compiler()

    get_compiler_abi_compatibility_and_version(compiler)
    if with_cuda is None:
        with_cuda = any(map(_is_cuda_file, sources))
    build_file_path = os.path.join(build_directory, 'build.ninja')
    if verbose:
        print(f'Emitting ninja build file {build_file_path}...', file=sys.stderr)
    _write_ninja_file(
        path=build_file_path,
        cflags=cflags,
        post_cflags=post_cflags,
        cuda_cflags=cuda_cflags,
        cuda_post_cflags=cuda_post_cflags,
        cuda_dlink_post_cflags=cuda_dlink_post_cflags,
        sources=sources,
        objects=objects,
        ldflags=None,
        library_target=None,
        with_cuda=with_cuda)
    if verbose:
        print('Compiling objects...', file=sys.stderr)
    _run_ninja_build(
        build_directory,
        verbose,
        # It would be better if we could tell users the name of the extension
        # that failed to build but there isn't a good way to get it here.
        error_prefix='Error compiling objects for extension')


def _write_ninja_file_and_build_library(

        name,

        sources: List[str],

        extra_cflags,

        extra_cuda_cflags,

        extra_ldflags,

        extra_include_paths,

        build_directory: str,

        verbose: bool,

        with_cuda: Optional[bool],

        is_standalone: bool = False) -> None:
    verify_ninja_availability()

    compiler = get_cxx_compiler()

    get_compiler_abi_compatibility_and_version(compiler)
    if with_cuda is None:
        with_cuda = any(map(_is_cuda_file, sources))
    extra_ldflags = _prepare_ldflags(
        extra_ldflags or [],
        with_cuda,
        verbose,
        is_standalone)
    build_file_path = os.path.join(build_directory, 'build.ninja')
    if verbose:
        print(f'Emitting ninja build file {build_file_path}...', file=sys.stderr)
    # NOTE: Emitting a new ninja build file does not cause re-compilation if
    # the sources did not change, so it's ok to re-emit (and it's fast).
    _write_ninja_file_to_build_library(
        path=build_file_path,
        name=name,
        sources=sources,
        extra_cflags=extra_cflags or [],
        extra_cuda_cflags=extra_cuda_cflags or [],
        extra_ldflags=extra_ldflags or [],
        extra_include_paths=extra_include_paths or [],
        with_cuda=with_cuda,
        is_standalone=is_standalone)

    if verbose:
        print(f'Building extension module {name}...', file=sys.stderr)
    _run_ninja_build(
        build_directory,
        verbose,
        error_prefix=f"Error building extension '{name}'")


def is_ninja_available():
    """Return ``True`` if the `ninja <https://ninja-build.org/>`_ build system is available on the system, ``False`` otherwise."""
    try:
        subprocess.check_output('ninja --version'.split())
    except Exception:
        return False
    else:
        return True


def verify_ninja_availability():
    """Raise ``RuntimeError`` if `ninja <https://ninja-build.org/>`_ build system is not available on the system, does nothing otherwise."""
    if not is_ninja_available():
        raise RuntimeError("Ninja is required to load C++ extensions")


def _prepare_ldflags(extra_ldflags, with_cuda, verbose, is_standalone):
    if IS_WINDOWS:
        python_lib_path = os.path.join(sys.base_exec_prefix, 'libs')

        extra_ldflags.append('c10.lib')
        if with_cuda:
            extra_ldflags.append('c10_cuda.lib')
        extra_ldflags.append('torch_cpu.lib')
        if with_cuda:
            extra_ldflags.append('torch_cuda.lib')
            # /INCLUDE is used to ensure torch_cuda is linked against in a project that relies on it.
            # Related issue: https://github.com/pytorch/pytorch/issues/31611
            extra_ldflags.append('-INCLUDE:?warp_size@cuda@at@@YAHXZ')
        extra_ldflags.append('torch.lib')
        extra_ldflags.append(f'/LIBPATH:{TORCH_LIB_PATH}')
        if not is_standalone:
            extra_ldflags.append('torch_python.lib')
            extra_ldflags.append(f'/LIBPATH:{python_lib_path}')

    else:
        extra_ldflags.append(f'-L{TORCH_LIB_PATH}')
        extra_ldflags.append('-lc10')
        if with_cuda:
            extra_ldflags.append('-lc10_hip' if IS_HIP_EXTENSION else '-lc10_cuda')
        extra_ldflags.append('-ltorch_cpu')
        if with_cuda:
            extra_ldflags.append('-ltorch_hip' if IS_HIP_EXTENSION else '-ltorch_cuda')
        extra_ldflags.append('-ltorch')
        if not is_standalone:
            extra_ldflags.append('-ltorch_python')

        if is_standalone and "TBB" in torch.__config__.parallel_info():
            extra_ldflags.append('-ltbb')

        if is_standalone:
            extra_ldflags.append(f"-Wl,-rpath,{TORCH_LIB_PATH}")

    if with_cuda:
        if verbose:
            print('Detected CUDA files, patching ldflags', file=sys.stderr)
        if IS_WINDOWS:
            extra_ldflags.append(f'/LIBPATH:{_join_cuda_home("lib", "x64")}')
            extra_ldflags.append('cudart.lib')
            if CUDNN_HOME is not None:
                extra_ldflags.append(f'/LIBPATH:{os.path.join(CUDNN_HOME, "lib", "x64")}')
        elif not IS_HIP_EXTENSION:
            extra_lib_dir = "lib64"
            if (not os.path.exists(_join_cuda_home(extra_lib_dir)) and
                    os.path.exists(_join_cuda_home("lib"))):
                # 64-bit CUDA may be installed in "lib"
                # Note that it's also possible both don't exist (see _find_cuda_home) - in that case we stay with "lib64"
                extra_lib_dir = "lib"
            extra_ldflags.append(f'-L{_join_cuda_home(extra_lib_dir)}')
            extra_ldflags.append('-lcudart')
            if CUDNN_HOME is not None:
                extra_ldflags.append(f'-L{os.path.join(CUDNN_HOME, "lib64")}')
        elif IS_HIP_EXTENSION:
            assert ROCM_VERSION is not None
            extra_ldflags.append(f'-L{_join_rocm_home("lib")}')
            extra_ldflags.append('-lamdhip64' if ROCM_VERSION >= (3, 5) else '-lhip_hcc')
    return extra_ldflags


def _get_cuda_arch_flags(cflags: Optional[List[str]] = None) -> List[str]:
    """

    Determine CUDA arch flags to use.



    For an arch, say "6.1", the added compile flag will be

    ``-gencode=arch=compute_61,code=sm_61``.

    For an added "+PTX", an additional

    ``-gencode=arch=compute_xx,code=compute_xx`` is added.



    See select_compute_arch.cmake for corresponding named and supported arches

    when building with CMake.

    """
    # If cflags is given, there may already be user-provided arch flags in it
    # (from `extra_compile_args`)
    if cflags is not None:
        for flag in cflags:
            if 'TORCH_EXTENSION_NAME' in flag:
                continue
            if 'arch' in flag:
                return []

    # Note: keep combined names ("arch1+arch2") above single names, otherwise
    # string replacement may not do the right thing
    named_arches = collections.OrderedDict([
        ('Kepler+Tesla', '3.7'),
        ('Kepler', '3.5+PTX'),
        ('Maxwell+Tegra', '5.3'),
        ('Maxwell', '5.0;5.2+PTX'),
        ('Pascal', '6.0;6.1+PTX'),
        ('Volta+Tegra', '7.2'),
        ('Volta', '7.0+PTX'),
        ('Turing', '7.5+PTX'),
        ('Ampere+Tegra', '8.7'),
        ('Ampere', '8.0;8.6+PTX'),
        ('Ada', '8.9+PTX'),
        ('Hopper', '9.0+PTX'),
    ])

    supported_arches = ['3.5', '3.7', '5.0', '5.2', '5.3', '6.0', '6.1', '6.2',
                        '7.0', '7.2', '7.5', '8.0', '8.6', '8.7', '8.9', '9.0', '9.0a']
    valid_arch_strings = supported_arches + [s + "+PTX" for s in supported_arches]

    # The default is sm_30 for CUDA 9.x and 10.x
    # First check for an env var (same as used by the main setup.py)
    # Can be one or more architectures, e.g. "6.1" or "3.5;5.2;6.0;6.1;7.0+PTX"
    # See cmake/Modules_CUDA_fix/upstream/FindCUDA/select_compute_arch.cmake
    _arch_list = os.environ.get('TORCH_CUDA_ARCH_LIST', None)

    # If not given, determine what's best for the GPU / CUDA version that can be found
    if not _arch_list:
        warnings.warn(
            "TORCH_CUDA_ARCH_LIST is not set, all archs for visible cards are included for compilation. \n"
            "If this is not desired, please set os.environ['TORCH_CUDA_ARCH_LIST'].")
        arch_list = []
        # the assumption is that the extension should run on any of the currently visible cards,
        # which could be of different types - therefore all archs for visible cards should be included
        for i in range(torch.cuda.device_count()):
            capability = torch.cuda.get_device_capability(i)
            supported_sm = [int(arch.split('_')[1])
                            for arch in torch.cuda.get_arch_list() if 'sm_' in arch]
            max_supported_sm = max((sm // 10, sm % 10) for sm in supported_sm)
            # Capability of the device may be higher than what's supported by the user's
            # NVCC, causing compilation error. User's NVCC is expected to match the one
            # used to build pytorch, so we use the maximum supported capability of pytorch
            # to clamp the capability.
            capability = min(max_supported_sm, capability)
            arch = f'{capability[0]}.{capability[1]}'
            if arch not in arch_list:
                arch_list.append(arch)
        arch_list = sorted(arch_list)
        arch_list[-1] += '+PTX'
    else:
        # Deal with lists that are ' ' separated (only deal with ';' after)
        _arch_list = _arch_list.replace(' ', ';')
        # Expand named arches
        for named_arch, archval in named_arches.items():
            _arch_list = _arch_list.replace(named_arch, archval)

        arch_list = _arch_list.split(';')

    flags = []
    for arch in arch_list:
        if arch not in valid_arch_strings:
            raise ValueError(f"Unknown CUDA arch ({arch}) or GPU not supported")
        else:
            num = arch[0] + arch[2:].split("+")[0]
            flags.append(f'-gencode=arch=compute_{num},code=sm_{num}')
            if arch.endswith('+PTX'):
                flags.append(f'-gencode=arch=compute_{num},code=compute_{num}')

    return sorted(set(flags))


def _get_rocm_arch_flags(cflags: Optional[List[str]] = None) -> List[str]:
    # If cflags is given, there may already be user-provided arch flags in it
    # (from `extra_compile_args`)
    if cflags is not None:
        for flag in cflags:
            if 'amdgpu-target' in flag or 'offload-arch' in flag:
                return ['-fno-gpu-rdc']
    # Use same defaults as used for building PyTorch
    # Allow env var to override, just like during initial cmake build.
    _archs = os.environ.get('PYTORCH_ROCM_ARCH', None)
    if not _archs:
        archFlags = torch._C._cuda_getArchFlags()
        if archFlags:
            archs = archFlags.split()
        else:
            archs = []
    else:
        archs = _archs.replace(' ', ';').split(';')
    flags = [f'--offload-arch={arch}' for arch in archs]
    flags += ['-fno-gpu-rdc']
    return flags

def _get_build_directory(name: str, verbose: bool) -> str:
    root_extensions_directory = os.environ.get('TORCH_EXTENSIONS_DIR')
    if root_extensions_directory is None:
        root_extensions_directory = get_default_build_root()
        cu_str = ('cpu' if torch.version.cuda is None else
                  f'cu{torch.version.cuda.replace(".", "")}')  # type: ignore[attr-defined]
        python_version = f'py{sys.version_info.major}{sys.version_info.minor}'
        build_folder = f'{python_version}_{cu_str}'

        root_extensions_directory = os.path.join(
            root_extensions_directory, build_folder)

    if verbose:
        print(f'Using {root_extensions_directory} as PyTorch extensions root...', file=sys.stderr)

    build_directory = os.path.join(root_extensions_directory, name)
    if not os.path.exists(build_directory):
        if verbose:
            print(f'Creating extension directory {build_directory}...', file=sys.stderr)
        # This is like mkdir -p, i.e. will also create parent directories.
        os.makedirs(build_directory, exist_ok=True)

    return build_directory


def _get_num_workers(verbose: bool) -> Optional[int]:
    max_jobs = os.environ.get('MAX_JOBS')
    if max_jobs is not None and max_jobs.isdigit():
        if verbose:
            print(f'Using envvar MAX_JOBS ({max_jobs}) as the number of workers...',
                  file=sys.stderr)
        return int(max_jobs)
    if verbose:
        print('Allowing ninja to set a default number of workers... '
              '(overridable by setting the environment variable MAX_JOBS=N)',
              file=sys.stderr)
    return None


def _run_ninja_build(build_directory: str, verbose: bool, error_prefix: str) -> None:
    command = ['ninja', '-v']
    num_workers = _get_num_workers(verbose)
    if num_workers is not None:
        command.extend(['-j', str(num_workers)])
    env = os.environ.copy()
    # Try to activate the vc env for the users
    if IS_WINDOWS and 'VSCMD_ARG_TGT_ARCH' not in env:
        from setuptools import distutils

        plat_name = distutils.util.get_platform()
        plat_spec = PLAT_TO_VCVARS[plat_name]

        vc_env = distutils._msvccompiler._get_vc_env(plat_spec)
        vc_env = {k.upper(): v for k, v in vc_env.items()}
        for k, v in env.items():
            uk = k.upper()
            if uk not in vc_env:
                vc_env[uk] = v
        env = vc_env
    try:
        sys.stdout.flush()
        sys.stderr.flush()
        # Warning: don't pass stdout=None to subprocess.run to get output.
        # subprocess.run assumes that sys.__stdout__ has not been modified and
        # attempts to write to it by default.  However, when we call _run_ninja_build
        # from ahead-of-time cpp extensions, the following happens:
        # 1) If the stdout encoding is not utf-8, setuptools detachs __stdout__.
        #    https://github.com/pypa/setuptools/blob/7e97def47723303fafabe48b22168bbc11bb4821/setuptools/dist.py#L1110
        #    (it probably shouldn't do this)
        # 2) subprocess.run (on POSIX, with no stdout override) relies on
        #    __stdout__ not being detached:
        #    https://github.com/python/cpython/blob/c352e6c7446c894b13643f538db312092b351789/Lib/subprocess.py#L1214
        # To work around this, we pass in the fileno directly and hope that
        # it is valid.
        stdout_fileno = 1
        subprocess.run(
            command,
            stdout=stdout_fileno if verbose else subprocess.PIPE,
            stderr=subprocess.STDOUT,
            cwd=build_directory,
            check=True,
            env=env)
    except subprocess.CalledProcessError as e:
        # Python 2 and 3 compatible way of getting the error object.
        _, error, _ = sys.exc_info()
        # error.output contains the stdout and stderr of the build attempt.
        message = error_prefix
        # `error` is a CalledProcessError (which has an `output`) attribute, but
        # mypy thinks it's Optional[BaseException] and doesn't narrow
        if hasattr(error, 'output') and error.output:  # type: ignore[union-attr]
            message += f": {error.output.decode(*SUBPROCESS_DECODE_ARGS)}"  # type: ignore[union-attr]
        raise RuntimeError(message) from e


def _get_exec_path(module_name, path):
    if IS_WINDOWS and TORCH_LIB_PATH not in os.getenv('PATH', '').split(';'):
        torch_lib_in_path = any(
            os.path.exists(p) and os.path.samefile(p, TORCH_LIB_PATH)
            for p in os.getenv('PATH', '').split(';')
        )
        if not torch_lib_in_path:
            os.environ['PATH'] = f"{TORCH_LIB_PATH};{os.getenv('PATH', '')}"
    return os.path.join(path, f'{module_name}{EXEC_EXT}')


def _import_module_from_library(module_name, path, is_python_module):
    filepath = os.path.join(path, f"{module_name}{LIB_EXT}")
    if is_python_module:
        # https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path
        spec = importlib.util.spec_from_file_location(module_name, filepath)
        assert spec is not None
        module = importlib.util.module_from_spec(spec)
        assert isinstance(spec.loader, importlib.abc.Loader)
        spec.loader.exec_module(module)
        return module
    else:
        torch.ops.load_library(filepath)


def _write_ninja_file_to_build_library(path,

                                       name,

                                       sources,

                                       extra_cflags,

                                       extra_cuda_cflags,

                                       extra_ldflags,

                                       extra_include_paths,

                                       with_cuda,

                                       is_standalone) -> None:
    extra_cflags = [flag.strip() for flag in extra_cflags]
    extra_cuda_cflags = [flag.strip() for flag in extra_cuda_cflags]
    extra_ldflags = [flag.strip() for flag in extra_ldflags]
    extra_include_paths = [flag.strip() for flag in extra_include_paths]

    # Turn into absolute paths so we can emit them into the ninja build
    # file wherever it is.
    user_includes = [os.path.abspath(file) for file in extra_include_paths]

    # include_paths() gives us the location of torch/extension.h
    system_includes = include_paths(with_cuda)
    # sysconfig.get_path('include') gives us the location of Python.h
    # Explicitly specify 'posix_prefix' scheme on non-Windows platforms to workaround error on some MacOS
    # installations where default `get_path` points to non-existing `/Library/Python/M.m/include` folder
    python_include_path = sysconfig.get_path('include', scheme='nt' if IS_WINDOWS else 'posix_prefix')
    if python_include_path is not None:
        system_includes.append(python_include_path)

    # Windows does not understand `-isystem`.
    if IS_WINDOWS:
        user_includes += system_includes
        system_includes.clear()

    common_cflags = []
    if not is_standalone:
        common_cflags.append(f'-DTORCH_EXTENSION_NAME={name}')
        common_cflags.append('-DTORCH_API_INCLUDE_EXTENSION_H')

    common_cflags += [f"{x}" for x in _get_pybind11_abi_build_flags()]

    common_cflags += [f'-I{include}' for include in user_includes]
    common_cflags += [f'-isystem {include}' for include in system_includes]

    common_cflags += [f"{x}" for x in _get_glibcxx_abi_build_flags()]

    if IS_WINDOWS:
        cflags = common_cflags + COMMON_MSVC_FLAGS + ['/std:c++17'] + extra_cflags
        cflags = _nt_quote_args(cflags)
    else:
        cflags = common_cflags + ['-fPIC', '-std=c++17'] + extra_cflags

    if with_cuda and IS_HIP_EXTENSION:
        cuda_flags = ['-DWITH_HIP'] + cflags + COMMON_HIP_FLAGS + COMMON_HIPCC_FLAGS
        cuda_flags += extra_cuda_cflags
        cuda_flags += _get_rocm_arch_flags(cuda_flags)
    elif with_cuda:
        cuda_flags = common_cflags + COMMON_NVCC_FLAGS + _get_cuda_arch_flags()
        if IS_WINDOWS:
            for flag in COMMON_MSVC_FLAGS:
                cuda_flags = ['-Xcompiler', flag] + cuda_flags
            for ignore_warning in MSVC_IGNORE_CUDAFE_WARNINGS:
                cuda_flags = ['-Xcudafe', '--diag_suppress=' + ignore_warning] + cuda_flags
            cuda_flags = cuda_flags + ['-std=c++17']
            cuda_flags = _nt_quote_args(cuda_flags)
            cuda_flags += _nt_quote_args(extra_cuda_cflags)
        else:
            cuda_flags += ['--compiler-options', "'-fPIC'"]
            cuda_flags += extra_cuda_cflags
            if not any(flag.startswith('-std=') for flag in cuda_flags):
                cuda_flags.append('-std=c++17')
            cc_env = os.getenv("CC")
            if cc_env is not None:
                cuda_flags = ['-ccbin', cc_env] + cuda_flags
    else:
        cuda_flags = None

    def object_file_path(source_file: str) -> str:
        # '/path/to/file.cpp' -> 'file'
        file_name = os.path.splitext(os.path.basename(source_file))[0]
        if _is_cuda_file(source_file) and with_cuda:
            # Use a different object filename in case a C++ and CUDA file have
            # the same filename but different extension (.cpp vs. .cu).
            target = f'{file_name}.cuda.o'
        else:
            target = f'{file_name}.o'
        return target

    objects = [object_file_path(src) for src in sources]
    ldflags = ([] if is_standalone else [SHARED_FLAG]) + extra_ldflags

    # The darwin linker needs explicit consent to ignore unresolved symbols.
    if IS_MACOS:
        ldflags.append('-undefined dynamic_lookup')
    elif IS_WINDOWS:
        ldflags = _nt_quote_args(ldflags)

    ext = EXEC_EXT if is_standalone else LIB_EXT
    library_target = f'{name}{ext}'

    _write_ninja_file(
        path=path,
        cflags=cflags,
        post_cflags=None,
        cuda_cflags=cuda_flags,
        cuda_post_cflags=None,
        cuda_dlink_post_cflags=None,
        sources=sources,
        objects=objects,
        ldflags=ldflags,
        library_target=library_target,
        with_cuda=with_cuda)


def _write_ninja_file(path,

                      cflags,

                      post_cflags,

                      cuda_cflags,

                      cuda_post_cflags,

                      cuda_dlink_post_cflags,

                      sources,

                      objects,

                      ldflags,

                      library_target,

                      with_cuda) -> None:
    r"""Write a ninja file that does the desired compiling and linking.



    `path`: Where to write this file

    `cflags`: list of flags to pass to $cxx. Can be None.

    `post_cflags`: list of flags to append to the $cxx invocation. Can be None.

    `cuda_cflags`: list of flags to pass to $nvcc. Can be None.

    `cuda_postflags`: list of flags to append to the $nvcc invocation. Can be None.

    `sources`: list of paths to source files

    `objects`: list of desired paths to objects, one per source.

    `ldflags`: list of flags to pass to linker. Can be None.

    `library_target`: Name of the output library. Can be None; in that case,

                      we do no linking.

    `with_cuda`: If we should be compiling with CUDA.

    """
    def sanitize_flags(flags):
        if flags is None:
            return []
        else:
            return [flag.strip() for flag in flags]

    cflags = sanitize_flags(cflags)
    post_cflags = sanitize_flags(post_cflags)
    cuda_cflags = sanitize_flags(cuda_cflags)
    cuda_post_cflags = sanitize_flags(cuda_post_cflags)
    cuda_dlink_post_cflags = sanitize_flags(cuda_dlink_post_cflags)
    ldflags = sanitize_flags(ldflags)

    # Sanity checks...
    assert len(sources) == len(objects)
    assert len(sources) > 0

    compiler = get_cxx_compiler()

    # Version 1.3 is required for the `deps` directive.
    config = ['ninja_required_version = 1.3']
    config.append(f'cxx = {compiler}')
    if with_cuda or cuda_dlink_post_cflags:
        if "PYTORCH_NVCC" in os.environ:
            nvcc = os.getenv("PYTORCH_NVCC")    # user can set nvcc compiler with ccache using the environment variable here
        else:
            if IS_HIP_EXTENSION:
                nvcc = _join_rocm_home('bin', 'hipcc')
            else:
                nvcc = _join_cuda_home('bin', 'nvcc')
        config.append(f'nvcc = {nvcc}')

    if IS_HIP_EXTENSION:
        post_cflags = COMMON_HIP_FLAGS + post_cflags
    flags = [f'cflags = {" ".join(cflags)}']
    flags.append(f'post_cflags = {" ".join(post_cflags)}')
    if with_cuda:
        flags.append(f'cuda_cflags = {" ".join(cuda_cflags)}')
        flags.append(f'cuda_post_cflags = {" ".join(cuda_post_cflags)}')
    flags.append(f'cuda_dlink_post_cflags = {" ".join(cuda_dlink_post_cflags)}')
    flags.append(f'ldflags = {" ".join(ldflags)}')

    # Turn into absolute paths so we can emit them into the ninja build
    # file wherever it is.
    sources = [os.path.abspath(file) for file in sources]

    # See https://ninja-build.org/build.ninja.html for reference.
    compile_rule = ['rule compile']
    if IS_WINDOWS:
        compile_rule.append(
            '  command = cl /showIncludes $cflags -c $in /Fo$out $post_cflags')
        compile_rule.append('  deps = msvc')
    else:
        compile_rule.append(
            '  command = $cxx -MMD -MF $out.d $cflags -c $in -o $out $post_cflags')
        compile_rule.append('  depfile = $out.d')
        compile_rule.append('  deps = gcc')

    if with_cuda:
        cuda_compile_rule = ['rule cuda_compile']
        nvcc_gendeps = ''
        # --generate-dependencies-with-compile is not supported by ROCm
        # Nvcc flag `--generate-dependencies-with-compile` is not supported by sccache, which may increase build time.
        if torch.version.cuda is not None and os.getenv('TORCH_EXTENSION_SKIP_NVCC_GEN_DEPENDENCIES', '0') != '1':
            cuda_compile_rule.append('  depfile = $out.d')
            cuda_compile_rule.append('  deps = gcc')
            # Note: non-system deps with nvcc are only supported
            # on Linux so use --generate-dependencies-with-compile
            # to make this work on Windows too.
            nvcc_gendeps = '--generate-dependencies-with-compile --dependency-output $out.d'
        cuda_compile_rule.append(
            f'  command = $nvcc {nvcc_gendeps} $cuda_cflags -c $in -o $out $cuda_post_cflags')

    # Emit one build rule per source to enable incremental build.
    build = []
    for source_file, object_file in zip(sources, objects):
        is_cuda_source = _is_cuda_file(source_file) and with_cuda
        rule = 'cuda_compile' if is_cuda_source else 'compile'
        if IS_WINDOWS:
            source_file = source_file.replace(':', '$:')
            object_file = object_file.replace(':', '$:')
        source_file = source_file.replace(" ", "$ ")
        object_file = object_file.replace(" ", "$ ")
        build.append(f'build {object_file}: {rule} {source_file}')

    if cuda_dlink_post_cflags:
        devlink_out = os.path.join(os.path.dirname(objects[0]), 'dlink.o')
        devlink_rule = ['rule cuda_devlink']
        devlink_rule.append('  command = $nvcc $in -o $out $cuda_dlink_post_cflags')
        devlink = [f'build {devlink_out}: cuda_devlink {" ".join(objects)}']
        objects += [devlink_out]
    else:
        devlink_rule, devlink = [], []

    if library_target is not None:
        link_rule = ['rule link']
        if IS_WINDOWS:
            cl_paths = subprocess.check_output(['where',
                                                'cl']).decode(*SUBPROCESS_DECODE_ARGS).split('\r\n')
            if len(cl_paths) >= 1:
                cl_path = os.path.dirname(cl_paths[0]).replace(':', '$:')
            else:
                raise RuntimeError("MSVC is required to load C++ extensions")
            link_rule.append(f'  command = "{cl_path}/link.exe" $in /nologo $ldflags /out:$out')
        else:
            link_rule.append('  command = $cxx $in $ldflags -o $out')

        link = [f'build {library_target}: link {" ".join(objects)}']

        default = [f'default {library_target}']
    else:
        link_rule, link, default = [], [], []

    # 'Blocks' should be separated by newlines, for visual benefit.
    blocks = [config, flags, compile_rule]
    if with_cuda:
        blocks.append(cuda_compile_rule)  # type: ignore[possibly-undefined]
    blocks += [devlink_rule, link_rule, build, devlink, link, default]
    content = "\n\n".join("\n".join(b) for b in blocks)
    # Ninja requires a new lines at the end of the .ninja file
    content += "\n"
    _maybe_write(path, content)

def _join_cuda_home(*paths) -> str:
    """

    Join paths with CUDA_HOME, or raises an error if it CUDA_HOME is not set.



    This is basically a lazy way of raising an error for missing $CUDA_HOME

    only once we need to get any CUDA-specific path.

    """
    if CUDA_HOME is None:
        raise OSError('CUDA_HOME environment variable is not set. '
                      'Please set it to your CUDA install root.')
    return os.path.join(CUDA_HOME, *paths)


def _is_cuda_file(path: str) -> bool:
    valid_ext = ['.cu', '.cuh']
    if IS_HIP_EXTENSION:
        valid_ext.append('.hip')
    return os.path.splitext(path)[1] in valid_ext