File size: 64,118 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
import difflib
import os
import io
import shutil
import struct
import sys
import torch
import tarfile
import tempfile
import warnings
from contextlib import closing, contextmanager
from enum import Enum
from ._utils import _import_dotted_name
from torch._sources import get_source_lines_and_file
from torch.types import Storage
from torch.storage import _get_dtype_from_pickle_storage_type
from typing import Any, BinaryIO, Callable, cast, Dict, Optional, Type, Tuple, Union, IO, List
from typing_extensions import TypeAlias, TypeGuard  # Python 3.10+
import copyreg
import pickle
import torch._weights_only_unpickler as _weights_only_unpickler

DEFAULT_PROTOCOL = 2

LONG_SIZE = struct.Struct('=l').size
INT_SIZE = struct.Struct('=i').size
SHORT_SIZE = struct.Struct('=h').size

MAGIC_NUMBER = 0x1950a86a20f9469cfc6c
PROTOCOL_VERSION = 1001
STORAGE_KEY_SEPARATOR = ','

FILE_LIKE: TypeAlias = Union[str, os.PathLike, BinaryIO, IO[bytes]]
MAP_LOCATION: TypeAlias = Optional[Union[Callable[[torch.Tensor, str], torch.Tensor], torch.device, str, Dict[str, str]]]
STORAGE: TypeAlias = Union[Storage, torch.storage.TypedStorage, torch.UntypedStorage]

__all__ = [
    'SourceChangeWarning',
    'mkdtemp',
    'register_package',
    'check_module_version_greater_or_equal',
    'validate_cuda_device',
    'validate_hpu_device',
    'location_tag',
    'default_restore_location',
    'normalize_storage_type',
    'storage_to_tensor_type',
    'save',
    'load',
    'StorageType',
    'LoadEndianness',
    'get_default_load_endianness',
    'set_default_load_endianness',
]


class SourceChangeWarning(Warning):
    pass


@contextmanager
def mkdtemp():
    path = tempfile.mkdtemp()
    try:
        yield path
    finally:
        shutil.rmtree(path)


_package_registry: List[Tuple[int, Callable[[STORAGE], Optional[str]], Callable[[STORAGE, str], Optional[STORAGE]]]] = []

class LoadEndianness(Enum):
    NATIVE = 1
    LITTLE = 2
    BIG = 3

_default_load_endian: Optional[LoadEndianness] = None

def get_default_load_endianness() -> Optional[LoadEndianness]:
    '''

    Get fallback byte order for loading files



    If byteorder mark is not present in saved checkpoint,

    this byte order is used as fallback.

    By default, it's "native" byte order.



    Returns:

        default_load_endian: Optional[LoadEndianness]

    '''
    return _default_load_endian

def set_default_load_endianness(endianness):
    '''

    Set fallback byte order for loading files



    If byteorder mark is not present in saved checkpoint,

    this byte order is used as fallback.

    By default, it's "native" byte order.



    Args:

        endianness: the new fallback byte order

    '''
    global _default_load_endian
    if not isinstance(endianness, LoadEndianness) and endianness is not None:
        raise TypeError("Invalid argument type in function set_default_load_endianness")
    _default_load_endian = endianness

def _is_zipfile(f) -> bool:
    # This is a stricter implementation than zipfile.is_zipfile().
    # zipfile.is_zipfile() is True if the magic number appears anywhere in the
    # binary. Since we expect the files here to be generated by torch.save or
    # torch.jit.save, it's safe to only check the start bytes and avoid
    # collisions and assume the zip has only 1 file.
    # See bugs.python.org/issue28494.

    start = f.tell()
    # Read the first few bytes and match against the ZIP file signature
    local_header_magic_number = b'PK\x03\x04'
    read_bytes = f.read(len(local_header_magic_number))
    f.seek(start)
    return read_bytes == local_header_magic_number


def register_package(

    priority: int,

    tagger: Callable[[STORAGE], Optional[str]],

    deserializer: Callable[[STORAGE, str], Optional[STORAGE]]

):
    '''

    Registers callables for tagging and deserializing storage objects with an associated priority.

    Tagging associates a device with a storage object at save time while deserializing moves a

    storage object to an appropriate device at load time. :attr:`tagger` and :attr:`deserializer`

    are run in the order given by their :attr:`priority` until a tagger/deserializer returns a

    value that is not `None`.



    To override the deserialization behavior for a device in the global registry, one can register a

    tagger with a higher priority than the existing tagger.



    This function can also be used to register a tagger and deserializer for new devices.



    Args:

        priority: Indicates the priority associated with the tagger and deserializer, where a lower

            value indicates higher priority.

        tagger: Callable that takes in a storage object and returns its tagged device as a string

            or None.

        deserializer: Callable that takes in storage object and a device string and returns a storage

            object on the appropriate device or None.



    Returns:

        `None`



    Example:

        >>> def ipu_tag(obj):

        >>>     if obj.device.type == 'ipu':

        >>>         return 'ipu'

        >>> def ipu_deserialize(obj, location):

        >>>     if location.startswith('ipu'):

        >>>         ipu = getattr(torch, "ipu", None)

        >>>         assert ipu is not None, "IPU device module is not loaded"

        >>>         assert torch.ipu.is_available(), "ipu is not available"

        >>>         return obj.ipu(location)

        >>> torch.serialization.register_package(11, ipu_tag, ipu_deserialize)

    '''
    queue_elem = (priority, tagger, deserializer)
    _package_registry.append(queue_elem)
    _package_registry.sort()


def check_module_version_greater_or_equal(module, req_version_tuple, error_if_malformed=True):
    '''

    Check if a module's version satisfies requirements



    Usually, a module's version string will be like 'x.y.z', which would be represented

    as a tuple (x, y, z), but sometimes it could be an unexpected format. If the version

    string does not match the given tuple's format up to the length of the tuple, then

    error and exit or emit a warning.



    Args:

        module: the module to check the version of

        req_version_tuple: tuple (usually of ints) representing the required version

        error_if_malformed: whether we should exit if module version string is malformed



    Returns:

        requirement_is_met: bool

    '''
    try:
        version_strs = module.__version__.split('.')
        # Cast module version fields to match the types of the required version
        module_version = tuple(
            type(req_field)(version_strs[idx]) for idx, req_field in enumerate(req_version_tuple)
        )
        requirement_is_met = module_version >= req_version_tuple

    except Exception as e:
        message = (
            f"'{module.__name__}' module version string is malformed '{module.__version__}' and cannot be compared"
            f" with tuple {str(req_version_tuple)}"
        )
        if error_if_malformed:
            raise RuntimeError(message) from e
        else:
            warnings.warn(message + ', but continuing assuming that requirement is met')
            requirement_is_met = True

    return requirement_is_met


def _cpu_tag(obj):
    if obj.device.type == 'cpu':
        return 'cpu'


def _cuda_tag(obj):
    if obj.device.type == 'cuda':
        return 'cuda:' + str(obj.device.index)

def _hpu_tag(obj):
    if obj.device.type == 'hpu':
        return 'hpu:' + str(obj.device.index)

def _mps_tag(obj):
    if obj.device.type == 'mps':
        return 'mps'


def _meta_tag(obj):
    if obj.device.type == 'meta':
        return 'meta'


def _privateuse1_tag(obj):
    backend_name = torch._C._get_privateuse1_backend_name()
    if obj.device.type == backend_name:
        if obj.device.index is None:
            return backend_name
        else:
            return backend_name + ':' + str(obj.device.index)


def _cpu_deserialize(obj, location):
    if location == 'cpu':
        return obj


def validate_cuda_device(location):
    device = torch.cuda._utils._get_device_index(location, True)

    if not torch.cuda.is_available():
        raise RuntimeError('Attempting to deserialize object on a CUDA '
                           'device but torch.cuda.is_available() is False. '
                           'If you are running on a CPU-only machine, '
                           'please use torch.load with map_location=torch.device(\'cpu\') '
                           'to map your storages to the CPU.')
    device_count = torch.cuda.device_count()
    if device >= device_count:
        raise RuntimeError('Attempting to deserialize object on CUDA device '
                           f'{device} but torch.cuda.device_count() is {device_count}. Please use '
                           'torch.load with map_location to map your storages '
                           'to an existing device.')
    return device


def _cuda_deserialize(obj, location):
    if location.startswith('cuda'):
        device = validate_cuda_device(location)
        if getattr(obj, "_torch_load_uninitialized", False):
            with torch.cuda.device(device):
                return torch.UntypedStorage(obj.nbytes(), device=torch.device(location))
        else:
            return obj.cuda(device)


def validate_hpu_device(location):
    hpu = getattr(torch, "hpu", None)
    assert hpu is not None, "HPU device module is not loaded"
    device = hpu._utils._get_device_index(location, optional=True)

    if not hpu.is_available():
        raise RuntimeError('Attempting to deserialize object on a HPU '
                           'device but torch.hpu.is_available() is False. '
                           'If you are running on a CPU-only machine, '
                           'please use torch.load with map_location=torch.device(\'cpu\') '
                           'to map your storages to the CPU.')
    device_count = hpu.device_count()
    if device >= device_count:
        raise RuntimeError('Attempting to deserialize object on HPU device '
                           f'{device} but torch.hpu.device_count() is {device_count}. Please use '
                           'torch.load with map_location to map your storages '
                           'to an existing device.')
    return device


def _hpu_deserialize(obj, location):
    if location.startswith('hpu'):
        hpu = getattr(torch, "hpu", None)
        assert hpu is not None, "HPU device module is not loaded"
        device = validate_hpu_device(location)
        if getattr(obj, "_torch_load_uninitialized", False):
            with hpu.device(device):
                return torch.UntypedStorage(obj.nbytes(), device=torch.device(location))
        else:
            return obj.hpu(device)


def _mps_deserialize(obj, location):
    if location.startswith('mps'):
        return obj.mps()


def _meta_deserialize(obj, location):
    if location == 'meta':
        return torch.UntypedStorage(obj.nbytes(), device='meta')


def _validate_privateuse1_device(location, backend_name):
    '''

    Check whether the device index of privateuse1 is valid



    Register a device_module of privateuse1 by torch._register_device_module.

    Implement the following methods in device_module like cuda:

    device_module._utils._get_device_index(location, True),

    device_module.device_count().



    Args:

        location: string of device

        backend_name: the name of privateuse1, which can be renamed



    Returns:

        device_index: int

    '''
    if not hasattr(torch, backend_name):
        raise RuntimeError(f'The {backend_name.upper()} device module is not registered. '
                           'If you are running on a CPU-only machine, '
                           'please use torch.load with map_location=torch.device(\'cpu\') '
                           'to map your storages to the CPU.')
    device_module = getattr(torch, backend_name)
    if hasattr(device_module, '_utils') and hasattr(device_module._utils, '_get_device_index'):
        device_index = device_module._utils._get_device_index(location, True)
    else:
        device = torch.device(location)
        device_index = device.index if device.index else 0
    if hasattr(device_module, 'is_available') and not device_module.is_available():
        raise RuntimeError(f'Attempting to deserialize object on a {backend_name.upper()} '
                           f'device but torch.{backend_name}.is_available() is False. '
                           'If you are running on a CPU-only machine, '
                           'please use torch.load with map_location=torch.device(\'cpu\') '
                           'to map your storages to the CPU.')
    if hasattr(device_module, 'device_count'):
        device_count = device_module.device_count()
        if device_index >= device_count:
            raise RuntimeError(f'Attempting to deserialize object on {backend_name.upper()} device '
                               f'{device_index} but torch.{backend_name}.device_count() is {device_count}. '
                               'Please use torch.load with map_location to map your storages '
                               'to an existing device.')
    return device_index


def _privateuse1_deserialize(obj, location):
    backend_name = torch._C._get_privateuse1_backend_name()
    if location.startswith(backend_name):
        if not hasattr(obj, backend_name):
            raise RuntimeError(f'Attempting to load the storages to the {backend_name.upper()} device '
                               f'but torch.storage._StorageBase.{backend_name}() or '
                               f'torch.storage.TypedStorage.{backend_name}() is not generated. '
                               'Please use torch.utils.generate_methods_for_privateuse1_backend '
                               f'to generate storage.{backend_name}() method first.')
        device_index = _validate_privateuse1_device(location, backend_name)
        return getattr(obj, backend_name)(device_index)


register_package(10, _cpu_tag, _cpu_deserialize)
register_package(20, _cuda_tag, _cuda_deserialize)
register_package(21, _mps_tag, _mps_deserialize)
register_package(22, _meta_tag, _meta_deserialize)
register_package(23, _privateuse1_tag, _privateuse1_deserialize)
register_package(24, _hpu_tag, _hpu_deserialize)


def location_tag(storage: Union[Storage, torch.storage.TypedStorage, torch.UntypedStorage]):
    for _, tagger, _ in _package_registry:
        location = tagger(storage)
        if location:
            return location
    raise RuntimeError("don't know how to determine data location of "
                       + torch.typename(storage))


def default_restore_location(storage, location):
    for _, _, fn in _package_registry:
        result = fn(storage, location)
        if result is not None:
            return result
    raise RuntimeError("don't know how to restore data location of "
                       + torch.typename(storage) + " (tagged with "
                       + location + ")")


def normalize_storage_type(storage_type):
    return getattr(torch, storage_type.__name__)


def storage_to_tensor_type(storage):
    storage_type = type(storage)
    module = _import_dotted_name(storage_type.__module__)
    return getattr(module, storage_type.__name__.replace('Storage', 'Tensor'))


def _is_path(name_or_buffer) -> TypeGuard[Union[str, os.PathLike]]:
    return isinstance(name_or_buffer, (str, os.PathLike))


class _opener:
    def __init__(self, file_like):
        self.file_like = file_like

    def __enter__(self):
        return self.file_like

    def __exit__(self, *args):
        pass


class _open_file(_opener):
    def __init__(self, name, mode):
        super().__init__(open(name, mode))

    def __exit__(self, *args):
        self.file_like.close()


class _open_buffer_reader(_opener):
    def __init__(self, buffer):
        super().__init__(buffer)
        _check_seekable(buffer)


class _open_buffer_writer(_opener):
    def __exit__(self, *args):
        self.file_like.flush()


def _open_file_like(name_or_buffer, mode):
    if _is_path(name_or_buffer):
        return _open_file(name_or_buffer, mode)
    else:
        if 'w' in mode:
            return _open_buffer_writer(name_or_buffer)
        elif 'r' in mode:
            return _open_buffer_reader(name_or_buffer)
        else:
            raise RuntimeError(f"Expected 'r' or 'w' in mode but got {mode}")


class _open_zipfile_reader(_opener):
    def __init__(self, name_or_buffer) -> None:
        super().__init__(torch._C.PyTorchFileReader(name_or_buffer))


class _open_zipfile_writer_file(_opener):
    def __init__(self, name) -> None:
        self.file_stream = None
        self.name = str(name)
        try:
            self.name.encode('ascii')
        except UnicodeEncodeError:
            # PyTorchFileWriter only supports ascii filename.
            # For filenames with non-ascii characters, we rely on Python
            # for writing out the file.
            self.file_stream = io.FileIO(self.name, mode='w')
            super().__init__(torch._C.PyTorchFileWriter(self.file_stream))
        else:
            super().__init__(torch._C.PyTorchFileWriter(self.name))

    def __exit__(self, *args) -> None:
        self.file_like.write_end_of_file()
        if self.file_stream is not None:
            self.file_stream.close()


class _open_zipfile_writer_buffer(_opener):
    def __init__(self, buffer) -> None:
        if not callable(getattr(buffer, "write", None)):
            msg = f"Buffer of {str(type(buffer)).strip('<>')} has no callable attribute 'write'"
            if not hasattr(buffer, "write"):
                raise AttributeError(msg)
            raise TypeError(msg)
        self.buffer = buffer
        super().__init__(torch._C.PyTorchFileWriter(buffer))

    def __exit__(self, *args) -> None:
        self.file_like.write_end_of_file()
        self.buffer.flush()


def _open_zipfile_writer(name_or_buffer):
    container: Type[_opener]
    if _is_path(name_or_buffer):
        container = _open_zipfile_writer_file
    else:
        container = _open_zipfile_writer_buffer
    return container(name_or_buffer)


def _is_compressed_file(f) -> bool:
    compress_modules = ['gzip']
    try:
        return f.__module__ in compress_modules
    except AttributeError:
        return False


def _should_read_directly(f):
    """

    Checks if f is a file that should be read directly. It should be read

    directly if it is backed by a real file (has a fileno) and is not a

    a compressed file (e.g. gzip)

    """
    if _is_compressed_file(f):
        return False
    try:
        return f.fileno() >= 0
    except io.UnsupportedOperation:
        return False
    except AttributeError:
        return False


def _check_seekable(f) -> bool:

    def raise_err_msg(patterns, e):
        for p in patterns:
            if p in str(e):
                msg = (str(e) + ". You can only torch.load from a file that is seekable."
                                + " Please pre-load the data into a buffer like io.BytesIO and"
                                + " try to load from it instead.")
                raise type(e)(msg)
        raise e

    try:
        f.seek(f.tell())
        return True
    except (io.UnsupportedOperation, AttributeError) as e:
        raise_err_msg(["seek", "tell"], e)
    return False


def _check_dill_version(pickle_module) -> None:
    '''Checks if using dill as the pickle module, and if so, checks if it is the correct version.

    If dill version is lower than 0.3.1, a ValueError is raised.



    Args:

        pickle_module: module used for pickling metadata and objects



    '''
    if pickle_module is not None and pickle_module.__name__ == 'dill':
        required_dill_version = (0, 3, 1)
        if not check_module_version_greater_or_equal(pickle_module, required_dill_version, False):
            raise ValueError((
                "'torch' supports dill >= {}, but you have dill {}."
                " Please upgrade dill or switch to 'pickle'"
            ).format(
                '.'.join([str(num) for num in required_dill_version]),
                pickle_module.__version__
            ))


def _check_save_filelike(f):
    if not _is_path(f) and not hasattr(f, 'write'):
        raise AttributeError(
            "expected 'f' to be string, path, or a file-like object with "
            "a 'write' attribute")


def save(

    obj: object,

    f: FILE_LIKE,

    pickle_module: Any = pickle,

    pickle_protocol: int = DEFAULT_PROTOCOL,

    _use_new_zipfile_serialization: bool = True,

    _disable_byteorder_record: bool = False

) -> None:
    # Reference: https://github.com/pytorch/pytorch/issues/54354
    # The first line of this docstring overrides the one Sphinx generates for the
    # documentation. We need it so that Sphinx doesn't leak `pickle`s path from
    # the build environment (e.g. `<module 'pickle' from '/leaked/path').

    """save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True)



    Saves an object to a disk file.



    See also: :ref:`saving-loading-tensors`



    Args:

        obj: saved object

        f: a file-like object (has to implement write and flush) or a string or

           os.PathLike object containing a file name

        pickle_module: module used for pickling metadata and objects

        pickle_protocol: can be specified to override the default protocol



    .. note::

        A common PyTorch convention is to save tensors using .pt file extension.



    .. note::

        PyTorch preserves storage sharing across serialization. See

        :ref:`preserve-storage-sharing` for more details.



    .. note::

        The 1.6 release of PyTorch switched ``torch.save`` to use a new

        zipfile-based file format. ``torch.load`` still retains the ability to

        load files in the old format. If for any reason you want ``torch.save``

        to use the old format, pass the kwarg ``_use_new_zipfile_serialization=False``.



    Example:

        >>> # xdoctest: +SKIP("makes cwd dirty")

        >>> # Save to file

        >>> x = torch.tensor([0, 1, 2, 3, 4])

        >>> torch.save(x, 'tensor.pt')

        >>> # Save to io.BytesIO buffer

        >>> buffer = io.BytesIO()

        >>> torch.save(x, buffer)

    """
    torch._C._log_api_usage_once("torch.save")
    _check_dill_version(pickle_module)
    _check_save_filelike(f)

    if _use_new_zipfile_serialization:
        with _open_zipfile_writer(f) as opened_zipfile:
            _save(obj, opened_zipfile, pickle_module, pickle_protocol, _disable_byteorder_record)
            return
    else:
        with _open_file_like(f, 'wb') as opened_file:
            _legacy_save(obj, opened_file, pickle_module, pickle_protocol)


def _legacy_save(obj, f, pickle_module, pickle_protocol) -> None:
    import torch.nn as nn
    serialized_container_types = {}
    serialized_storages = {}

    # Since loading storages that view the same data with different dtypes is
    # not supported, we need to keep track of the dtype associated with each
    # storage data_ptr and throw an error if the dtype is ever different.
    # TODO: This feature could be added in the future
    storage_dtypes: Dict[int, torch.dtype] = {}

    def persistent_id(obj: Any) -> Optional[Tuple]:
        # FIXME: the docs say that persistent_id should only return a string
        # but torch store returns tuples. This works only in the binary protocol
        # see
        # https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
        # https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
        if isinstance(obj, type) and issubclass(obj, nn.Module):
            if obj in serialized_container_types:
                return None
            serialized_container_types[obj] = True
            source_file = source = None
            try:
                source_lines, _, source_file = get_source_lines_and_file(obj)
                source = ''.join(source_lines)
            except Exception:  # saving the source is optional, so we can ignore any errors
                warnings.warn("Couldn't retrieve source code for container of "
                              "type " + obj.__name__ + ". It won't be checked "
                              "for correctness upon loading.")
            return ('module', obj, source_file, source)

        if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
            storage: torch.UntypedStorage

            if isinstance(obj, torch.storage.TypedStorage):
                # TODO: Once we decide to break serialization FC, this case
                # can be deleted
                storage = obj._untyped_storage
                storage_dtype = obj.dtype
                storage_type_str = obj._pickle_storage_type()
                storage_type = getattr(torch, storage_type_str)
                dtype = obj.dtype
                storage_numel = obj._size()

            elif isinstance(obj, torch.UntypedStorage):
                storage = obj
                storage_dtype = torch.uint8
                storage_type = normalize_storage_type(type(obj))
                dtype = torch.uint8
                storage_numel = storage.nbytes()
            else:
                raise TypeError(f'type not recognized: {type(obj)}')

            # If storage is allocated, ensure that any other saved storages
            # pointing to the same data all have the same dtype. If storage is
            # not allocated, don't perform this check
            if storage.data_ptr() != 0:
                if storage.data_ptr() in storage_dtypes:
                    if storage_dtype != storage_dtypes[storage.data_ptr()]:
                        raise RuntimeError(
                            'Cannot save multiple tensors or storages that '
                            'view the same data as different types')
                else:
                    storage_dtypes[storage.data_ptr()] = storage_dtype

            view_metadata: Optional[Tuple[str, int, int]]

            # Offset is always 0, but we keep it for backwards compatibility
            # with the old serialization format (which supported storage views)
            offset = 0
            storage_key = str(storage._cdata)
            location = location_tag(storage)

            # TODO: There's an issue here with FC. It might be impossible to
            # solve, but it's worth noting. Imagine we save a list `[storage,
            # tensor]`, where `tensor.storage()` is the same as `storage`, and
            # `tensor.element_size() > 1`. Let's say that `tensor.dtype ==
            # torch.float`.  The storage will be serialized with element size
            # of 1, since we're choosing to serialize the first occurance of
            # a duplicate storage. Since this legacy serialization format saves
            # the numel of the storage, rather than nbytes directly, we'll be
            # effectively saving nbytes in this case.  We'll be able to load it
            # and the tensor back up with no problems in _this_ and future
            # versions of pytorch, but in older versions, here's the problem:
            # the storage will be loaded up as a UntypedStorage, and then the
            # FloatTensor will loaded and the UntypedStorage will be assigned to
            # it. Since the storage dtype does not match the tensor dtype, this
            # will cause an error.  If we reverse the list, like `[tensor,
            # storage]`, then we will save the `tensor.storage()` as a faked
            # `FloatStorage`, and the saved size will be the correct
            # dtype-specific numel count that old versions expect. `tensor`
            # will be able to load up properly in old versions, pointing to
            # a FloatStorage. However, `storage` is still being translated to
            # a UntypedStorage, and it will try to resolve to the same
            # FloatStorage that `tensor` contains. This will also cause an
            # error. It doesn't seem like there's any way around this.
            # Probably, we just cannot maintain FC for the legacy format if the
            # saved list contains both a tensor and a storage that point to the
            # same data.  We should still be able to maintain FC for lists of
            # just tensors, as long as all views share the same dtype as the
            # tensor they are viewing.

            if storage_key not in serialized_storages:
                serialized_storages[storage_key] = (storage, dtype)
            is_view = storage._cdata != storage._cdata
            if is_view:
                view_metadata = (str(storage._cdata), offset, storage.nbytes())
            else:
                view_metadata = None

            res = ('storage',
                   storage_type,
                   storage_key,
                   location,
                   storage_numel,
                   view_metadata)
            return res
        return None

    sys_info = dict(
        protocol_version=PROTOCOL_VERSION,
        little_endian=sys.byteorder == 'little',
        type_sizes=dict(
            short=SHORT_SIZE,
            int=INT_SIZE,
            long=LONG_SIZE,
        ),
    )

    pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol)
    pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol)
    pickle_module.dump(sys_info, f, protocol=pickle_protocol)
    pickler = pickle_module.Pickler(f, protocol=pickle_protocol)
    pickler.persistent_id = persistent_id
    pickler.dump(obj)

    serialized_storage_keys = sorted(serialized_storages.keys())
    pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol)
    f.flush()
    for key in serialized_storage_keys:
        storage, dtype = serialized_storages[key]
        storage._write_file(f, _should_read_directly(f), True, torch._utils._element_size(dtype))


def _save(obj, zip_file, pickle_module, pickle_protocol, _disable_byteorder_record):
    serialized_storages = {}
    id_map: Dict[int, str] = {}

    # Since loading storages that view the same data with different dtypes is
    # not supported, we need to keep track of the dtype associated with each
    # storage data_ptr and throw an error if the dtype is ever different.
    # TODO: This feature could be added in the future
    storage_dtypes: Dict[int, torch.dtype] = {}

    def persistent_id(obj):
        # FIXME: the docs say that persistent_id should only return a string
        # but torch store returns tuples. This works only in the binary protocol
        # see
        # https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
        # https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
        if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):

            if isinstance(obj, torch.storage.TypedStorage):
                # TODO: Once we decide to break serialization FC, this case
                # can be deleted
                storage = obj._untyped_storage
                storage_dtype = obj.dtype
                storage_type_str = obj._pickle_storage_type()
                storage_type = getattr(torch, storage_type_str)
                storage_numel = obj._size()

            else:
                storage = obj
                storage_dtype = torch.uint8
                storage_type = normalize_storage_type(type(obj))
                storage_numel = storage.nbytes()

            # If storage is allocated, ensure that any other saved storages
            # pointing to the same data all have the same dtype. If storage is
            # not allocated, don't perform this check
            if storage.data_ptr() != 0:
                if storage.data_ptr() in storage_dtypes:
                    if storage_dtype != storage_dtypes[storage.data_ptr()]:
                        raise RuntimeError(
                            'Cannot save multiple tensors or storages that '
                            'view the same data as different types')
                else:
                    storage_dtypes[storage.data_ptr()] = storage_dtype

            storage_key = id_map.setdefault(storage._cdata, str(len(id_map)))
            location = location_tag(storage)
            serialized_storages[storage_key] = storage

            return ('storage',
                    storage_type,
                    storage_key,
                    location,
                    storage_numel)

        return None

    # Write the pickle data for `obj`
    data_buf = io.BytesIO()
    pickler = pickle_module.Pickler(data_buf, protocol=pickle_protocol)
    pickler.persistent_id = persistent_id
    pickler.dump(obj)
    data_value = data_buf.getvalue()
    zip_file.write_record('data.pkl', data_value, len(data_value))

    # Write byte order marker
    if not _disable_byteorder_record:
        if sys.byteorder not in ['little', 'big']:
            raise ValueError('Unknown endianness type: ' + sys.byteorder)

        zip_file.write_record('byteorder', sys.byteorder, len(sys.byteorder))

    # Write each tensor to a file named tensor/the_tensor_key in the zip archive
    for key in sorted(serialized_storages.keys()):
        name = f'data/{key}'
        storage = serialized_storages[key]
        # given that we copy things around anyway, we might use storage.cpu()
        # this means to that to get tensors serialized, you need to implement
        # .cpu() on the underlying Storage
        if storage.device.type != 'cpu':
            storage = storage.cpu()
        # Now that it is on the CPU we can directly copy it into the zip file
        num_bytes = storage.nbytes()
        zip_file.write_record(name, storage, num_bytes)


def load(

    f: FILE_LIKE,

    map_location: MAP_LOCATION = None,

    pickle_module: Any = None,

    *,

    weights_only: bool = False,

    mmap: Optional[bool] = None,

    **pickle_load_args: Any

) -> Any:
    # Reference: https://github.com/pytorch/pytorch/issues/54354
    # The first line of this docstring overrides the one Sphinx generates for the
    # documentation. We need it so that Sphinx doesn't leak `pickle`s path from
    # the build environment (e.g. `<module 'pickle' from '/leaked/path').

    """load(f, map_location=None, pickle_module=pickle, *, weights_only=False, mmap=None, **pickle_load_args)



    Loads an object saved with :func:`torch.save` from a file.



    :func:`torch.load` uses Python's unpickling facilities but treats storages,

    which underlie tensors, specially. They are first deserialized on the

    CPU and are then moved to the device they were saved from. If this fails

    (e.g. because the run time system doesn't have certain devices), an exception

    is raised. However, storages can be dynamically remapped to an alternative

    set of devices using the :attr:`map_location` argument.



    If :attr:`map_location` is a callable, it will be called once for each serialized

    storage with two arguments: storage and location. The storage argument

    will be the initial deserialization of the storage, residing on the CPU.

    Each serialized storage has a location tag associated with it which

    identifies the device it was saved from, and this tag is the second

    argument passed to :attr:`map_location`. The builtin location tags are ``'cpu'``

    for CPU tensors and ``'cuda:device_id'`` (e.g. ``'cuda:2'``) for CUDA tensors.

    :attr:`map_location` should return either ``None`` or a storage. If

    :attr:`map_location` returns a storage, it will be used as the final deserialized

    object, already moved to the right device. Otherwise, :func:`torch.load` will

    fall back to the default behavior, as if :attr:`map_location` wasn't specified.



    If :attr:`map_location` is a :class:`torch.device` object or a string containing

    a device tag, it indicates the location where all tensors should be loaded.



    Otherwise, if :attr:`map_location` is a dict, it will be used to remap location tags

    appearing in the file (keys), to ones that specify where to put the

    storages (values).



    User extensions can register their own location tags and tagging and

    deserialization methods using :func:`torch.serialization.register_package`.



    Args:

        f: a file-like object (has to implement :meth:`read`, :meth:`readline`, :meth:`tell`, and :meth:`seek`),

            or a string or os.PathLike object containing a file name

        map_location: a function, :class:`torch.device`, string or a dict specifying how to remap storage

            locations

        pickle_module: module used for unpickling metadata and objects (has to

            match the :attr:`pickle_module` used to serialize file)

        weights_only: Indicates whether unpickler should be restricted to

            loading only tensors, primitive types and dictionaries

        mmap: Indicates whether the file should be mmaped rather than loading all the storages into memory.

            Typically, tensor storages in the file will first be moved from disk to CPU memory, after which they

            are moved to the location that they were tagged with when saving, or specified by ``map_location``. This

            second step is a no-op if the final location is CPU. When the ``mmap`` flag is set, instead of copying the

            tensor storages from disk to CPU memory in the first step, ``f`` is mmaped.

        pickle_load_args: (Python 3 only) optional keyword arguments passed over to

            :func:`pickle_module.load` and :func:`pickle_module.Unpickler`, e.g.,

            :attr:`errors=...`.



    .. warning::

        :func:`torch.load()` unless `weights_only` parameter is set to `True`,

        uses ``pickle`` module implicitly, which is known to be insecure.

        It is possible to construct malicious pickle data which will execute arbitrary code

        during unpickling. Never load data that could have come from an untrusted

        source in an unsafe mode, or that could have been tampered with. **Only load data you trust**.



    .. note::

        When you call :func:`torch.load()` on a file which contains GPU tensors, those tensors

        will be loaded to GPU by default. You can call ``torch.load(.., map_location='cpu')``

        and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.



    .. note::

        By default, we decode byte strings as ``utf-8``.  This is to avoid a common error

        case ``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...``

        when loading files saved by Python 2 in Python 3.  If this default

        is incorrect, you may use an extra :attr:`encoding` keyword argument to specify how

        these objects should be loaded, e.g., :attr:`encoding='latin1'` decodes them

        to strings using ``latin1`` encoding, and :attr:`encoding='bytes'` keeps them

        as byte arrays which can be decoded later with ``byte_array.decode(...)``.



    Example:

        >>> # xdoctest: +SKIP("undefined filepaths")

        >>> torch.load('tensors.pt', weights_only=True)

        # Load all tensors onto the CPU

        >>> torch.load('tensors.pt', map_location=torch.device('cpu'), weights_only=True)

        # Load all tensors onto the CPU, using a function

        >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage, weights_only=True)

        # Load all tensors onto GPU 1

        >>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1), weights_only=True)

        # Map tensors from GPU 1 to GPU 0

        >>> torch.load('tensors.pt', map_location={'cuda:1': 'cuda:0'}, weights_only=True)

        # Load tensor from io.BytesIO object

        # Loading from a buffer setting weights_only=False, warning this can be unsafe

        >>> with open('tensor.pt', 'rb') as f:

        ...     buffer = io.BytesIO(f.read())

        >>> torch.load(buffer, weights_only=False)

        # Load a module with 'ascii' encoding for unpickling

        # Loading from a module setting weights_only=False, warning this can be unsafe

        >>> torch.load('module.pt', encoding='ascii', weights_only=False)

    """
    torch._C._log_api_usage_once("torch.load")
    UNSAFE_MESSAGE = (
        "Weights only load failed. Re-running `torch.load` with `weights_only` set to `False`"
        " will likely succeed, but it can result in arbitrary code execution."
        "Do it only if you get the file from a trusted source. WeightsUnpickler error: "
    )
    # Add ability to force safe only weight loads via environment variable
    if os.getenv("TORCH_FORCE_WEIGHTS_ONLY_LOAD", "0").lower() in ['1', 'y', 'yes', 'true']:
        weights_only = True

    if weights_only:
        if pickle_module is not None:
            raise RuntimeError("Can not safely load weights when explicit pickle_module is specified")
    else:
        if pickle_module is None:
            pickle_module = pickle

    # make flipping default BC-compatible
    if mmap is None:
        mmap = False

    _check_dill_version(pickle_module)

    if 'encoding' not in pickle_load_args.keys():
        pickle_load_args['encoding'] = 'utf-8'

    with _open_file_like(f, 'rb') as opened_file:
        if _is_zipfile(opened_file):
            # The zipfile reader is going to advance the current file position.
            # If we want to actually tail call to torch.jit.load, we need to
            # reset back to the original position.
            orig_position = opened_file.tell()
            overall_storage = None
            with _open_zipfile_reader(opened_file) as opened_zipfile:
                if _is_torchscript_zip(opened_zipfile):
                    warnings.warn("'torch.load' received a zip file that looks like a TorchScript archive"
                                  " dispatching to 'torch.jit.load' (call 'torch.jit.load' directly to"
                                  " silence this warning)", UserWarning)
                    opened_file.seek(orig_position)
                    return torch.jit.load(opened_file, map_location=map_location)
                if mmap:
                    if not _is_path(f):
                        raise ValueError("f must be a file path in order to use the mmap argument")
                    size = os.path.getsize(f)
                    overall_storage = torch.UntypedStorage.from_file(os.fspath(f), False, size)
                if weights_only:
                    try:
                        return _load(opened_zipfile,
                                     map_location,
                                     _weights_only_unpickler,
                                     overall_storage=overall_storage,
                                     **pickle_load_args)
                    except RuntimeError as e:
                        raise pickle.UnpicklingError(UNSAFE_MESSAGE + str(e)) from None
                return _load(opened_zipfile,
                             map_location,
                             pickle_module,
                             overall_storage=overall_storage,
                             **pickle_load_args)
        if mmap:
            f_name = "" if not isinstance(f, str) else f"{f}, "
            raise RuntimeError("mmap can only be used with files saved with "
                               f"`torch.save({f_name}_use_new_zipfile_serialization=True), "
                               "please torch.save your checkpoint with this option in order to use mmap.")
        if weights_only:
            try:
                return _legacy_load(opened_file, map_location, _weights_only_unpickler, **pickle_load_args)
            except RuntimeError as e:
                raise pickle.UnpicklingError(UNSAFE_MESSAGE + str(e)) from None
        return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)


# Register pickling support for layout instances such as
# torch.sparse_coo, etc
def _get_layout(name):
    """Get layout extension object from its string representation.

    """
    cache = _get_layout.cache   # type: ignore[attr-defined]
    if not cache:
        for v in torch.__dict__.values():
            if isinstance(v, torch.layout):
                cache[str(v)] = v
    return cache[name]

# There are yet not good way to type annotate function attributes https://github.com/python/mypy/issues/2087
_get_layout.cache = {}   # type: ignore[attr-defined]
copyreg.pickle(torch.layout, lambda obj: (_get_layout, (str(obj),)))


def _legacy_load(f, map_location, pickle_module, **pickle_load_args):
    deserialized_objects: Dict[int, Any] = {}

    restore_location = _get_restore_location(map_location)

    class UnpicklerWrapper(pickle_module.Unpickler):  # type: ignore[name-defined]

        def find_class(self, mod_name, name):
            if type(name) is str and 'Storage' in name:
                try:
                    return StorageType(name)
                except KeyError:
                    pass
            return super().find_class(mod_name, name)

    def _check_container_source(container_type, source_file, original_source):
        try:
            current_source = ''.join(get_source_lines_and_file(container_type)[0])
        except Exception:  # saving the source is optional, so we can ignore any errors
            warnings.warn("Couldn't retrieve source code for container of "
                          "type " + container_type.__name__ + ". It won't be checked "
                          "for correctness upon loading.")
            return
        if original_source != current_source:
            if container_type.dump_patches:
                file_name = container_type.__name__ + '.patch'
                diff = difflib.unified_diff(current_source.split('\n'),
                                            original_source.split('\n'),
                                            source_file,
                                            source_file, lineterm="")
                lines = '\n'.join(diff)
                try:
                    with open(file_name, 'a+') as f:
                        file_size = f.seek(0, 2)
                        f.seek(0)
                        if file_size == 0:
                            f.write(lines)
                        elif file_size != len(lines) or f.read() != lines:
                            raise OSError
                    msg = ("Saved a reverse patch to " + file_name + ". "
                           "Run `patch -p0 < " + file_name + "` to revert your "
                           "changes.")
                except OSError:
                    msg = ("Tried to save a patch, but couldn't create a "
                           "writable file " + file_name + ". Make sure it "
                           "doesn't exist and your working directory is "
                           "writable.")
            else:
                msg = ("you can retrieve the original source code by "
                       "accessing the object's source attribute or set "
                       "`torch.nn.Module.dump_patches = True` and use the "
                       "patch tool to revert the changes.")
            msg = f"source code of class '{torch.typename(container_type)}' has changed. {msg}"
            warnings.warn(msg, SourceChangeWarning)

    def legacy_load(f):
        deserialized_objects: Dict[int, Any] = {}

        def persistent_load(saved_id):
            if isinstance(saved_id, tuple):
                # Ignore containers that don't have any sources saved
                if all(saved_id[1:]):
                    _check_container_source(*saved_id)
                return saved_id[0]
            return deserialized_objects[int(saved_id)]

        with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
                mkdtemp() as tmpdir:

            tar.extract('storages', path=tmpdir)
            with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f:
                num_storages = pickle_module.load(f, **pickle_load_args)
                for i in range(num_storages):
                    args = pickle_module.load(f, **pickle_load_args)
                    key, location, storage_type = args
                    dtype = storage_type._dtype
                    obj = cast(Storage, torch.UntypedStorage)._new_with_file(f, torch._utils._element_size(dtype))
                    obj = restore_location(obj, location)
                    # TODO: Once we decide to break serialization FC, we can
                    # stop wrapping with TypedStorage
                    deserialized_objects[key] = torch.storage.TypedStorage(
                        wrap_storage=obj,
                        dtype=dtype,
                        _internal=True)

                storage_views = pickle_module.load(f, **pickle_load_args)
                for target_cdata, root_cdata, offset, numel in storage_views:
                    root = deserialized_objects[root_cdata]
                    element_size = torch._utils._element_size(root.dtype)
                    offset_bytes = offset * element_size
                    # TODO: Once we decide to break serialization FC, we can
                    # stop wrapping with TypedStorage
                    deserialized_objects[target_cdata] = torch.storage.TypedStorage(
                        wrap_storage=root._untyped_storage[offset_bytes:offset_bytes + numel * element_size],
                        dtype=root.dtype,
                        _internal=True)

            tar.extract('tensors', path=tmpdir)
            with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f:
                num_tensors = pickle_module.load(f, **pickle_load_args)
                for _ in range(num_tensors):
                    args = pickle_module.load(f, **pickle_load_args)
                    key, storage_id, original_tensor_type = args
                    storage = deserialized_objects[storage_id]
                    ndim, = struct.unpack('<i', f.read(4))
                    # skip next 4 bytes; legacy encoding treated ndim as 8 bytes
                    f.read(4)
                    numel = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
                    stride = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
                    storage_offset, = struct.unpack('<q', f.read(8))
                    tensor = torch.empty((0,), dtype=storage.dtype).set_(
                        storage._untyped_storage, storage_offset, numel, stride)
                    deserialized_objects[key] = tensor

            pickle_file = tar.extractfile('pickle')
            unpickler = UnpicklerWrapper(pickle_file, **pickle_load_args)
            unpickler.persistent_load = persistent_load
            result = unpickler.load()
            return result

    deserialized_objects = {}

    def persistent_load(saved_id):
        assert isinstance(saved_id, tuple)
        typename = _maybe_decode_ascii(saved_id[0])
        data = saved_id[1:]

        if typename == 'module':
            # Ignore containers that don't have any sources saved
            if all(data[1:]):
                _check_container_source(*data)
            return data[0]
        elif typename == 'storage':
            storage_type, root_key, location, numel, view_metadata = data
            location = _maybe_decode_ascii(location)
            dtype = storage_type.dtype

            nbytes = numel * torch._utils._element_size(dtype)

            if root_key not in deserialized_objects:
                if torch._guards.active_fake_mode() is not None:
                    obj = cast(Storage, torch.UntypedStorage(nbytes, device='meta'))
                else:
                    obj = cast(Storage, torch.UntypedStorage(nbytes))
                    obj._torch_load_uninitialized = True
                    obj = restore_location(obj, location)
                # TODO: Once we decide to break serialization FC, we can
                # stop wrapping with TypedStorage
                typed_storage = torch.storage.TypedStorage(
                    wrap_storage=obj,
                    dtype=dtype,
                    _internal=True)
                deserialized_objects[root_key] = typed_storage
            else:
                typed_storage = deserialized_objects[root_key]
                if typed_storage._data_ptr() == 0:
                    typed_storage = torch.storage.TypedStorage(
                        device=typed_storage._untyped_storage.device,
                        dtype=dtype,
                        _internal=True)

            if view_metadata is not None:
                view_key, offset, view_size = view_metadata
                offset_bytes = offset * torch._utils._element_size(dtype)
                view_size_bytes = view_size * torch._utils._element_size(dtype)
                if view_key not in deserialized_objects:
                    # TODO: Once we decide to break serialization FC, we can
                    # stop wrapping with TypedStorage
                    deserialized_objects[view_key] = torch.storage.TypedStorage(
                        wrap_storage=typed_storage._untyped_storage[offset_bytes:offset_bytes + view_size_bytes],
                        dtype=dtype,
                        _internal=True)
                res = deserialized_objects[view_key]

            else:
                res = typed_storage
            return res
        else:
            raise RuntimeError(f"Unknown saved id type: {saved_id[0]}")

    _check_seekable(f)
    f_should_read_directly = _should_read_directly(f)

    if f_should_read_directly and f.tell() == 0:
        # legacy_load requires that f has fileno()
        # only if offset is zero we can attempt the legacy tar file loader
        try:
            return legacy_load(f)
        except tarfile.TarError:
            if _is_zipfile(f):
                # .zip is used for torch.jit.save and will throw an un-pickling error here
                raise RuntimeError(
                    f"{f.name} is a zip archive (did you mean to use torch.jit.load()?)") from None
            # if not a tarfile, reset file offset and proceed
            f.seek(0)

    if not hasattr(f, 'readinto') and (3, 8, 0) <= sys.version_info < (3, 8, 2):
        raise RuntimeError(
            "torch.load does not work with file-like objects that do not implement readinto on Python 3.8.0 and 3.8.1. "
            f"Received object of type \"{type(f)}\". Please update to Python 3.8.2 or newer to restore this "
            "functionality.")

    magic_number = pickle_module.load(f, **pickle_load_args)
    if magic_number != MAGIC_NUMBER:
        raise RuntimeError("Invalid magic number; corrupt file?")
    protocol_version = pickle_module.load(f, **pickle_load_args)
    if protocol_version != PROTOCOL_VERSION:
        raise RuntimeError(f"Invalid protocol version: {protocol_version}")

    _sys_info = pickle_module.load(f, **pickle_load_args)
    unpickler = UnpicklerWrapper(f, **pickle_load_args)
    unpickler.persistent_load = persistent_load
    result = unpickler.load()

    deserialized_storage_keys = pickle_module.load(f, **pickle_load_args)

    if torch._guards.active_fake_mode() is None:
        offset = f.tell() if f_should_read_directly else None
        for key in deserialized_storage_keys:
            assert key in deserialized_objects
            typed_storage = deserialized_objects[key]
            typed_storage._untyped_storage._set_from_file(
                f, offset, f_should_read_directly,
                torch._utils._element_size(typed_storage.dtype))
            if offset is not None:
                offset = f.tell()

    torch._utils._validate_loaded_sparse_tensors()

    return result


def _maybe_decode_ascii(bytes_str: Union[bytes, str]) -> str:
    # When using encoding='bytes' in Py3, some **internal** keys stored as
    # strings in Py2 are loaded as bytes. This function decodes them with
    # ascii encoding, one that Py3 uses by default.
    #
    # NOTE: This should only be used on internal keys (e.g., `typename` and
    #       `location` in `persistent_load` below!
    if isinstance(bytes_str, bytes):
        return bytes_str.decode('ascii')
    return bytes_str


def _get_restore_location(map_location):
    if map_location is None:
        restore_location = default_restore_location
    elif isinstance(map_location, dict):
        def restore_location(storage, location):
            location = map_location.get(location, location)
            return default_restore_location(storage, location)
    elif isinstance(map_location, (str, bytes)):
        def restore_location(storage, location):
            return default_restore_location(storage, map_location)
    elif isinstance(map_location, torch.device):
        def restore_location(storage, location):
            return default_restore_location(storage, str(map_location))
    else:
        def restore_location(storage, location):
            result = map_location(storage, location)
            if result is None:
                result = default_restore_location(storage, location)
            return result
    return restore_location


class StorageType:
    def __init__(self, name):
        self._dtype = _get_dtype_from_pickle_storage_type(name)

    @property
    def dtype(self):
        return self._dtype

    def __str__(self):
        return f'StorageType(dtype={self.dtype})'


def _load(zip_file, map_location, pickle_module, pickle_file='data.pkl', overall_storage=None, **pickle_load_args):
    restore_location = _get_restore_location(map_location)

    loaded_storages = {}

    # check if byteswapping is needed
    byteordername = 'byteorder'
    byteorderdata = None
    if zip_file.has_record(byteordername):
        byteorderdata = zip_file.get_record(byteordername)
        if byteorderdata not in [b'little', b'big']:
            raise ValueError('Unknown endianness type: ' + byteorderdata.decode())
    elif get_default_load_endianness() == LoadEndianness.LITTLE or \
            get_default_load_endianness() is None:
        byteorderdata = b'little'
    elif get_default_load_endianness() == LoadEndianness.BIG:
        byteorderdata = b'big'
    elif get_default_load_endianness() == LoadEndianness.NATIVE:
        pass
    else:
        raise ValueError('Invalid load endianness type')

    if not zip_file.has_record(byteordername) and \
            get_default_load_endianness() is None and \
            sys.byteorder == 'big':
        # Default behaviour was changed
        # See https://github.com/pytorch/pytorch/issues/101688
        warnings.warn("The default load endianness for checkpoints without a byteorder mark "
                      "on big endian machines was changed from 'native' to 'little' endian, "
                      "to avoid this behavior please use "
                      "torch.serialization.set_default_load_endianness to set "
                      "the desired default load endianness",
                      UserWarning)

    def load_tensor(dtype, numel, key, location):
        name = f'data/{key}'
        if torch._guards.detect_fake_mode(None) is not None:
            nbytes = numel * torch._utils._element_size(dtype)
            storage = torch.UntypedStorage(nbytes, device='meta')
        elif overall_storage is not None:
            storage_offset = zip_file.get_record_offset(name)
            storage = overall_storage[storage_offset:storage_offset + numel]
        else:
            storage = zip_file.get_storage_from_record(name, numel, torch.UntypedStorage)._typed_storage()._untyped_storage
        # swap here if byteswapping is needed
        if byteorderdata is not None:
            if byteorderdata.decode() != sys.byteorder:
                storage.byteswap(dtype)

        # TODO: Once we decide to break serialization FC, we can
        # stop wrapping with TypedStorage
        typed_storage = torch.storage.TypedStorage(
            wrap_storage=restore_location(storage, location),
            dtype=dtype,
            _internal=True)

        if typed_storage._data_ptr() != 0:
            loaded_storages[key] = typed_storage

        return typed_storage

    def persistent_load(saved_id):
        assert isinstance(saved_id, tuple)
        typename = _maybe_decode_ascii(saved_id[0])
        data = saved_id[1:]

        assert typename == 'storage', \
            f"Unknown typename for persistent_load, expected 'storage' but got '{typename}'"
        storage_type, key, location, numel = data
        if storage_type is torch.UntypedStorage:
            dtype = torch.uint8
        else:
            dtype = storage_type.dtype

        if key in loaded_storages:
            typed_storage = loaded_storages[key]
        else:
            nbytes = numel * torch._utils._element_size(dtype)
            typed_storage = load_tensor(dtype, nbytes, key, _maybe_decode_ascii(location))

        return typed_storage

    load_module_mapping: Dict[str, str] = {
        # See https://github.com/pytorch/pytorch/pull/51633
        'torch.tensor': 'torch._tensor'
    }

    # Need to subclass Unpickler instead of directly monkey-patching the find_class method
    # because it's marked readonly in pickle.
    # The type: ignore is because mypy can't statically determine the type of this class.
    class UnpicklerWrapper(pickle_module.Unpickler):  # type: ignore[name-defined]
        # from https://stackoverflow.com/questions/13398462/unpickling-python-objects-with-a-changed-module-path/13405732
        # Lets us override the imports that pickle uses when unpickling an object.
        # This is useful for maintaining BC if we change a module path that tensor instantiation relies on.
        def find_class(self, mod_name, name):
            if type(name) is str and 'Storage' in name:
                try:
                    return StorageType(name)
                except KeyError:
                    pass
            mod_name = load_module_mapping.get(mod_name, mod_name)
            return super().find_class(mod_name, name)

    # Load the data (which may in turn use `persistent_load` to load tensors)
    data_file = io.BytesIO(zip_file.get_record(pickle_file))

    unpickler = UnpicklerWrapper(data_file, **pickle_load_args)
    unpickler.persistent_load = persistent_load
    result = unpickler.load()

    torch._utils._validate_loaded_sparse_tensors()
    torch._C._log_api_usage_metadata(
        "torch.load.metadata", {"serialization_id": zip_file.serialization_id()}
    )
    return result


def _is_torchscript_zip(zip_file):
    return 'constants.pkl' in zip_file.get_all_records()