File size: 71,975 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
"""Functions to verify exported ONNX model is functionally equivalent to original PyTorch model.



ONNX Runtime is required, and is used as the ONNX backend for export verification.

"""

from __future__ import annotations

import contextlib
import copy
import dataclasses
import datetime
import difflib
import enum
import functools
import io
import itertools
import os
import tempfile
import warnings
from typing import (
    Any,
    Callable,
    Collection,
    Dict,
    FrozenSet,
    List,
    Mapping,
    Optional,
    Sequence,
    Set,
    Tuple,
    Union,
)

import numpy as np

import torch
import torch._C._onnx as _C_onnx
from torch import _C
from torch.onnx import _constants, _experimental, _exporter_states, utils
from torch.onnx._globals import GLOBALS
from torch.onnx._internal import _beartype, onnx_proto_utils
from torch.types import Number

_ORT_PROVIDERS = ("CPUExecutionProvider",)

_NumericType = Union[Number, torch.Tensor, np.ndarray]
_ModelType = Union[torch.nn.Module, torch.jit.ScriptModule]
_InputArgsType = Union[torch.Tensor, Tuple[Any, ...]]
_InputKwargsType = Mapping[str, Any]
_OutputsType = Union[Sequence[_NumericType], Sequence]


class OnnxBackend(enum.Enum):
    """Enum class for ONNX backend used for export verification."""

    REFERENCE = "ONNXReferenceEvaluator"
    ONNX_RUNTIME_CPU = "CPUExecutionProvider"
    ONNX_RUNTIME_CUDA = "CUDAExecutionProvider"


@dataclasses.dataclass
class VerificationOptions:
    """Options for ONNX export verification.



    Attributes:

        flatten: If True, unpack nested list/tuple/dict inputs into a flattened list of

            Tensors for ONNX. Set this to False if nested structures are to be preserved

            for ONNX, which is usually the case with exporting ScriptModules. Default True.

        ignore_none: Whether to ignore None type in torch output, which is usually the

            case with tracing. Set this to False, if torch output should keep None type,

            which is usually the case with exporting ScriptModules. Default to True.

        check_shape: Whether to check the shapes between PyTorch and ONNX Runtime outputs

            are exactly the same. Set this to False to allow output shape broadcasting.

            Default to True.

        check_dtype: Whether to check the dtypes between PyTorch and ONNX Runtime outputs

            are consistent. Default to True.

        backend: ONNX backend for verification. Default to OnnxBackend.ONNX_RUNTIME_CPU.

        rtol: relative tolerance in comparison between ONNX and PyTorch outputs.

        atol: absolute tolerance in comparison between ONNX and PyTorch outputs.

        remained_onnx_input_idx: If provided, only the specified inputs will be passed

            to the ONNX model. Supply a list when there are unused inputs in the model.

            Since unused inputs will be removed in the exported ONNX model, supplying

            all inputs will cause an error on unexpected inputs. This parameter tells

            the verifier which inputs to pass into the ONNX model.

        acceptable_error_percentage: acceptable percentage of element mismatches in comparison.

            It should be a float of value between 0.0 and 1.0.

    """

    flatten: bool = True
    ignore_none: bool = True
    check_shape: bool = True
    check_dtype: bool = True
    backend: OnnxBackend = OnnxBackend.ONNX_RUNTIME_CPU
    rtol: float = 1e-3
    atol: float = 1e-7
    remained_onnx_input_idx: Optional[Sequence[int]] = None
    acceptable_error_percentage: Optional[float] = None


@_beartype.beartype
def _flatten_tuples(elem):
    flattened = []
    for t in elem:
        if isinstance(t, tuple):
            flattened.extend(_flatten_tuples(t))
        else:
            flattened.append(t)
    return flattened


# TODO(justinchuby): Add type checking by narrowing down the return type when input is None
def _to_numpy(elem) -> Union[list, np.ndarray]:
    if isinstance(elem, torch.Tensor):
        if elem.requires_grad:
            return elem.detach().cpu().numpy()
        else:
            return elem.cpu().numpy()
    elif isinstance(elem, (list, tuple)):
        return [_to_numpy(inp) for inp in elem]
    elif isinstance(elem, (bool, int, float)):
        return np.array(elem)
    elif isinstance(elem, dict):
        flattened = []
        for k in elem:
            flattened.extend([_to_numpy(k), _to_numpy(elem[k])])
        return flattened
    return elem


@_beartype.beartype
def _inline_flatten_list(inputs, res_list) -> list:
    for i in inputs:
        res_list.append(i) if not isinstance(
            i, (list, tuple)
        ) else _inline_flatten_list(i, res_list)
    return res_list


@_beartype.beartype
def _unpack_to_numpy(values, cast_onnx_accepted=True) -> list:
    value_unpacked = []
    for value in values:
        value_unpacked.extend(
            utils.unpack_quantized_tensor(value, cast_onnx_accepted=cast_onnx_accepted)
        )
    return [_to_numpy(v) for v in value_unpacked]


@_beartype.beartype
def _run_onnx(onnx_session, inputs) -> _OutputsType:
    kw_inputs = {}
    if inputs and isinstance(inputs[-1], dict):
        kw_inputs = inputs[-1]
        inputs = inputs[:-1]
    inputs = _unpack_to_numpy(_flatten_tuples(inputs))
    ort_inputs = {}
    for input_name, input in kw_inputs.items():
        ort_inputs[input_name] = _to_numpy(input)
    inputs = _to_numpy(inputs)
    if hasattr(onnx_session, "get_inputs"):
        # onnxruntime.InferenceSession
        input_names = [i.name for i in onnx_session.get_inputs()]
    elif hasattr(onnx_session, "input_names"):
        # onnx.reference.ReferenceEvaluator
        input_names = onnx_session.input_names
    else:
        raise ValueError(f"Unknown ONNX backend type: {type(onnx_session)}.")

    for i, input in enumerate(inputs):
        if i == len(input_names) or input_names[i] in ort_inputs:
            raise ValueError(
                f"got too many positional inputs. inputs: {inputs}. kw_inputs: {kw_inputs}. "
                f"input names: {input_names}."
            )
        ort_inputs[input_names[i]] = input
    onnx_outs = onnx_session.run(None, ort_inputs)
    return onnx_outs


@_beartype.beartype
def _ort_session(

    model: Union[str, io.BytesIO], ort_providers: Sequence[str] = _ORT_PROVIDERS

):
    try:
        import onnxruntime  # type: ignore[import]
    except ImportError as e:
        raise ImportError("onnxruntime is required for export verification.") from e

    if ort_providers is None:
        ort_providers = _ORT_PROVIDERS

    session_options = onnxruntime.SessionOptions()
    # suppress ort warnings.
    # 0:Verbose, 1:Info, 2:Warning. 3:Error, 4:Fatal. Default is 2.
    session_options.log_severity_level = 3
    ort_session = onnxruntime.InferenceSession(
        model if isinstance(model, str) else model.getvalue(),
        session_options,
        providers=ort_providers,
    )
    return ort_session


@_beartype.beartype
def _onnx_reference_evaluator_session(model: Union[str, io.BytesIO]):
    try:
        import onnx
        from onnx import reference as onnx_reference  # type: ignore[attr-defined]
    except ImportError as exc:
        raise ImportError("onnx >= 1.13 is required for reference evaluator.") from exc

    proto = (
        onnx.load(model)  # type: ignore[attr-defined]
        if isinstance(model, str)
        else onnx.load_model_from_string(model.getvalue())  # type: ignore[attr-defined]
    )
    onnx_session = onnx_reference.ReferenceEvaluator(proto)
    return onnx_session


@_beartype.beartype
def _onnx_backend_session(model: Union[str, io.BytesIO], backend: OnnxBackend):
    if backend == OnnxBackend.REFERENCE:
        onnx_session = _onnx_reference_evaluator_session(model)
    elif backend in {OnnxBackend.ONNX_RUNTIME_CPU, OnnxBackend.ONNX_RUNTIME_CUDA}:
        onnx_session = _ort_session(model, (backend.value,))
    else:
        raise ValueError(f"Unsupported backend: {backend}")
    return onnx_session


@_beartype.beartype
def _compare_onnx_pytorch_outputs_in_np(

    onnx_outs: _OutputsType,

    pt_outs: _OutputsType,

    options: VerificationOptions,

):
    assert len(onnx_outs) == len(
        pt_outs
    ), f"Number of outputs differ ONNX runtime: ({len(onnx_outs)}) PyTorch: ({len(pt_outs)})"
    acceptable_error_percentage = options.acceptable_error_percentage
    if acceptable_error_percentage and (
        acceptable_error_percentage > 1.0 or acceptable_error_percentage < 0.0
    ):
        raise ValueError(
            "If set, acceptable_error_percentage should be between 0.0 and 1.0"
        )

    for ort_out, pt_out in zip(onnx_outs, pt_outs):
        try:
            # TODO: Remove `check_shape` option once every shape inconsistent issue is addressed.
            if not options.check_shape:
                # Allow different but broadcastable output shapes.
                ort_out, pt_out = np.broadcast_arrays(ort_out, pt_out)
            torch.testing.assert_close(
                ort_out,
                pt_out,
                rtol=options.rtol,
                atol=options.atol,
                check_dtype=options.check_dtype,
                equal_nan=True,
            )
        except AssertionError as e:
            if acceptable_error_percentage:
                error_percentage = 1 - np.sum(
                    np.isclose(ort_out, pt_out, rtol=options.rtol, atol=options.atol)
                ) / np.prod(ort_out.shape)
                if error_percentage <= acceptable_error_percentage:
                    warnings.warn(
                        f"Suppressed AssertionError:\n{e}.\n"
                        f"Error percentage {error_percentage} "
                        f"within acceptable range {acceptable_error_percentage}."
                    )
                    continue
            if ort_out.dtype == np.uint8 or ort_out.dtype == np.int8:
                warnings.warn("ONNX output is quantized")
            if pt_out.dtype == np.uint8 or pt_out.dtype == np.int8:
                warnings.warn("PyTorch output is quantized")
            raise


@_beartype.beartype
def _compare_onnx_pytorch_outputs(

    onnx_outs: _OutputsType,

    pt_outs: Any,

    options: VerificationOptions,

):
    """

    Compare ONNX and PyTorch outputs.



    Args:

        onnx_outs: outputs from ONNX backend.

        pt_outs: outputs from PyTorch.

        options: options for verification.



    Raises:

        AssertionError: if outputs from ONNX model and PyTorch model are not

            equal up to specified precision.

        ValueError: if arguments provided are invalid.

    """
    if options.ignore_none:
        # torch.jit._flatten filters None type
        pt_outs, _ = torch.jit._flatten(pt_outs)
    else:
        pt_outs = _inline_flatten_list([pt_outs], [])
    pt_outs_np = _unpack_to_numpy(pt_outs, cast_onnx_accepted=False)
    onnx_outs = _inline_flatten_list(onnx_outs, [])
    _compare_onnx_pytorch_outputs_in_np(onnx_outs, pt_outs_np, options)


@_beartype.beartype
def _prepare_input_for_pytorch(args, kwargs):
    """Prepare input for PyTorch model execution.



    Any future changes/formatting to the input before dispatching to the PyTorch

    model should be made in this function.



    Args:

        args: positional arguments for PyTorch model forward method.

        kwargs: keyword arguments for PyTorch model forward method.



    Returns:

        args: positional arguments for PyTorch model forward method.

        kwargs: keyword arguments for PyTorch model forward method.

    """
    if isinstance(args, (torch.Tensor, dict)):
        args = (args,)
    # In-place operators will update input tensor data as well.
    # Thus inputs are replicated before every forward call.
    args = copy.deepcopy(args)
    if kwargs:
        kwargs = copy.deepcopy(kwargs)
    else:
        kwargs = {}
    return args, kwargs


@_beartype.beartype
def _prepare_input_for_export(args, kwargs):
    """Prepare input for ONNX model export.



    Any future changes/formatting to the input before dispatching to the

    :func:`torch.onnx.export` api should be made in this function.



    Args:

        args: positional arguments for PyTorch model forward method.

        kwargs: keyword arguments for PyTorch model forward method.



    Returns:

        onnx_inputs: positional arguments for ONNX model export, as `args` in

            :func:`torch.onnx.export`.

    """
    args, kwargs = _prepare_input_for_pytorch(args, kwargs)
    if not kwargs and len(args) > 0 and isinstance(args[-1], dict):
        onnx_inputs = args + ({},)
    elif kwargs:
        onnx_inputs = args + (kwargs,)
    else:
        onnx_inputs = args
    return onnx_inputs


@_beartype.beartype
def _prepare_input_for_onnx(

    args, kwargs, remained_onnx_input_idx: Optional[Sequence[int]], flatten: bool

):
    """Prepare input for ONNX model execution in ONNX backend.



    Any future changes/formatting to the input before dispatching to the ONNX backend

    run should be made in this function.



    Args:

        args: positional arguments for PyTorch model forward method.

        kwargs: keyword arguments for PyTorch model forward method.

        remained_onnx_input_idx: indices of inputs to be used for ONNX model execution.

        flatten: whether to flatten the input before dispatching to the ONNX model execution.



    Returns:

        onnx_inputs: positional arguments for ONNX model execution in ONNX backend.

    """
    onnx_inputs = _prepare_input_for_export(args, kwargs)
    if flatten:
        onnx_inputs, _ = torch.jit._flatten(onnx_inputs)
    elif onnx_inputs and onnx_inputs[-1] == {}:
        # Handle empty kwargs (normally removed by flatten).
        onnx_inputs = onnx_inputs[:-1]
    if remained_onnx_input_idx is not None:
        return [onnx_inputs[i] for i in remained_onnx_input_idx]
    else:
        return onnx_inputs


@_beartype.beartype
def _try_clone_model(model):
    """Used for preserving original model in case forward mutates model states."""
    try:
        return copy.deepcopy(model)
    except Exception:
        warnings.warn(
            "Failed to clone model. Model state might be mutated during verification."
        )
        return model


@_beartype.beartype
def _compare_onnx_pytorch_model(

    pt_model: _ModelType,

    onnx_model_f: Union[str, io.BytesIO],

    input_args: _InputArgsType,

    input_kwargs: Optional[_InputKwargsType],

    additional_test_inputs: Optional[Sequence[_InputArgsType]],

    options: VerificationOptions,

):
    """Compare outputs from ONNX model runs with outputs from PyTorch model runs.



    Args:

        pt_model: PyTorch model.

        onnx_model_f: ONNX model file path or file-like object.

        input_args: positional arguments for PyTorch model forward method.

        input_kwargs: keyword arguments for PyTorch model forward method.

        additional_test_inputs: additional positional arguments for PyTorch model

            forward method.

        options: options for verification.



    Raises:

        AssertionError: if outputs from ONNX model and PyTorch model are not

            equal up to specified precision.

    """
    onnx_session = _onnx_backend_session(onnx_model_f, options.backend)

    @_beartype.beartype
    def compare_onnx_pytorch_model_with_input(input_args, input_kwargs):
        pt_args, pt_kwargs = _prepare_input_for_pytorch(input_args, input_kwargs)
        # TODO: remove this and treat mutating model separately. See #77679
        pt_model_copy = _try_clone_model(pt_model)
        pt_outs = pt_model_copy(*pt_args, **pt_kwargs)

        onnx_inputs = _prepare_input_for_onnx(
            input_args, input_kwargs, options.remained_onnx_input_idx, options.flatten
        )

        onnx_outs = _run_onnx(onnx_session, onnx_inputs)

        _compare_onnx_pytorch_outputs(
            onnx_outs=onnx_outs,
            pt_outs=pt_outs,
            options=options,
        )

    compare_onnx_pytorch_model_with_input(input_args, input_kwargs)

    if additional_test_inputs:
        for test_input_args in additional_test_inputs:
            compare_onnx_pytorch_model_with_input(test_input_args, {})


class _GraphDiff:
    """A class to represent the difference between two graphs."""

    @_beartype.beartype
    def __init__(self, graph_a: _C.Graph, graph_b: _C.Graph):
        """Construct a _GraphDiff object.



        Args:

            graph_a (_C.Graph): First graph to compare.

            graph_b (_C.Graph): Second graph to compare.

        """
        self.graph_a = graph_a
        self.graph_b = graph_b

    @_beartype.beartype
    def __str__(self):
        """See function :func:`diff_report`."""
        return self.diff_report()

    @_beartype.beartype
    def _indent(self, lines: str) -> str:
        return "\n".join(["\t" + line for line in lines.splitlines()])

    @_beartype.beartype
    def diff_report(self) -> str:
        """Return a string representation of the graph difference.



        The report shows the first pair of nodes that diverges. It also shows the source

        location of the pair of nodes.



        Returns:

            graph_diff_report (str): A string representation of the graph difference.

        """
        graph_a = self.graph_a
        graph_b = self.graph_b

        graph_a_str = str(graph_a)
        graph_b_str = str(graph_b)

        if graph_a_str == graph_b_str:
            return ""

        graph_diff = difflib.ndiff(
            graph_a_str.splitlines(True), graph_b_str.splitlines(True)
        )
        graph_diff_report = ["Graph diff:", self._indent("".join(graph_diff))]

        for node_a, node_b in itertools.zip_longest(graph_a.nodes(), graph_b.nodes()):
            if str(node_a) != str(node_b):
                graph_diff_report.append("First diverging operator:")
                node_diff = difflib.ndiff(
                    str(node_a).splitlines(True), str(node_b).splitlines(True)
                )
                source_printout = ["node diff:", self._indent("".join(node_diff))]

                stack_a = node_a.sourceRange() if node_a else None
                if stack_a:
                    source_printout.extend(
                        ["Former source location:", self._indent(str(stack_a))]
                    )
                stack_b = node_b.sourceRange() if node_b else None
                if stack_b:
                    source_printout.extend(
                        ["Latter source location:", self._indent(str(stack_b))]
                    )

                graph_diff_report.extend(source_printout)

                break

        return "\n".join(graph_diff_report)


@_beartype.beartype
def _check_graph_diff(

    model: Union[torch.nn.Module, torch.jit.ScriptModule],

    test_input_groups: Sequence[Tuple[Tuple[Any, ...], Mapping[str, Any]]],

    export_options: _experimental.ExportOptions,

    model_to_graph_func: Callable[

        [

            torch.nn.Module,

            Tuple[Any, ...],

            Mapping[str, Any],

            _experimental.ExportOptions,

        ],

        _C.Graph,

    ],

) -> str:
    """Check if graph produced by `model_to_graph_func` is the same across `test_input_groups`.



    Args:

        model: See :func:`check_export_model_diff`.

        test_input_groups: See :func:`check_export_model_diff`.

        export_options: See :func:`check_export_model_diff`.

        model_to_graph_func: A function to convert a PyTorch model to a JIT IR graph.



    Returns:

        graph_diff_report (str): A string representation of the graph difference.

    """
    if len(test_input_groups) < 2:
        raise ValueError("Need at least two groups of test inputs to compare.")

    ref_jit_graph = None
    for args, kwargs in test_input_groups:
        jit_graph = model_to_graph_func(model, args, kwargs, export_options)
        if ref_jit_graph is None:
            ref_jit_graph = jit_graph
            continue

        graph_diff_report = _GraphDiff(ref_jit_graph, jit_graph).diff_report()
        if graph_diff_report:
            return graph_diff_report
    return ""


@_beartype.beartype
def _traced_graph_from_model(

    model: Union[torch.nn.Module, torch.jit.ScriptModule],

    args: Tuple[Any, ...],

    kwargs: Mapping[str, Any],

    export_options: _experimental.ExportOptions,

) -> _C.Graph:
    """As part of the ONNX export steps, create a traced JIT graph from a PyTorch model.



    Args:

        model: See :func:`check_export_model_diff`.

        args: See :func:`check_export_model_diff`.

        kwargs: See :func:`check_export_model_diff`.

        export_options: See :func:`check_export_model_diff`.



    Returns:

        jit_graph (_C.Graph): A traced JIT graph.

    """
    training = export_options.training
    verbose = export_options.verbose

    with utils.exporter_context(model, training, verbose):
        export_inputs = _prepare_input_for_export(args, kwargs)
        model = utils._pre_trace_quant_model(model, export_inputs)
        jit_graph, _, _, _ = utils._create_jit_graph(model, export_inputs)
        return jit_graph


@_beartype.beartype
def _onnx_graph_from_model(

    model: Union[torch.nn.Module, torch.jit.ScriptModule],

    args: Tuple[Any, ...],

    kwargs: Mapping[str, Any],

    export_options: _experimental.ExportOptions,

) -> _C.Graph:
    """As part of the ONNX export steps, export an ONNX JIT graph from a PyTorch model.



    Args:

        model: See :func:`check_export_model_diff`.

        args: See :func:`check_export_model_diff`.

        kwargs: See :func:`check_export_model_diff`.

        export_options: See :func:`check_export_model_diff`.



    Returns:

        onnx_graph (_C.Graph): An ONNX JIT graph.

    """
    # TODO: refactor utils.py to remove duplicated code of context setup. See #78834
    opset_version = export_options.opset_version
    operator_export_type = export_options.operator_export_type
    export_modules_as_functions = export_options.export_modules_as_functions
    training = export_options.training
    verbose = export_options.verbose
    dynamic_axes = export_options.dynamic_axes
    input_names = export_options.input_names
    output_names = export_options.output_names

    if opset_version is None:
        opset_version = _constants.ONNX_DEFAULT_OPSET

    utils._setup_trace_module_map(model, export_modules_as_functions)

    if not operator_export_type:
        if _C_onnx._CAFFE2_ATEN_FALLBACK:
            operator_export_type = _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK
        else:
            operator_export_type = _C_onnx.OperatorExportTypes.ONNX

    GLOBALS.export_onnx_opset_version = opset_version
    GLOBALS.operator_export_type = operator_export_type

    with utils.exporter_context(model, training, verbose):
        do_constant_folding = utils._decide_constant_folding(
            export_options.do_constant_folding, operator_export_type, training
        )

        if dynamic_axes is None:
            dynamic_axes = {}
        utils._validate_dynamic_axes(dynamic_axes, model, input_names, output_names)

        export_inputs = _prepare_input_for_export(args, kwargs)
        export_inputs = utils._decide_input_format(model, export_inputs)
        onnx_graph, _, _ = utils._model_to_graph(
            model,
            export_inputs,
            verbose,
            input_names,
            output_names,
            operator_export_type,
            do_constant_folding,
            training=training,
            dynamic_axes=dynamic_axes,
        )

        return onnx_graph


@_beartype.beartype
def _onnx_graph_from_aten_graph(

    graph: torch.Graph,

    export_options: _experimental.ExportOptions,

    params_dict: Optional[Dict[str, Any]] = None,

) -> Tuple[torch.Graph, Dict[str, Any]]:
    if params_dict is None:
        params_dict = {}
    operator_export_type = export_options.operator_export_type
    dynamic_axes = export_options.dynamic_axes or {}
    input_names = export_options.input_names
    training = export_options.training
    do_constant_folding = export_options.do_constant_folding
    opset_version = export_options.opset_version or _constants.ONNX_DEFAULT_OPSET

    GLOBALS.export_onnx_opset_version = opset_version
    GLOBALS.operator_export_type = operator_export_type

    do_constant_folding = utils._decide_constant_folding(
        do_constant_folding, operator_export_type, training
    )

    # TODO: Below is doing aten graph to onnx. It should be abstracted as a
    # function in torch/onnx/utils.py.
    graph = graph.copy()
    graph = utils._optimize_graph(
        graph,
        operator_export_type,
        params_dict=params_dict,
        dynamic_axes=dynamic_axes,
        input_names=input_names,
    )

    if training is None or training == _C_onnx.TrainingMode.EVAL:
        params_dict = torch._C._jit_pass_onnx_eval_peephole(graph, params_dict)

    if (
        do_constant_folding
        and opset_version >= _constants.ONNX_CONSTANT_FOLDING_MIN_OPSET
    ):
        params_dict = _C._jit_pass_onnx_constant_fold(graph, params_dict, opset_version)
        _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph)

    if GLOBALS.onnx_shape_inference:
        _C._jit_pass_onnx_graph_shape_type_inference(graph, params_dict, opset_version)

    params_dict = _C._jit_pass_onnx_eliminate_unused_items(graph, params_dict)

    # For ONNX opset < 9, constants only have three data types: float16, float, double.
    # In this pass transform constants of other data types to float/double + cast operator.
    if opset_version < 9:
        _C._jit_pass_onnx_cast_all_constant_to_floating(graph)

    params_dict = _C._jit_pass_filter_non_tensor_arguments(params_dict)
    _C._jit_decay_packed_param_input_types(graph)

    _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph)

    if export_options.verbose:
        print("ONNX graph: ", graph)

    return graph, params_dict


@_beartype.beartype
def _onnx_proto_from_onnx_graph(

    onnx_graph: torch.Graph,

    export_options: _experimental.ExportOptions,

    params_dict: Dict[str, Any],

) -> Tuple[bytes, Mapping[str, bytes]]:
    opset_version = export_options.opset_version or _constants.ONNX_DEFAULT_OPSET
    dynamic_axes = export_options.dynamic_axes or {}
    operator_export_type = export_options.operator_export_type
    val_keep_init_as_ip = utils._decide_keep_init_as_input(
        export_options.keep_initializers_as_inputs,
        operator_export_type,
        opset_version,
    )
    val_add_node_names = utils._decide_add_node_names(True, operator_export_type)
    custom_opsets = export_options.custom_opsets or {}

    proto, export_map, _, _ = onnx_graph._export_onnx(  # type: ignore[attr-defined]
        params_dict,
        opset_version,
        dynamic_axes,
        False,
        operator_export_type,
        not export_options.verbose,
        val_keep_init_as_ip,
        custom_opsets,
        val_add_node_names,
        "",
        {},
    )

    return proto, export_map


@_beartype.beartype
def check_export_model_diff(

    model: Union[torch.nn.Module, torch.jit.ScriptModule],

    test_input_groups: Sequence[Tuple[Tuple[Any, ...], Mapping[str, Any]]],

    export_options: Optional[_experimental.ExportOptions] = None,

) -> str:
    """Verify exported model discrepancy between different groups of inputs.



    A graph is exported for each group of inputs. The exported graphs are then compared

    to each other, and discrepancies of first pair of nodes are reported. This function

    first checks the jit graph. If no discrepancies were found, it then checks the onnx

    graph.



    Unless otherwise specified, the jit/ONNX graph is expected to be the same, regardless

    of the inputs used for exporting. A discrepancy implies the graph exported is

    not accurate when run on other groups of inputs, which will typically results in

    runtime errors or mismatching output.



    Args:

        model (torch.nn.Module or torch.jit.ScriptModule): The model to be exported.

        test_input_groups (Sequence[Tuple[Tuple[Any, ...], Mapping[str, Any]]]): A sequence

            of input groups to be used to export the model. Each input group is a pair of

            (args, kwargs).

        export_options (_experimental.ExportOptions, optional): An _experimental.ExportOptions

            object that controls the export behavior.



    Returns:

        str: A string containing the diff of the exported models.

    """
    export_options = (
        _experimental.ExportOptions() if export_options is None else export_options
    )

    jit_diff_report = _check_graph_diff(
        model, test_input_groups, export_options, _traced_graph_from_model
    )
    if jit_diff_report:
        return jit_diff_report

    return _check_graph_diff(
        model, test_input_groups, export_options, _onnx_graph_from_model
    )


@_beartype.beartype
def verify(

    model: _ModelType,

    input_args: _InputArgsType,

    input_kwargs: Optional[_InputKwargsType] = None,

    do_constant_folding: bool = True,

    dynamic_axes: Optional[

        Mapping[str, Union[Mapping[int, str], Mapping[str, Sequence[int]]]]

    ] = None,

    input_names: Optional[Sequence[str]] = None,

    output_names: Optional[Sequence[str]] = None,

    training: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL,

    opset_version: Optional[int] = None,

    keep_initializers_as_inputs: bool = True,

    verbose: bool = False,

    fixed_batch_size: bool = False,

    use_external_data: bool = False,

    additional_test_inputs: Optional[Sequence[_InputArgsType]] = None,

    options: Optional[VerificationOptions] = None,

):
    """Verify model export to ONNX against original PyTorch model.



    Args:

        model (torch.nn.Module or torch.jit.ScriptModule): See :func:`torch.onnx.export`.

        input_args (tuple): See :func:`torch.onnx.export`.

        input_kwargs (dict): See :func:`torch.onnx.export`.

        do_constant_folding (bool, optional): See :func:`torch.onnx.export`.

        dynamic_axes (dict, optional): See :func:`torch.onnx.export`.

        input_names (list, optional): See :func:`torch.onnx.export`.

        output_names (list, optional): See :func:`torch.onnx.export`.

        training (torch.onnx.TrainingMode): See :func:`torch.onnx.export`.

        opset_version (int, optional): See :func:`torch.onnx.export`.

        keep_initializers_as_inputs (bool, optional): See :func:`torch.onnx.export`.

        verbose (bool, optional): See :func:`torch.onnx.export`.

        fixed_batch_size (bool, optional): Legacy argument, used only by rnn test cases.

        use_external_data (bool, optional): Explicitly specify whether to export the

            model with external data.

        additional_test_inputs (list, optional): List of tuples. Each tuple is a group of

            input arguments to test. Currently only *args are supported.

        options (_VerificationOptions, optional): A _VerificationOptions object that

            controls the verification behavior.



    Raises:

        AssertionError: if outputs from ONNX model and PyTorch model are not

            equal up to specified precision.

        ValueError: if arguments provided are invalid.

    """
    if options is None:
        options = VerificationOptions()

    if training == torch.onnx.TrainingMode.TRAINING:
        model.train()
    elif training == torch.onnx.TrainingMode.EVAL:
        model.eval()
    with torch.no_grad(), contextlib.ExitStack() as stack:
        model_f: Union[str, io.BytesIO] = io.BytesIO()
        if use_external_data:
            tmpdir_path = stack.enter_context(tempfile.TemporaryDirectory())
            model_f = os.path.join(tmpdir_path, "model.onnx")

        inputs_for_export = _prepare_input_for_export(input_args, input_kwargs)

        # TODO(#77679): remove this and treat mutating model separately.
        model_copy = _try_clone_model(model)
        utils._export(
            model,
            inputs_for_export,
            model_f,
            opset_version=opset_version,
            do_constant_folding=do_constant_folding,
            keep_initializers_as_inputs=keep_initializers_as_inputs,
            dynamic_axes=dynamic_axes,
            input_names=input_names,
            output_names=output_names,
            fixed_batch_size=fixed_batch_size,
            training=training,
            verbose=verbose,
        )

        _compare_onnx_pytorch_model(
            pt_model=model_copy,
            onnx_model_f=model_f,
            input_args=input_args,
            input_kwargs=input_kwargs,
            additional_test_inputs=additional_test_inputs,
            options=options,
        )


@_beartype.beartype
def verify_aten_graph(

    graph: torch.Graph,

    input_args: Tuple[Any, ...],

    export_options: _experimental.ExportOptions,

    params_dict: Optional[Dict[str, Any]] = None,

    verification_options: Optional[VerificationOptions] = None,

) -> Tuple[Optional[AssertionError], torch.Graph, _OutputsType, _OutputsType]:
    if verification_options is None:
        verification_options = VerificationOptions()
    if params_dict is None:
        params_dict = {}

    original_jit_graph = graph
    graph = graph.copy()

    # Execute aten graph and get reference torch jit outputs.
    graph_inputs = list(graph.inputs())
    jit_inputs = tuple([arg for arg in input_args if arg is not None])
    weights = [params_dict[v.debugName()] for v in graph_inputs[len(jit_inputs) :]]
    assert all(w is not None for w in weights)
    # TODO: Only copy the argument if mutation is detected in Graph.
    jit_inputs = copy.deepcopy(jit_inputs)
    jit_input_and_parameters = jit_inputs + tuple(weights)
    jit_outs = torch._C._jit_interpret_graph(graph, jit_input_and_parameters)  # type: ignore[attr-defined]
    if not isinstance(jit_outs, (list, tuple)):
        jit_outs = [jit_outs]

    # Convert aten graph to onnx graph.
    graph, onnx_params_dict = _onnx_graph_from_aten_graph(
        graph, export_options, params_dict
    )

    proto, export_map = _onnx_proto_from_onnx_graph(
        graph, export_options, onnx_params_dict
    )
    model_f: Union[str, io.BytesIO] = io.BytesIO()
    export_type = _exporter_states.ExportTypes.PROTOBUF_FILE
    onnx_proto_utils._export_file(proto, model_f, export_type, export_map)

    # NOTE: Verification is unstable. Try catch to emit information for debugging.
    try:
        # NOTE: Input might be dce'ed, so we need to remove those from the input args.
        new_input_names = {v.debugName() for v in graph.inputs()}
        new_input_args = []
        for v, arg in zip(original_jit_graph.inputs(), input_args):
            if v.debugName() in new_input_names:
                new_input_args.append(arg)
        input_args = tuple(new_input_args)

        onnx_inputs = _prepare_input_for_onnx(
            input_args,
            {},
            verification_options.remained_onnx_input_idx,
            verification_options.flatten,
        )

        onnx_session = _onnx_backend_session(model_f, verification_options.backend)
        onnx_outs = _run_onnx(onnx_session, onnx_inputs)
        del onnx_session  # To free device memory

        try:
            _compare_onnx_pytorch_outputs(
                onnx_outs=onnx_outs,
                pt_outs=jit_outs,
                options=verification_options,
            )
        except AssertionError as e:
            return e, graph, jit_outs, onnx_outs

        return None, graph, jit_outs, onnx_outs

    except Exception as e:
        print("Unexpected error during verification.")
        print("jit graph: ", original_jit_graph)
        print("onnx graph: ", graph)
        raise e


class GraphInfoPrettyPrinter:
    graph_info: Optional[GraphInfo]
    upper_printer: Optional[GraphInfoPrettyPrinter]
    lower_printer: Optional[GraphInfoPrettyPrinter]

    graph_str_lambdas: Mapping[int, str]
    connector_str_lambdas: Mapping[int, str]
    children_str_lambdas: Mapping[int, str]

    def __init__(self, graph_info: Optional[GraphInfo]):
        self.graph_info = graph_info
        if (
            graph_info is not None
            and graph_info.upper_graph_info is not None
            and graph_info.lower_graph_info is not None
        ):
            self.upper_printer = GraphInfoPrettyPrinter(graph_info.upper_graph_info)
            self.lower_printer = GraphInfoPrettyPrinter(graph_info.lower_graph_info)
        else:
            self.upper_printer = None
            self.lower_printer = None

    @_beartype.beartype
    def _total_rows(self) -> int:
        if self.graph_info is None:
            return 1
        if self.upper_printer and self.lower_printer:
            return (
                self.upper_printer._total_rows() + self.lower_printer._total_rows() + 1
            )
        return 2  # Two lines: node count + id.

    @_beartype.beartype
    def _node_count_segment_str(self) -> str:
        if self.graph_info is None:
            return "..."
        node_count = self.graph_info.essential_node_count()
        has_mismatch = self.graph_info.has_mismatch()
        error_node_kind = (
            f"({self.graph_info.essential_node_kinds().pop()})"
            if node_count == 1 and has_mismatch
            else ""
        )

        return f"{node_count} {'X' if has_mismatch else 'βœ“'} {error_node_kind}"

    @_beartype.beartype
    def _graph_id_segment_str(self) -> str:
        if self.graph_info is None:
            return ""
        return f"id: {self.graph_info.id}"

    @_beartype.beartype
    def _max_segment_columns(self) -> int:
        return max(
            map(len, (self._node_count_segment_str(), self._graph_id_segment_str()))
        )

    @_beartype.beartype
    def _graph_segment_str_at_line(self, line: int) -> str:
        """Get the string representation of the graph segment at the given line."""
        if line == 0:
            result_str = self._node_count_segment_str()
            result_str += " " * (self._max_segment_columns() - len(result_str))
            return result_str
        if line == 1:
            result_str = self._graph_id_segment_str()
            result_str += " " * (self._max_segment_columns() - len(result_str))
            return result_str
        if 0 <= line < self._total_rows():
            return " " * self._max_segment_columns()
        return ""

    @_beartype.beartype
    def _connector_segment_str_at_line(self, line: int) -> str:
        """Get the connector segment string at the given line."""
        if self.upper_printer is None and self.lower_printer is None:
            return ""
        upper_total_rows = self.upper_printer._total_rows() if self.upper_printer else 1
        lower_total_rows = self.lower_printer._total_rows() if self.lower_printer else 1
        if line == 0:
            return "  __"
        elif line < upper_total_rows + 1:
            return " |  "
        elif line == upper_total_rows + 1:
            return " |__"
        elif line < upper_total_rows + lower_total_rows + 1:
            return "    "
        return ""

    @_beartype.beartype
    def _children_str_at_line(self, line: int) -> str:
        """Get the string representation of the children at the given line.



        Recursively calls `_str_at_line` on children nodes.

        """
        if self.upper_printer is None and self.lower_printer is None:
            return ""
        upper_total_rows = self.upper_printer._total_rows() if self.upper_printer else 1
        lower_total_rows = self.lower_printer._total_rows() if self.lower_printer else 1
        if 0 <= line < upper_total_rows:
            return (
                self.upper_printer._str_at_line(line) if self.upper_printer else "..."
            )
        elif upper_total_rows < line < upper_total_rows + lower_total_rows + 1:
            return (
                self.lower_printer._str_at_line(line - upper_total_rows - 1)
                if self.lower_printer
                else "..."
            )
        return ""

    @_beartype.beartype
    def _str_at_line(self, line: int) -> str:
        """Get the string representation of the graph at the given line."""
        return (
            self._graph_segment_str_at_line(line)
            + self._connector_segment_str_at_line(line)
            + self._children_str_at_line(line)
        )

    def pretty_print(self):
        if self.graph_info is None:
            print(None)
            return
        # Print tree.
        print(" Tree: ".center(80, "="))
        total_rows = self._total_rows()
        for line in range(total_rows):
            print(self._str_at_line(line).rstrip())
        if self.graph_info.has_mismatch():
            # Summarize leaf subgraphs with mismatch.
            print(" Mismatch leaf subgraphs: ".center(80, "="))
            print(
                [
                    graph_info.id
                    for graph_info in self.graph_info.all_mismatch_leaf_graph_info()
                ]
            )
            # Summarize node kinds with mismatch.
            mismatch_node_kinds: Dict[str, int] = {}
            for graph_info in self.graph_info.all_mismatch_leaf_graph_info():
                node_kinds = graph_info.essential_node_kinds()
                if len(node_kinds) == 1:
                    node_kind = node_kinds.pop()
                    mismatch_node_kinds[node_kind] = (
                        mismatch_node_kinds.get(node_kind, 0) + 1
                    )
            print(" Mismatch node kinds: ".center(80, "="))
            print(mismatch_node_kinds)
        else:
            print(" No mismatch found. ".center(80, "="))


class OnnxTestCaseRepro:
    def __init__(self, repro_dir):
        self.repro_dir = repro_dir
        self.proto, self.inputs, self.outputs = onnx_proto_utils.load_test_case(
            repro_dir
        )

    @classmethod
    @_beartype.beartype
    def create_test_case_repro(

        cls, proto: bytes, inputs, outputs, dir: str, name: Optional[str] = None

    ):
        """Create a repro under "{dir}/test_{name}" for an ONNX test case.



        The test case contains the model and the inputs/outputs data. The directory

        structure is as follows:



        dir

        β”œβ”€β”€ test_<name>

        β”‚   β”œβ”€β”€ model.onnx

        β”‚   └── test_data_set_0

        β”‚       β”œβ”€β”€ input_0.pb

        β”‚       β”œβ”€β”€ input_1.pb

        β”‚       β”œβ”€β”€ output_0.pb

        β”‚       └── output_1.pb



        Args:

            proto: ONNX model proto.

            inputs: Inputs to the model.

            outputs: Outputs of the model.

            dir: Directory to save the repro.

            name: Name of the test case. If not specified, a name based on current time

                will be generated.

        Returns:

            Path to the repro.

        """
        if name is None:
            name = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f")
        return onnx_proto_utils.export_as_test_case(
            proto,
            _to_numpy(inputs),
            _to_numpy(outputs),
            name,
            dir,
        )

    @_beartype.beartype
    def validate(self, options: VerificationOptions):
        """Run the ONNX test case with options.backend, and compare with the expected outputs.



        Args:

            options: Options for validation.



        Raise:

            AssertionError: if outputs from options.backend and expected outputs are not

                equal up to specified precision.

        """
        onnx_session = _onnx_backend_session(io.BytesIO(self.proto), options.backend)
        run_outputs = onnx_session.run(None, self.inputs)
        if hasattr(onnx_session, "get_outputs"):
            output_names = [o.name for o in onnx_session.get_outputs()]
        elif hasattr(onnx_session, "output_names"):
            output_names = onnx_session.output_names
        else:
            raise ValueError(f"Unknown onnx session type: {type(onnx_session)}")
        expected_outs = [self.outputs[name] for name in output_names]
        _compare_onnx_pytorch_outputs_in_np(run_outputs, expected_outs, options)


@dataclasses.dataclass
class GraphInfo:
    """GraphInfo contains validation information of a TorchScript graph and its converted ONNX graph."""

    graph: torch.Graph
    input_args: Tuple[Any, ...]
    params_dict: Dict[str, Any]
    export_options: _experimental.ExportOptions = dataclasses.field(
        default_factory=_experimental.ExportOptions
    )
    mismatch_error: Optional[AssertionError] = dataclasses.field(
        default=None, init=False
    )
    pt_outs: Optional[Sequence[_NumericType]] = dataclasses.field(
        default=None, init=False
    )
    upper_graph_info: Optional[GraphInfo] = dataclasses.field(default=None, init=False)
    lower_graph_info: Optional[GraphInfo] = dataclasses.field(default=None, init=False)
    id: str = dataclasses.field(default="")
    _onnx_graph: Optional[torch.Graph] = dataclasses.field(init=False, default=None)

    _EXCLUDED_NODE_KINDS: FrozenSet[str] = frozenset(
        {"prim::Constant", "prim::ListConstruct", "aten::ScalarImplicit"}
    )

    def clear(self):
        """Clear states and results of previous verification."""
        self.mismatch_error = None
        self.pt_outs = None
        self._onnx_graph = None
        self.upper_graph_info = None
        self.lower_graph_info = None

    def pretty_print_tree(self):
        """Pretty print `GraphInfo` tree.



        Each node represents a subgraph, showing the number of nodes in the subgraph and

        a check mark if the subgraph has output mismatch between torch and ONNX.



        The id of the subgraph is shown under the node. The `GraphInfo` object for any

        subgraph can be retrieved by calling `graph_info.find_partition(id)`.



        Example::



            ==================================== Tree: =====================================

            5 X   __2 X    __1 βœ“

            id:  |  id: 0 |  id: 00

                 |        |

                 |        |__1 X (aten::relu)

                 |           id: 01

                 |

                 |__3 X    __1 βœ“

                    id: 1 |  id: 10

                          |

                          |__2 X     __1 X (aten::relu)

                             id: 11 |  id: 110

                                    |

                                    |__1 βœ“

                                       id: 111

            =========================== Mismatch leaf subgraphs: ===========================

            ['01', '110']

            ============================= Mismatch node kinds: =============================

            {'aten::relu': 2}



        """
        GraphInfoPrettyPrinter(self).pretty_print()

    def pretty_print_mismatch(self, graph: bool = False):
        """Pretty print details of the mismatch between torch and ONNX.



        Args:

            graph: If True, print the ATen JIT graph and ONNX graph.

        """
        print(f" Mismatch info for graph partition {self.id}: ".center(80, "="))
        if graph:
            print(" ATen JIT graph ".center(80, "="))
            # TODO: A more compact graph printer.
            #   * Drop stride, grad, device information.
            #   * Show source location on a separate line.
            print(self.graph)
            if self._onnx_graph is not None:
                print(" ONNX graph ".center(80, "="))
                print(self._onnx_graph)
        if self.has_mismatch():
            print(" Mismatch error ".center(80, "="))
            print(self.mismatch_error)
        else:
            print(" No mismatch ".center(80, "="))

    @_beartype.beartype
    def has_mismatch(self) -> bool:
        """Return True if the subgraph has output mismatch between torch and ONNX."""
        return self.mismatch_error is not None

    @_beartype.beartype
    def essential_node_count(self) -> int:
        """Return the number of nodes in the subgraph excluding those in `_EXCLUDED_NODE_KINDS`."""
        return sum(
            1 for n in self.graph.nodes() if n.kind() not in self._EXCLUDED_NODE_KINDS
        )

    @_beartype.beartype
    def essential_node_kinds(self) -> Set[str]:
        """Return the set of node kinds in the subgraph excluding those in `_EXCLUDED_NODE_KINDS`."""
        return {
            n.kind()
            for n in self.graph.nodes()
            if n.kind() not in self._EXCLUDED_NODE_KINDS
        }

    @_beartype.beartype
    def all_mismatch_leaf_graph_info(self) -> List["GraphInfo"]:
        """Return a list of all leaf `GraphInfo` objects that have mismatch."""
        if not self.has_mismatch():
            return []

        no_mismatch_children = (
            self.upper_graph_info is None or not self.upper_graph_info.has_mismatch()
        ) and (
            self.lower_graph_info is None or not self.lower_graph_info.has_mismatch()
        )

        if no_mismatch_children:
            return [self]

        results = []
        if self.upper_graph_info is not None:
            results += self.upper_graph_info.all_mismatch_leaf_graph_info()
        if self.lower_graph_info is not None:
            results += self.lower_graph_info.all_mismatch_leaf_graph_info()

        return results

    @_beartype.beartype
    def find_partition(self, id: str) -> Optional["GraphInfo"]:
        """Find the `GraphInfo` object with the given id."""
        if id == self.id:
            return self
        current_length = len(self.id)
        if len(id) > current_length:
            if id[current_length] == "0" and self.upper_graph_info is not None:
                return self.upper_graph_info.find_partition(id)
            elif id[current_length] == "1" and self.lower_graph_info is not None:
                return self.lower_graph_info.find_partition(id)
        return None

    @_beartype.beartype
    def export_repro(

        self, repro_dir: Optional[str] = None, name: Optional[str] = None

    ) -> str:
        """Export the subgraph to ONNX along with the input/output data for repro.



        The repro directory will contain the following files::



            dir

            β”œβ”€β”€ test_<name>

            β”‚   β”œβ”€β”€ model.onnx

            β”‚   └── test_data_set_0

            β”‚       β”œβ”€β”€ input_0.pb

            β”‚       β”œβ”€β”€ input_1.pb

            β”‚       β”œβ”€β”€ output_0.pb

            β”‚       └── output_1.pb



        Args:

            repro_dir: The directory to export the repro files to. Defaults to current

                working directory if None.

            name: An optional name for the test case folder: "test_{name}".



        Returns:

            The path to the exported repro directory.

        """

        if repro_dir is None:
            repro_dir = os.getcwd()
        repro_dir = os.path.join(repro_dir, "onnx_debug")

        onnx_graph, onnx_params_dict = _onnx_graph_from_aten_graph(
            self.graph, self.export_options, self.params_dict
        )

        proto, _ = _onnx_proto_from_onnx_graph(
            onnx_graph, self.export_options, onnx_params_dict
        )
        return OnnxTestCaseRepro.create_test_case_repro(
            proto, self.input_args, self.pt_outs, repro_dir, name
        )

    @_beartype.beartype
    def _graph_partition_pivot(self) -> int:
        """Find the pivot index to partition the graph.



        The pivot is the node that splits the graph into two parts. Each part should

        have the similar amount of nodes, excluding non essential ops, defined in

        `_EXCLUDED_NODE_KINDS`, such as `prim::Constant`.

        If the graph has an odd number of nodes, the upper part will have one more node.

        If the graph does not have any node that can be partitioned, return -1.



        Returns:

            The index of the pivot node.

        """
        included_node_indices = [
            i
            for i, n in enumerate(self.graph.nodes())
            if n.kind() not in self._EXCLUDED_NODE_KINDS
        ]
        half_idx = len(included_node_indices) // 2 - 1
        if half_idx >= 0 and len(included_node_indices) > half_idx:
            return included_node_indices[half_idx] + 1
        return -1

    @_beartype.beartype
    def _partition_upper_graph(self) -> torch.Graph:
        pivot = self._graph_partition_pivot()
        if pivot == -1:
            return torch.Graph()
        graph = self.graph.copy()  # Copy to not mutate parent graph.
        original_outputs = list(graph.outputs())

        def _process_bridge_value_for_upper(

            new_outputs: List[torch.Value], bridge_value: torch.Value

        ) -> torch.Value:
            # Add bridge values as upper graph outputs.
            new_outputs.append(bridge_value)
            return bridge_value

        new_outputs: List[torch.Value] = []
        process_bridge_value_for_upper = functools.partial(
            _process_bridge_value_for_upper, new_outputs
        )
        _, dropped_nodes, complete_upper_nodes_set, _ = self._partition_nodes(
            graph, pivot, process_bridge_value_for_upper
        )

        for _ in enumerate(original_outputs):
            graph.eraseOutput(0)
        for output in new_outputs:
            graph.registerOutput(output)

        for node in reversed(dropped_nodes):
            node.destroy()

        for i, input in reversed(list(enumerate(list(graph.inputs())))):
            if (
                not _has_uses_by_nodes(input, complete_upper_nodes_set)
                and input not in new_outputs
            ):
                try:
                    graph.eraseInput(i)
                except RuntimeError as e:
                    print(input, graph)
                    raise e

        return graph

    @_beartype.beartype
    def _partition_lower_graph(self) -> torch.Graph:
        pivot = self._graph_partition_pivot()
        if pivot == -1:
            return torch.Graph()
        graph = self.graph.copy()  # Copy to not mutate parent graph.
        original_outputs = list(graph.outputs())
        original_inputs = list(graph.inputs())

        new_outputs = []

        def _process_bridge_value_for_lower(

            graph: torch.Graph, bridge_value: torch.Value

        ) -> torch.Value:
            # Add bridge values as lower graph inputs.
            new_input = graph.addInput()
            bridge_value.replaceAllUsesWith(new_input)
            new_input.copyMetadata(bridge_value)
            return new_input

        process_bridge_value_for_lower = functools.partial(
            _process_bridge_value_for_lower, graph
        )

        upper_nodes, lower_nodes, _, complete_lower_nodes_set = self._partition_nodes(
            graph, pivot, process_bridge_value_for_lower
        )

        for output in original_outputs:
            if _produced_by(output, lower_nodes):
                new_outputs.append(output)
        for _ in enumerate(original_outputs):
            graph.eraseOutput(0)
        for output in new_outputs:
            graph.registerOutput(output)

        for input in original_inputs:
            if _has_uses_by_nodes(input, complete_lower_nodes_set):
                new_input = graph.addInput()
                input.replaceAllUsesWith(new_input)
                new_input.copyMetadata(input)

        for node in reversed(upper_nodes):
            if node not in complete_lower_nodes_set:
                try:
                    node.destroy()
                except RuntimeError as e:
                    print(node, graph)
                    raise e

        for _ in original_inputs:
            graph.eraseInput(0)

        return graph

    @_beartype.beartype
    def _partition_node(

        self,

        node: torch.Node,

        complete_upper_nodes_set: Set[torch.Node],

        complete_lower_nodes_set: Set[torch.Node],

        original_graph_outputs: Set[torch.Value],

        covered_bridge_values: Set[torch.Value],

        process_bridge_value: Callable[[torch.Value], torch.Value],

    ):
        if node in complete_lower_nodes_set:
            return

        if (
            _node_has_uses_by(node, complete_lower_nodes_set)
            and node.kind() in self._EXCLUDED_NODE_KINDS
        ):
            complete_lower_nodes_set.update(_all_nodes([node]))
            for input in node.inputs():
                if input in covered_bridge_values:
                    continue
                self._partition_node(
                    input.node(),
                    complete_upper_nodes_set,
                    complete_lower_nodes_set,
                    original_graph_outputs,
                    covered_bridge_values,
                    process_bridge_value,
                )
        else:
            for output in node.outputs():
                if output in covered_bridge_values:
                    continue
                if (
                    _has_uses_by_nodes(output, complete_lower_nodes_set)
                    or output in original_graph_outputs
                ):
                    covered_bridge_values.add(process_bridge_value(output))

    @_beartype.beartype
    def _partition_nodes(

        self,

        graph: torch.Graph,

        pivot: int,

        process_bridge_value: Callable[[torch.Value], torch.Value],

    ) -> Tuple[List[torch.Node], List[torch.Node], Set[torch.Node], Set[torch.Node]]:
        nodes = list(graph.nodes())
        upper_nodes = nodes[:pivot]
        lower_nodes = nodes[pivot:]
        # `upper_nodes` and `complete_upper_nodes_set` differs in that the latter
        # recursively contains nodes in subblock of `upper_nodes`.
        # The same applies for `lower_nodes` and `complete_lower_nodes_set`.
        # With addition that `complete_lower_nodes_set` will include nodes that
        # are determined to be copied from `upper_nodes` to `lower_nodes`.
        complete_upper_nodes_set = _all_nodes(upper_nodes)
        complete_lower_nodes_set = _all_nodes(lower_nodes)
        original_graph_outputs = set(graph.outputs())
        # Bridge values are values produced from upper graph, and consumed
        # by lower graph. These values need to be become upper graph outputs
        # and lower graph inputs, to bridge the interaction.
        # Start with all graph inputs marked as covered. If any graph input is
        # needed by lower graph, just keep it in lower graph inputs later.
        covered_bridge_values = set(graph.inputs())
        for node in upper_nodes:
            self._partition_node(
                node,
                complete_upper_nodes_set,
                complete_lower_nodes_set,
                original_graph_outputs,
                covered_bridge_values,
                process_bridge_value,
            )
        return (
            upper_nodes,
            lower_nodes,
            complete_upper_nodes_set,
            complete_lower_nodes_set,
        )

    @_beartype.beartype
    def _bridge_kwargs(self):
        pt_outs = self.pt_outs
        graph_outputs = list(self.graph.outputs())
        assert pt_outs is not None
        assert len(graph_outputs) == len(
            pt_outs
        ), f"{len(graph_outputs)} vs {len(pt_outs)}\nGraph: {self.graph}"
        return {v.debugName(): o for v, o in zip(graph_outputs, pt_outs)}

    @_beartype.beartype
    def _args_and_params_for_partition_graph(

        self,

        graph: torch.Graph,

        bridge_kwargs: Mapping[str, Union[_NumericType, Sequence[_NumericType]]],

        full_kwargs: Mapping[str, torch.Tensor],

        full_params: Mapping[str, torch.Tensor],

    ):
        input_names = [input.debugName() for input in graph.inputs()]
        args = tuple(bridge_kwargs[k] for k in input_names if k in bridge_kwargs)
        args += tuple(full_kwargs[k] for k in input_names if k in full_kwargs)
        params = {k: full_params[k] for k in input_names if k in full_params}
        assert len(args) + len(params) == len(
            input_names
        ), f"{len(args)} + {len(params)} vs {len(input_names)}: {input_names}"
        return args, params

    @_beartype.beartype
    def verify_export(

        self, options: VerificationOptions

    ) -> Tuple[Optional[AssertionError], torch.Graph, _OutputsType, _OutputsType]:
        """

        Verify the export from TorchScript IR graph to ONNX.



        Export the TorchScript IR graph to ONNX, with the inputs, parameters and export

        options recorded in this object. Then verify the exported ONNX graph against

        the original TorchScript IR graph under the provided verification options.



        Args:

            options: The verification options.



        Returns:

            error: The AssertionError raised during the verification. Returns None if no

            error is raised.

            onnx_graph: The exported ONNX graph in TorchScript IR format.

            onnx_outs: The outputs from running exported ONNX model under the onnx

            backend in `options`.

            pt_outs: The outputs from running the TorchScript IR graph.

        """
        return verify_aten_graph(
            self.graph,
            input_args=self.input_args,
            params_dict=self.params_dict,
            export_options=self.export_options,
            verification_options=options,
        )

    @_beartype.beartype
    def find_mismatch(

        self,

        options: Optional[VerificationOptions] = None,

    ):
        """

        Find all mismatches between the TorchScript IR graph and the exported onnx model.



        Binary searches the model graph to find the minimal subgraph that exhibits the

        mismatch. A `GraphInfo` object is created for each subgraph, recording the test

        inputs and export options, as well as the validation results.



        Args:

            options: The verification options.

        """
        self.clear()

        if options is None:
            options = VerificationOptions()

        if self.export_options.verbose:
            print(self.graph)

        if len(list(self.graph.outputs())) == 0:
            return

        assert len(self.input_args) + len(self.params_dict) == len(
            list(self.graph.inputs())
        ), (
            f"Number of graph inputs({len(list(self.graph.inputs()))}) does not match "
            f"the provided tensor arguments({len(self.input_args)} + {len(self.params_dict)})."
        )

        self.mismatch_error, self._onnx_graph, self.pt_outs, _ = self.verify_export(
            options
        )

        if self.mismatch_error is None:
            # No mismatch found in graph.
            return

        if self.essential_node_count() <= 1:
            # Reached leaf node, no more partitioning.
            return

        full_kwargs = {
            k.debugName(): v for k, v in zip(self.graph.inputs(), self.input_args)
        }
        full_params = self.params_dict

        upper_graph = self._partition_upper_graph()
        upper_args, upper_params = self._args_and_params_for_partition_graph(
            upper_graph, {}, full_kwargs, full_params
        )
        self.upper_graph_info = GraphInfo(
            upper_graph,
            upper_args,
            upper_params,
            self.export_options,
            id=self.id + "0",
        )

        self.upper_graph_info.find_mismatch(options)

        bridge_kwargs = self.upper_graph_info._bridge_kwargs()
        lower_graph = self._partition_lower_graph()
        lower_args, lower_params = self._args_and_params_for_partition_graph(
            lower_graph, bridge_kwargs, full_kwargs, full_params
        )
        self.lower_graph_info = GraphInfo(
            lower_graph,
            lower_args,
            lower_params,
            self.export_options,
            id=self.id + "1",
        )

        self.lower_graph_info.find_mismatch(options)


@_beartype.beartype
def _all_nodes(nodes: Collection[torch.Node]) -> Set[torch.Node]:
    all_nodes = set(nodes)
    for n in nodes:
        for b in n.blocks():
            all_nodes.update(_all_nodes(list(b.nodes())))
    return all_nodes


@_beartype.beartype
def _has_uses_by_nodes(value: torch.Value, nodes: Collection[torch.Node]) -> bool:
    if any(use.user in nodes for use in value.uses()):
        return True
    return False


@_beartype.beartype
def _node_has_uses_by(node: torch.Node, nodes: Collection[torch.Node]) -> bool:
    for output in node.outputs():
        if _has_uses_by_nodes(output, nodes):
            return True
    return False


@_beartype.beartype
def _produced_by(value: torch.Value, nodes: Collection[torch.Node]) -> bool:
    return value.node() in nodes


@_beartype.beartype
def find_mismatch(

    model: Union[torch.nn.Module, torch.jit.ScriptModule],

    input_args: Tuple[Any, ...],

    do_constant_folding: bool = True,

    training: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL,

    opset_version: Optional[int] = None,

    keep_initializers_as_inputs: bool = True,

    verbose: bool = False,

    options: Optional[VerificationOptions] = None,

) -> GraphInfo:
    r"""Find all mismatches between the original model and the exported model.



    Experimental. The API is subject to change.



    This tool helps debug the mismatch between the original PyTorch model and exported

    ONNX model. It binary searches the model graph to find the minimal subgraph that

    exhibits the mismatch.



    Args:

        model: The model to be exported.

        input_args: The input arguments to the model.

        do_constant_folding: Same as `do_constant_folding` in :func:`torch.onnx.export`.

        training: Same as `training` in :func:`torch.onnx.export`.

        opset_version: Same as `opset_version` in :func:`torch.onnx.export`.

        keep_initializers_as_inputs: Same as `keep_initializers_as_inputs` in :func:`torch.onnx.export`.

        verbose: Same as `verbose` in :func:`torch.onnx.export`.

        options: The options for the mismatch verification.



    Returns:

        A GraphInfo object that contains the mismatch information.



    Example::



        >>> import torch

        >>> import torch.onnx.verification

        >>> torch.manual_seed(0)

        >>> opset_version = 15

        >>> # Define a custom symbolic function for aten::relu.

        >>> # The custom symbolic function is incorrect, which will result in mismatches.

        >>> def incorrect_relu_symbolic_function(g, self):

        ...     return self

        >>> torch.onnx.register_custom_op_symbolic(

        ...     "aten::relu",

        ...     incorrect_relu_symbolic_function,

        ...     opset_version=opset_version,

        ... )

        >>> class Model(torch.nn.Module):

        ...     def __init__(self):

        ...         super().__init__()

        ...         self.layers = torch.nn.Sequential(

        ...             torch.nn.Linear(3, 4),

        ...             torch.nn.ReLU(),

        ...             torch.nn.Linear(4, 5),

        ...             torch.nn.ReLU(),

        ...             torch.nn.Linear(5, 6),

        ...         )

        ...     def forward(self, x):

        ...         return self.layers(x)

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_ONNX)

        >>> graph_info = torch.onnx.verification.find_mismatch(

        ...     Model(),

        ...     (torch.randn(2, 3),),

        ...     opset_version=opset_version,

        ... )

        ===================== Mismatch info for graph partition : ======================

        ================================ Mismatch error ================================

        Tensor-likes are not close!

        Mismatched elements: 12 / 12 (100.0%)

        Greatest absolute difference: 0.2328854203224182 at index (1, 2) (up to 1e-07 allowed)

        Greatest relative difference: 0.699536174352349 at index (1, 3) (up to 0.001 allowed)

        ==================================== Tree: =====================================

        5 X   __2 X    __1 βœ“

        id:  |  id: 0 |  id: 00

             |        |

             |        |__1 X (aten::relu)

             |           id: 01

             |

             |__3 X    __1 βœ“

                id: 1 |  id: 10

                      |

                      |__2 X     __1 X (aten::relu)

                         id: 11 |  id: 110

                                |

                                |__1 βœ“

                                   id: 111

        =========================== Mismatch leaf subgraphs: ===========================

        ['01', '110']

        ============================= Mismatch node kinds: =============================

        {'aten::relu': 2}



    """
    if options is None:
        options = VerificationOptions()
    if opset_version is None:
        opset_version = _constants.ONNX_DEFAULT_OPSET
    """From aten graph, do binary search on graph partition to find operator export discrepancy."""
    # TODO: Copied from utils.py `export` until `_optimize_graph`.
    if training == torch.onnx.TrainingMode.TRAINING:
        model.train()
    elif training == torch.onnx.TrainingMode.EVAL:
        model.eval()
    with torch.no_grad():
        inputs_for_export = _prepare_input_for_export(input_args, {})
        args = utils._decide_input_format(model, inputs_for_export)

        model = utils._pre_trace_quant_model(model, args)
        graph, params, torch_out, module = utils._create_jit_graph(model, args)
        params_dict = utils._get_named_param_dict(graph, params)

        utils._apply_friendly_debug_names(graph, params_dict)

        graph_info = GraphInfo(
            graph,
            input_args,
            params_dict,
            _experimental.ExportOptions(
                do_constant_folding=do_constant_folding,
                training=training,
                opset_version=opset_version,
                keep_initializers_as_inputs=keep_initializers_as_inputs,
                verbose=verbose,
            ),
        )
        graph_info.find_mismatch(options)
        graph_info.pretty_print_mismatch()
        graph_info.pretty_print_tree()

        return graph_info