Spaces:
Sleeping
Sleeping
File size: 64,606 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 |
from __future__ import annotations
import functools
import inspect
import sys
import typing
import warnings
from typing import (
Any,
Callable,
List,
Literal,
NoReturn,
Optional,
Sequence,
Set,
Tuple,
Union,
)
import torch
import torch._C._onnx as _C_onnx
from torch import _C
# Monkey-patch graph manipulation methods on Graph, used for the ONNX symbolics
from torch.onnx import _constants, _type_utils, errors
from torch.onnx._globals import GLOBALS
from torch.onnx._internal import _beartype, jit_utils
from torch.types import Number
__all__ = [
"args_have_same_dtype",
"cast_pytorch_to_onnx",
"check_training_mode",
"dequantize_helper",
"is_caffe2_aten_fallback",
"is_complex_value",
"parse_args",
"pytorch_name_to_type",
"quantize_helper",
"quantized_args",
"requantize_bias_helper",
"scalar_name_to_pytorch",
"scalar_type_to_onnx",
"scalar_type_to_pytorch_type",
]
# ---------------------------------------------------------------------------------
# Helper functions
# ---------------------------------------------------------------------------------
_ValueDescriptor = Literal[
"v",
"i",
"is",
"f",
"fs",
"b",
"s",
"t",
"none",
]
@_beartype.beartype
def _parse_arg(
value,
desc: _ValueDescriptor,
arg_name: Optional[str] = None,
node_name: Optional[str] = None,
):
if desc == "none":
return value
if desc == "v" or not _is_value(value):
return value
node = value.node()
if node.mustBeNone():
return None
if node.kind() == "onnx::Constant":
node_val = _node_get(node, "value")
if desc == "i":
return int(node_val)
elif desc == "f":
return float(node_val)
elif desc == "b":
return bool(node_val)
elif desc == "s":
return str(node_val)
elif desc == "t":
return node_val
elif desc == "is":
return [int(v) for v in node_val]
elif desc == "fs":
return [float(v) for v in node_val]
else:
raise errors.SymbolicValueError(
f"ONNX symbolic does not understand the Constant node '{node}' "
f"specified with descriptor '{desc}'.",
value,
)
elif node.kind() == "prim::ListConstruct":
if desc == "is":
for v in node.inputs():
element_node = v.node()
if element_node.kind() != "onnx::Constant":
raise errors.SymbolicValueError(
f"Failed to export a node '{element_node}' "
f"(in list node {node}) "
f"because it is not constant. "
f"Please try to make things (e.g. kernel sizes) static if possible.",
value,
)
return [int(_node_get(v.node(), "value")) for v in value.node().inputs()]
else:
raise errors.SymbolicValueError(
f"ONNX symbolic does not know how to unpack the ListConstruct node that "
f"is not a list of integers: '{node}'",
value,
)
if arg_name is None or node_name is None:
raise errors.SymbolicValueError(
f"Expected node type 'onnx::Constant', got '{node.kind()}'.",
value,
)
raise errors.SymbolicValueError(
"Expected node type 'onnx::Constant' "
f"for argument '{arg_name}' of node '{node_name}', got '{node.kind()}'.",
value,
)
@_beartype.beartype
def _node_get(node: _C.Node, key: str):
"""Gets attributes of a node which is polymorphic over return type."""
assert isinstance(node, _C.Node)
sel = node.kindOf(key)
return getattr(node, sel)(key)
@_beartype.beartype
def _is_onnx_constant(value: _C.Value):
"""Whether a Value is an ONNX constant."""
return value.node().kind() == "onnx::Constant"
@_beartype.beartype
def _maybe_get_const(
value: Optional[Union[_C.Value, torch.Tensor, Number, Sequence]],
descriptor: _ValueDescriptor,
):
# NOTE: prim::Constant at this stage usually means something not compatible in ONNX,
# otherwise it'd be converted to onnx::Constant
# TODO(justinchuby): Replace insinstance with _is_value once we figure out mypy
if isinstance(value, _C.Value) and _is_onnx_constant(value):
return _parse_arg(value, descriptor)
return value
@_beartype.beartype
def _maybe_get_scalar(value):
value_t = _maybe_get_const(value, "t")
if isinstance(value_t, torch.Tensor) and value_t.shape == ():
return value_t
return value
@_beartype.beartype
def _get_const(value, desc, arg_name):
if not _is_constant(value):
raise errors.SymbolicValueError(
f"ONNX symbolic expected a constant value of the '{arg_name}' argument, "
f"got '{value}'",
value,
)
return _parse_arg(value, desc)
@_beartype.beartype
def _unpack_list(list_value: _C.Value) -> List[_C.Value]:
list_node = list_value.node()
if list_node.kind() != "prim::ListConstruct":
raise errors.SymbolicValueError(
f"ONNX symbolic expected node type prim::ListConstruct, "
f"got '{list_node}'.",
list_value,
)
return list(list_node.inputs())
@_beartype.beartype
def _unpack_tuple(tuple_value: _C.Value) -> Tuple[_C.Value, ...]:
tuple_node = tuple_value.node()
if not _is_tuple_construct(tuple_value):
raise errors.SymbolicValueError(
f"ONNX symbolic expected node type 'prim::TupleConstruct', "
f"got '{tuple_node.kind()}'.",
tuple_value,
)
return tuple(tuple_node.inputs())
@_beartype.beartype
def _unpack_quantized_tensor(tuple_value: _C.Value) -> Tuple[_C.Value, ...]:
"""Unpacks a quantized tensor into a tuple of tensor and scale/zero_point.
Args:
tuple_value: A tuple of tensor, scale, zero_point, and optionally axis.
Returns:
A tuple of tensor, scale, zero_point, and optionally axis.
"""
tuple_node = tuple_value.node()
# A quantized tensor is represented as tuple of the form (tensor, scale, zero_point, <axis>)
if not _is_tuple_construct(tuple_value):
raise errors.SymbolicValueError(
f"ONNX symbolic expected the output of `{tuple_node}` to be a quantized "
f"tensor. Is this likely due to missing support for quantized "
f"`{tuple_node.kind()}`. Please create an issue on {_constants.PYTORCH_GITHUB_ISSUES_URL}",
tuple_value,
)
unpacked = tuple(tuple_node.inputs())
assert len(unpacked) == 3 or len(unpacked) == 4
return unpacked
# Check if list_value is output from prim::ListConstruct
# This is usually called before _unpack_list to ensure the list can be unpacked.
@_beartype.beartype
def _is_packed_list(list_value: Any) -> bool:
return _is_value(list_value) and list_value.node().kind() == "prim::ListConstruct"
@_beartype.beartype
def parse_args(*arg_descriptors: _ValueDescriptor):
"""A decorator which converts args from torch._C.Value to built-in types.
For example:
```
@parse_args('v', 'i', 'fs')
foo(g, a, b, c):
assert isinstance(a, torch._C.Value)
assert isinstance(b, int)
assert isinstance(c, list)
assert isinstance(c[0], float)
```
Args:
arg_descriptors: list of str, where each element is
a string that specifies the type to convert to. Valid descriptors:
"v": no conversion, keep torch._C.Value.
"i": int
"is": list of int
"f": float
"fs": list of float
"b": bool
"s": str
"t": torch.Tensor
"none": the variable is unused
"""
def decorator(fn):
fn._arg_descriptors = arg_descriptors
@functools.wraps(fn)
def wrapper(g, *args, **kwargs):
# some args may be optional, so the length may be smaller
FILE_BUG_MSG = (
"If you believe this is not due to custom symbolic implementation within your code or "
"an external library, please file an issue at "
"https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml to report this bug."
)
assert len(arg_descriptors) >= len(args), (
f"A mismatch between the number of arguments ({len(args)}) and "
f"their descriptors ({len(arg_descriptors)}) was found at symbolic function '{fn.__name__}'. "
f"{FILE_BUG_MSG}"
)
try:
sig = inspect.signature(fn)
arg_names = list(sig.parameters.keys())[1:]
fn_name = fn.__name__
except Exception:
# FIXME(justinchuby): Avoid catching Exception.
# Catch a more specific exception instead.
arg_names = [None] * len(args) # type: ignore[list-item]
fn_name = None
args = [
_parse_arg(arg, arg_desc, arg_name, fn_name) # type: ignore[method-assign]
for arg, arg_desc, arg_name in zip(args, arg_descriptors, arg_names)
]
# only support _outputs in kwargs
assert len(kwargs) <= 1, (
f"Symbolic function {fn.__name__}'s '**kwargs' can contain a single "
f"key/value entry. "
f"{FILE_BUG_MSG}"
)
if len(kwargs) == 1:
assert "_outputs" in kwargs, (
f"Symbolic function {fn.__name__}'s '**kwargs' can only contain "
f"'_outputs' key at '**kwargs'. "
f"{FILE_BUG_MSG}"
)
return fn(g, *args, **kwargs)
return wrapper
return decorator
@_beartype.beartype
def quantized_args(
*arg_q_descriptors: bool,
scale: Optional[float] = None,
zero_point: Optional[int] = None,
quantize_output: bool = True,
):
"""A decorator which extends support for quantized version of the base operator.
Quantization is detected by examining the arguments that are annotated by
`arg_q_descriptors`.
If quantization is detected, the base operator symbolic function will be wrapped with
argument de-quantization and output quantization.
Otherwise, only the base symbolic function will be invoked.
For example:
```
@quantized_args(True, False)
def foo(g, x, y):
return x + y
```
is equivalent to
```
def q_foo(g, x, y):
if is_quantized_tensor(x):
x = dequantize(x)
out = foo(g, x, y)
return quantize(out)
else:
return foo(g, x, y)
```
Args:
arg_q_descriptors: A sequence of bool, where each element represents if the
argument is QTensor for quantized version of this operator. It defaults
to False for unspecified (variable length) arguments.
scale: Quantized output scale. If None, derive from
the first quantized input scale.
zero_point: Quantized output zero point. If None,
derive from the first quantized input zero point.
quantize_output: If True, quantize the output of the base operator. Default is True
"""
def decorator(fn):
@functools.wraps(fn)
def wrapper(g, *args, **kwargs):
nonlocal scale
nonlocal zero_point
if scale is not None:
_scale = g.op("Constant", value_t=torch.tensor(scale))
else:
_scale = None
if zero_point is not None:
_zero_point = g.op("Constant", value_t=torch.tensor(zero_point))
else:
_zero_point = None
# Support variable length arguments by marking unspecified ones as non-quantized
arg_q_descriptors_extended = arg_q_descriptors + (False,) * (
len(args) - len(arg_q_descriptors)
)
descriptor_args = tuple(zip(arg_q_descriptors_extended, args))
def _is_arg_quantized(descriptor, arg):
return descriptor and _is_value(arg) and _is_tuple_construct(arg)
# Run regular symbolic function if none of the argument is QTensor.
is_quantized = list()
for descriptor, arg in descriptor_args:
# ListConstruct
if _is_packed_list(arg):
for arg_input in arg.node().inputs():
is_quantized.append(_is_arg_quantized(descriptor, arg_input))
else:
is_quantized.append(_is_arg_quantized(descriptor, arg))
if not any(is_quantized):
return fn(g, *args, **kwargs)
# Dequantize arguments that are quantized
non_quantized_args = []
for descriptor, arg in descriptor_args:
if _is_arg_quantized(descriptor, arg):
# Quantized arg is a tuple of (value, scale, zero_point)
dequantized_arg, arg_scale, arg_zero_point, _ = dequantize_helper(
g, arg
)
non_quantized_args.append(dequantized_arg)
# Set scale and zero_point to the first quantized input if not already set
if _scale is None:
_scale = arg_scale
if _zero_point is None:
_zero_point = arg_zero_point
# ListConstruct
elif _is_packed_list(arg):
for arg_input in arg.node().inputs():
if _is_arg_quantized(descriptor, arg_input):
# Quantized arg is a tuple of (value, scale, zero_point)
(
dequantized_arg,
arg_scale,
arg_zero_point,
_,
) = dequantize_helper(g, arg_input)
# Set scale and zero_point to the first quantized input if not already set
if _scale is None:
_scale = arg_scale
if _zero_point is None:
_zero_point = arg_zero_point
arg_input.replaceAllUsesWith(dequantized_arg)
non_quantized_args.append(arg)
else:
# Non-quantized arg
non_quantized_args.append(arg)
# TODO(justinchuby): Only single output is supported for now. We may want to
# support multiple outputs in the future.
output = fn(g, *non_quantized_args, **kwargs)
assert _scale is not None, "Bug: Scale must be set for quantized operator"
assert (
_zero_point is not None
), "Bug: Zero point must be set for quantized operator"
if quantize_output:
return quantize_helper(g, output, _scale, _zero_point)
return output
return wrapper
return decorator
@_beartype.beartype
def _scalar(x: Any) -> Optional[Number]:
"""Convert a scalar tensor into a Python value."""
if isinstance(x, torch.Tensor) and x.shape == ():
return x.item()
return None
@_beartype.beartype
def _if_scalar_type_as(self, tensor):
"""
Convert self into the same type of tensor, as necessary.
We only support implicit casting for scalars, so we never
actually need to insert an ONNX cast operator here; just
fix up the scalar.
"""
if isinstance(self, _C.Value):
return self
scalar_type = _type_utils.JitScalarType.from_value(
tensor, _type_utils.JitScalarType.UNDEFINED
)
if scalar_type != _type_utils.JitScalarType.UNDEFINED:
ty = scalar_type.scalar_name().lower()
return getattr(self, ty)()
return self
@_beartype.beartype
def _is_none(x: Any) -> bool:
return x is None or (x.node().mustBeNone() if isinstance(x, _C.Value) else False)
@_beartype.beartype
def _is_value(x: Any) -> bool:
return isinstance(x, _C.Value)
@_beartype.beartype
def _is_constant(value: Any) -> bool:
return not _is_value(value) or value.node().kind() in {
"onnx::Constant",
"prim::Constant",
}
@_beartype.beartype
def _is_tensor(x: _C.Value) -> bool:
return x.type().isSubtypeOf(_C.TensorType.get())
# Note: _C.JitType is not exposed to Python and cannot be checked in runtime.
def _as_list_type(jit_type: _C.JitType) -> Optional[_C.ListType]:
if isinstance(jit_type, _C.ListType):
return jit_type
return None
@_beartype.beartype
def _is_list(x: _C.Value) -> bool:
return _as_list_type(x.type()) is not None
@_beartype.beartype
def _is_tensor_list(x: _C.Value) -> bool:
x_type = _as_list_type(x.type())
if x_type is None:
return False
return isinstance(x_type.getElementType(), _C.TensorType)
@_beartype.beartype
def _is_scalar_list(x: _C.Value) -> bool:
"""Checks if x is a scalar list, for example: List[float], List[int].
Besides checking the type is ListType, we also check if the data type is
a valid ONNX data type.
"""
x_type = _as_list_type(x.type())
if x_type is None:
return False
scalar_type = _type_utils.JitScalarType.from_value(x)
return scalar_type.onnx_compatible()
@_beartype.beartype
def _is_tuple_construct(x: _C.Value) -> bool:
return x.node().kind() == "prim::TupleConstruct"
@_beartype.beartype
def is_complex_value(x: _C.Value) -> bool:
assert _is_value(x)
return _type_utils.JitScalarType.from_value(
x, _type_utils.JitScalarType.UNDEFINED
) in {
_type_utils.JitScalarType.COMPLEX32,
_type_utils.JitScalarType.COMPLEX64,
_type_utils.JitScalarType.COMPLEX128,
}
@_beartype.beartype
def is_caffe2_aten_fallback() -> bool:
return (
GLOBALS.operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK
and _C_onnx._CAFFE2_ATEN_FALLBACK
)
@_beartype.beartype
def _get_tensor_rank(x: _C.Value) -> Optional[int]:
if not _is_tensor(x) or x.type() is None:
return None
x_type = x.type()
x_type = typing.cast(_C.TensorType, x_type)
return x_type.dim()
@_beartype.beartype
def _get_tensor_sizes(x: _C.Value, allow_nonstatic: bool = True):
if not _is_tensor(x) or x.type() is None:
return None
x_type = x.type()
x_type = typing.cast(_C.TensorType, x_type)
if allow_nonstatic:
# Each individual symbol is returned as None.
# e.g. [1, "a", "b"] -> [1, None, None]
return x_type.varyingSizes()
# returns None, if exists any symbol in sizes.
# e.g. [1, "a", "b"] -> None
return x_type.sizes()
@_beartype.beartype
def _get_tensor_dim_size(x: _C.Value, dim: int) -> Optional[int]:
sizes = _get_tensor_sizes(x)
return sizes[dim] if sizes else None
@_beartype.beartype
def _get_dim_for_cross(x: _C.Value, dim: Optional[int]):
if dim == -1:
tensor_rank = _get_tensor_rank(x)
assert tensor_rank is not None
return dim + tensor_rank
# If dim is not given, it defaults to the first dimension found with the size 3
if dim is None:
sizes = _get_tensor_sizes(x)
assert sizes is not None
for index, size in enumerate(sizes):
if size is not None and size == 3:
return index
return dim
@_beartype.beartype
def _unimplemented(op: str, msg: str, value: Optional[_C.Value] = None) -> None:
# For BC reasons, the behavior for Caffe2 does not raise exception for unimplemented operators
if _C_onnx._CAFFE2_ATEN_FALLBACK:
warnings.warn(f"ONNX export failed on {op} because {msg} not supported")
elif GLOBALS.operator_export_type == _C_onnx.OperatorExportTypes.ONNX:
_onnx_unsupported(f"{op}, {msg}", value)
@_beartype.beartype
def _onnx_unsupported(op_name: str, value: Optional[_C.Value] = None) -> NoReturn:
message = (
f"Unsupported: ONNX export of operator {op_name}. "
f"Please feel free to request support or submit a pull request "
f"on PyTorch GitHub: {_constants.PYTORCH_GITHUB_ISSUES_URL}"
)
if isinstance(value, _C.Value):
raise errors.SymbolicValueError(
message,
value,
)
raise errors.OnnxExporterError(message)
@_beartype.beartype
def _onnx_opset_unsupported(
op_name: str,
current_opset: int,
supported_opset: int,
value: Optional[_C.Value] = None,
) -> NoReturn:
message = (
f"Unsupported: ONNX export of {op_name} in opset {current_opset}. "
f"Please try opset version {supported_opset}."
)
if isinstance(value, _C.Value):
raise errors.SymbolicValueError(
message,
value,
)
raise errors.OnnxExporterError(message)
@_beartype.beartype
def _onnx_opset_unsupported_detailed(
op_name: str,
current_opset: int,
supported_opset: int,
reason: str,
value: Optional[_C.Value] = None,
) -> NoReturn:
message = (
f"Unsupported: ONNX export of {op_name} in "
f"opset {current_opset}. {reason}. Please try opset version {supported_opset}."
)
if isinstance(value, _C.Value):
raise errors.SymbolicValueError(
message,
value,
)
raise errors.OnnxExporterError(message)
@_beartype.beartype
def _block_list_in_opset(name: str):
def symbolic_fn(*args, **kwargs):
raise errors.OnnxExporterError(
f"ONNX export failed on {name}, which is not implemented for opset "
f"{GLOBALS.export_onnx_opset_version}. "
"Try exporting with other opset versions."
)
return symbolic_fn
@_beartype.beartype
def _try_get_scalar_type(*args) -> Optional[_type_utils.JitScalarType]:
for arg in args:
scalar_type = _type_utils.JitScalarType.from_value(
arg, _type_utils.JitScalarType.UNDEFINED
)
if scalar_type != _type_utils.JitScalarType.UNDEFINED:
return scalar_type
return None
@_beartype.beartype
def _select_helper(g: jit_utils.GraphContext, self, dim, index, apply_reshape=True):
index_const = _maybe_get_scalar(index)
index_dim = _get_tensor_rank(index)
if not _is_value(index_const):
# Index is a constant scalar. Make it a size 1 constant tensor.
index = g.op("Constant", value_t=torch.LongTensor([index_const]))
elif index_dim is not None and apply_reshape:
if index_dim == 0:
# Index is a scalar. Reshape it to a size 1 tensor.
index = _reshape_helper(
g, index, g.op("Constant", value_t=torch.LongTensor([1]))
)
index_scalar_type = _type_utils.JitScalarType.from_value(
index, _type_utils.JitScalarType.UNDEFINED
)
if index_scalar_type not in {
_type_utils.JitScalarType.INT64,
_type_utils.JitScalarType.INT,
}:
index = g.op("Cast", index, to_i=_C_onnx.TensorProtoDataType.INT64)
return g.op("Gather", self, index, axis_i=dim)
@_beartype.beartype
def _slice_helper(
g: jit_utils.GraphContext,
input,
axes,
starts,
ends,
steps=None,
):
if g.opset <= 9:
from torch.onnx.symbolic_opset9 import _slice as _slice9
return _slice9(g, input, axes, starts, ends)
else:
from torch.onnx.symbolic_opset10 import _slice as _slice10
return _slice10(g, input, axes, starts, ends, steps)
@_beartype.beartype
def _is_fp(value) -> bool:
return _type_utils.JitScalarType.from_value(
value, _type_utils.JitScalarType.UNDEFINED
) in {
_type_utils.JitScalarType.FLOAT,
_type_utils.JitScalarType.DOUBLE,
_type_utils.JitScalarType.HALF,
_type_utils.JitScalarType.BFLOAT16,
}
@_beartype.beartype
def _is_bool(value) -> bool:
return _type_utils.JitScalarType.from_value(
value, _type_utils.JitScalarType.UNDEFINED
) in {_type_utils.JitScalarType.BOOL}
@_beartype.beartype
def _generate_wrapped_number(g: jit_utils.GraphContext, scalar):
"""Creates a wrapped number based on https://github.com/pytorch/pytorch/issues/9515.
A Tensor is a considered a "wrapped number" if it is
auto-wrapped from a C++ or Python number type. Integer types are
wrapped as 0-dim int64 tensors and floating-point types are
wrapped as 0-dim double tensors.
The input to this function is constant value. If the data type
is a floating point type, it is converted to a 0-dim double
tensor, else it is converted to a 0-dim tensor of its original type
"""
assert not isinstance(scalar, torch.Tensor)
if isinstance(scalar, float):
return g.op("Constant", value_t=torch.tensor(scalar, dtype=torch.double))
return g.op("Constant", value_t=torch.tensor(scalar))
@_beartype.beartype
def _sort_helper(g: jit_utils.GraphContext, input, dim, decending=True, out=None):
if out is not None:
_unimplemented("Sort", "Out parameter is not supported")
shape_ = g.op("Shape", input)
dim_size_ = g.op(
"Gather",
shape_,
g.op("Constant", value_t=torch.tensor([dim], dtype=torch.int64)),
)
if g.opset <= 10:
if not decending:
_unimplemented("Sort", "Ascending is not supported")
return g.op("TopK", input, dim_size_, axis_i=dim, outputs=2)
else:
return g.op(
"TopK", input, dim_size_, axis_i=dim, largest_i=decending, outputs=2
)
@_beartype.beartype
def _topk_helper(
g: jit_utils.GraphContext, input, k, dim, largest=True, sorted=False, out=None
):
if out is not None:
_unimplemented("TopK", "Out parameter is not supported")
if not _is_value(k):
k = g.op("Constant", value_t=torch.tensor([k], dtype=torch.int64))
else:
k = _reshape_helper(g, k, g.op("Constant", value_t=torch.tensor([1])))
if _try_get_scalar_type(k) != _type_utils.JitScalarType.INT64:
k = g.op("Cast", k, to_i=_C_onnx.TensorProtoDataType.INT64)
if g.opset <= 10:
if not largest:
_unimplemented("TopK", "Ascending is not supported")
return g.op("TopK", input, k, axis_i=dim, outputs=2)
else:
return g.op(
"TopK", input, k, axis_i=dim, largest_i=largest, sorted_i=sorted, outputs=2
)
@_beartype.beartype
def _lt_helper(g: jit_utils.GraphContext, input, other):
if g.opset <= 8:
from torch.onnx.symbolic_opset8 import lt as _lt8
return _lt8(g, input, other)
else:
from torch.onnx.symbolic_opset9 import lt as _lt9
return _lt9(g, input, other)
@_beartype.beartype
def _interpolate_warning(interpolate_mode):
onnx_op = (
"onnx:Resize" if GLOBALS.export_onnx_opset_version >= 10 else "onnx:Upsample"
)
warnings.warn(
"You are trying to export the model with "
+ onnx_op
+ " for ONNX opset version "
"" + str(GLOBALS.export_onnx_opset_version) + ". "
"This operator might cause results to not match the expected results by PyTorch.\n"
"ONNX's Upsample/Resize operator did not match Pytorch's Interpolation until opset 11. "
"Attributes to determine how to transform the input were added in onnx:Resize in opset 11 "
"to support Pytorch's behavior (like coordinate_transformation_mode and nearest_mode).\n"
"We recommend using opset 11 and above for models using this operator."
)
@_beartype.beartype
def _unsqueeze_helper(g: jit_utils.GraphContext, input, axes_i):
if _is_constant(axes_i[0]):
if g.opset >= 13:
axes = g.op("Constant", value_t=torch.tensor(axes_i, dtype=torch.long))
return g.op("Unsqueeze", input, axes)
return g.op("Unsqueeze", input, axes_i=axes_i)
# Tensor type
if g.opset < 13:
raise errors.SymbolicValueError(
"Opset version must be >= 13 for Unsqueeze with dynamic axes.", input
)
return g.op("Unsqueeze", input, axes_i[0])
@_beartype.beartype
def _squeeze_helper(g: jit_utils.GraphContext, input, axes_i):
if _is_constant(axes_i[0]):
if g.opset >= 13:
axes = g.op("Constant", value_t=torch.tensor(axes_i, dtype=torch.long))
return g.op("Squeeze", input, axes)
return g.op("Squeeze", input, axes_i=axes_i)
# Tensor type
if g.opset < 13:
raise errors.SymbolicValueError(
"Opset version must be >= 13 for Squeeze with dynamic axes.", input
)
axes_t = axes_i[0]
axes_rank = _get_tensor_rank(axes_t)
assert axes_rank is not None
if axes_rank > 1:
raise errors.SymbolicValueError(
"For Squeeze axses as input, the axes rank must be one in ONNX spec.", input
)
elif axes_rank == 0:
# The axes is a scalar. Unsqueeze it to a rank 1 tensor.
axes_t = _unsqueeze_helper(g, axes_t, [0])
return g.op("Squeeze", input, axes_t)
return g.op("Squeeze", input, axes_t)
@_beartype.beartype
def _reducesum_helper(
g: jit_utils.GraphContext,
input,
axes_i=None,
keepdims_i=1,
noop_with_empty_axes_i=0,
):
keepdims_i = _maybe_get_const(keepdims_i, "i")
if g.opset >= 13:
if axes_i:
if not _is_value(axes_i):
axes_i = g.op(
"Constant", value_t=torch.tensor(axes_i, dtype=torch.long)
)
return g.op(
"ReduceSum",
input,
axes_i,
keepdims_i=keepdims_i,
noop_with_empty_axes_i=noop_with_empty_axes_i,
)
return g.op(
"ReduceSum",
input,
keepdims_i=keepdims_i,
noop_with_empty_axes_i=noop_with_empty_axes_i,
)
else:
return g.op("ReduceSum", input, axes_i=axes_i, keepdims_i=keepdims_i)
@_beartype.beartype
def _interpolate_size_to_scales(g: jit_utils.GraphContext, input, output_size, dim):
output_size = _maybe_get_const(output_size, "is")
if _is_value(output_size):
offset = 2
offsets = g.op("Constant", value_t=torch.ones(offset, dtype=torch.float32))
dividend = g.op("Cast", output_size, to_i=_C_onnx.TensorProtoDataType.FLOAT)
divisor = _slice_helper(
g, g.op("Shape", input), axes=[0], ends=[sys.maxsize], starts=[offset]
)
divisor = g.op("Cast", divisor, to_i=_C_onnx.TensorProtoDataType.FLOAT)
scale_dims = g.op("Div", dividend, divisor)
scales = g.op("Concat", offsets, scale_dims, axis_i=0)
else:
scales_constant = [
1.0
if i < 2
else float(output_size[-(dim - i)])
/ float(input.type().sizes()[-(dim - i)])
for i in range(0, dim)
]
scales = g.op(
"Constant", value_t=torch.tensor(scales_constant, dtype=torch.float32)
)
return scales
@_beartype.beartype
def _interpolate_get_scales_if_available(g: jit_utils.GraphContext, scales):
available_scales = _maybe_get_const(scales[0], "fs") != -1 and not _is_none(
scales[0]
)
if not available_scales:
return None
offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32))
scales_list = g.op(
"Constant", value_t=torch.tensor(_maybe_get_const(scales[0], "fs"))
)
scales = g.op("Concat", offsets, scales_list, axis_i=0)
return scales
@_beartype.beartype
def _get_interpolate_attributes(g: jit_utils.GraphContext, mode, args):
if mode == "nearest":
align_corners = None
scales = args[0:]
else:
align_corners = args[0]
scales = args[1:]
scales = _interpolate_get_scales_if_available(g, scales)
return scales, align_corners
@_beartype.beartype
def _interpolate_get_scales(g: jit_utils.GraphContext, scale_factor, dim):
offsets = g.op("Constant", value_t=torch.ones(2, dtype=torch.float32))
scale_factor_rank = _get_tensor_rank(scale_factor)
if isinstance(scale_factor.type(), _C.ListType) or (
scale_factor_rank is not None and scale_factor_rank > 0
):
return g.op("Concat", offsets, scale_factor, axis_i=0)
else:
scale_factor = _unsqueeze_helper(g, scale_factor, [0])
scale_factor = g.op(
"Cast", scale_factor, to_i=_C_onnx.TensorProtoDataType.FLOAT
)
scales = [scale_factor for i in range(dim - 2)]
scale_factor = g.op("Concat", offsets, *scales, axis_i=0)
return scale_factor
@_beartype.beartype
def _interpolate_get_scales_and_mode(
g: jit_utils.GraphContext, input, size, scale_factor, mode, align_corners
):
mode = _maybe_get_const(mode, "s")
if "linear" in mode:
mode = "linear"
if "cubic" in mode:
mode = "cubic"
_interpolate_warning(mode)
align_corners = _maybe_get_const(align_corners, "b")
if isinstance(align_corners, bool) and align_corners:
return _unimplemented("interpolate", "align_corners == True")
if not input.type().dim():
return _unimplemented("interpolate", "missing input shape")
dim = input.type().dim()
if not _is_none(scale_factor):
scale_factor = _interpolate_get_scales(g, scale_factor, dim)
elif not _is_none(size):
if not _is_packed_list(size):
is_scalar = _maybe_get_const(size, "t").dim() == 0
if is_scalar:
size = _unsqueeze_helper(g, size, [0])
size = [size for i in range(dim - 2)]
size = g.op("Concat", *size, axis_i=0)
scale_factor = _interpolate_size_to_scales(g, input, size, dim)
else:
return _unimplemented(
"interpolate", "Both size and scales are None in __interpolate"
)
return scale_factor, mode
@_beartype.beartype
def _argmin_argmax_helper(
g: jit_utils.GraphContext,
input: torch._C.Value,
dim: torch._C.Value,
keepdim: bool,
op_name: str,
):
def op_wrapper(input, axis_i, keepdims_i):
if g.opset >= 12:
return g.op(
op_name,
input,
axis_i=axis_i,
keepdims_i=keepdims_i,
select_last_index_i=False,
)
return g.op(op_name, input, axis_i=axis_i, keepdims_i=keepdims_i)
if _is_none(dim):
flattened = _reshape_helper(
g, input, g.op("Constant", value_t=torch.tensor([-1]))
)
output = op_wrapper(flattened, axis_i=0, keepdims_i=False)
if keepdim:
input_shape = g.op("Shape", input)
input_shape_shape = g.op("Shape", input_shape)
new_shape = g.op(
"ConstantOfShape",
input_shape_shape,
value_t=torch.tensor([1], dtype=torch.int64),
)
output = g.op("Reshape", output, new_shape)
return output
dim = _parse_arg(dim, "i")
return op_wrapper(input, axis_i=dim, keepdims_i=keepdim)
@_beartype.beartype
def _interpolate_helper(name, dim, interpolate_mode):
@quantized_args(True, False, False)
def symbolic_fn(g, input, output_size, *args):
scales, align_corners = _get_interpolate_attributes(g, interpolate_mode, args)
align_corners = _maybe_get_scalar(align_corners)
coordinate_transformation_mode = (
"asymmetric"
if interpolate_mode == "nearest"
else "align_corners"
if align_corners
else "half_pixel"
)
if scales is None:
input_size = g.op("Shape", input)
input_size_beg = _slice_helper(
g, input_size, axes=[0], ends=[2], starts=[0]
)
output_size = g.op(
"Cast", output_size, to_i=_C_onnx.TensorProtoDataType.INT64
)
output_size = g.op("Concat", input_size_beg, output_size, axis_i=0)
if g.opset >= 13:
empty_roi = _optional_input_placeholder_tensor(g)
empty_scales = _optional_input_placeholder_tensor(g)
else:
empty_roi = g.op(
"Constant", value_t=torch.tensor([], dtype=torch.float32)
)
empty_scales = g.op(
"Constant", value_t=torch.tensor([], dtype=torch.float32)
)
return g.op(
"Resize",
input,
empty_roi,
empty_scales,
output_size,
coordinate_transformation_mode_s=coordinate_transformation_mode,
cubic_coeff_a_f=-0.75, # only valid when mode="cubic"
mode_s=interpolate_mode, # nearest, linear, or cubic
nearest_mode_s="floor",
) # only valid when mode="nearest"
else:
if g.opset >= 13:
empty_roi = _optional_input_placeholder_tensor(g)
else:
empty_roi = g.op(
"Constant", value_t=torch.tensor([], dtype=torch.float32)
)
return g.op(
"Resize",
input,
empty_roi,
scales,
coordinate_transformation_mode_s=coordinate_transformation_mode,
cubic_coeff_a_f=-0.75, # only valid when mode="cubic"
mode_s=interpolate_mode, # nearest, linear, or cubic
nearest_mode_s="floor",
) # only valid when mode="nearest"
return symbolic_fn
@_beartype.beartype
def __interpolate_helper(
g: jit_utils.GraphContext,
input,
size,
scale_factor,
mode,
align_corners,
recompute_scale_factor,
):
mode = _maybe_get_const(mode, "s")
if "linear" in mode:
mode = "linear"
if "cubic" in mode:
mode = "cubic"
align_corners = _maybe_get_const(align_corners, "b")
align_corners = False if not isinstance(align_corners, bool) else align_corners
coordinate_transformation_mode = (
"asymmetric"
if mode == "nearest"
else "align_corners"
if align_corners
else "half_pixel"
)
if not _is_none(size):
input_size = g.op("Shape", input)
input_size = _slice_helper(g, input_size, axes=[0], ends=[2], starts=[0])
# in some cases size is not a packed list but size is a scalar
# We need to also verify that (_maybe_get_const(size, "t").dim() == 0)
# but this information is not always available. Try to get the dim,
# and if not assume that it is not a scalar.
try:
is_scalar = not _is_packed_list(size) and (
_maybe_get_const(size, "t").dim() == 0
)
except AttributeError:
is_scalar = not _is_packed_list(size)
if not is_scalar:
warnings.warn(
"Cannot verify if the output_size is a scalar "
"while exporting interpolate. Assuming that it is not a scalar."
)
if is_scalar:
rank = _get_tensor_rank(input)
if rank is None:
return _unimplemented(
"interpolate (with a scalar output_size)",
"missing input shape (try giving an array of output_size values)",
)
size = _unsqueeze_helper(g, size, [0])
size = [size for i in range(rank - 2)]
size = g.op("Concat", *size, axis_i=0)
size = g.op("Cast", size, to_i=_C_onnx.TensorProtoDataType.INT64)
size = g.op("Concat", input_size, size, axis_i=0)
if g.opset >= 13:
empty_roi = _optional_input_placeholder_tensor(g)
empty_scales = _optional_input_placeholder_tensor(g)
else:
empty_roi = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32))
empty_scales = g.op(
"Constant", value_t=torch.tensor([], dtype=torch.float32)
)
return g.op(
"Resize",
input,
empty_roi,
empty_scales,
size,
coordinate_transformation_mode_s=coordinate_transformation_mode,
cubic_coeff_a_f=-0.75, # only valid when mode="cubic"
mode_s=mode, # nearest, linear, or cubic
nearest_mode_s="floor",
)
else: # if not _is_none(scales)
rank = _get_tensor_rank(input)
if rank is None:
return _unimplemented("interpolate (with scales)", "missing input shape")
if g.opset >= 13:
empty_roi = _optional_input_placeholder_tensor(g)
else:
empty_roi = g.op("Constant", value_t=torch.tensor([], dtype=torch.float32))
scales = _interpolate_get_scales(g, scale_factor, rank)
return g.op(
"Resize",
input,
empty_roi,
scales,
coordinate_transformation_mode_s=coordinate_transformation_mode,
cubic_coeff_a_f=-0.75, # only valid when mode="cubic"
mode_s=mode, # nearest, linear, or cubic
nearest_mode_s="floor",
) # only valid when mode="nearest"
@_beartype.beartype
def _unbind_helper(g: jit_utils.GraphContext, self, dim, _outputs):
if g.opset < 11:
from torch.onnx.symbolic_opset9 import unbind
elif g.opset <= 12:
from torch.onnx.symbolic_opset11 import unbind # type: ignore[no-redef]
else:
from torch.onnx.symbolic_opset13 import unbind # type: ignore[no-redef]
return unbind(g, self, dim, _outputs)
@_beartype.beartype
def _scatter_helper(g: jit_utils.GraphContext, self, dim, index, src):
if g.opset <= 10:
from torch.onnx.symbolic_opset9 import scatter
else:
# for mypy, scatter was imported two lines above
from torch.onnx.symbolic_opset11 import scatter # type: ignore[no-redef]
return scatter(g, self, dim, index, src)
@_beartype.beartype
def _repeat_interleave_split_helper(g: jit_utils.GraphContext, self, reps, dim):
if g.opset <= 12:
split_out = g.op("Split", self, split_i=[1] * reps, axis_i=dim, outputs=reps)
else:
from torch.onnx.symbolic_opset13 import split
repeats = g.op("Constant", value_t=torch.tensor([1] * reps))
split_out = split(g, self, repeats, dim, _outputs=reps)
return split_out if reps > 1 else [split_out]
@_beartype.beartype
def _repeat_interleave_single_value_repeat_helper(
g: jit_utils.GraphContext, self, repeats, dim
):
from torch.onnx.symbolic_opset9 import flatten, unsqueeze
if not _is_tensor(repeats):
repeats = g.op("Constant", value_t=torch.LongTensor(repeats))
const_repeats: bool = _is_constant(repeats)
reps = _maybe_get_const(repeats, "t")
# Convert 'repeats' to 1-d if it is 0-d.
if _get_tensor_rank(repeats) == 0:
repeats = g.op("Reshape", repeats, g.op("Constant", value_t=torch.tensor([1])))
# Create a new dim of size 1, then expand it to be 'repeats' long, and finally collapse it.
unsqueezed = unsqueeze(g, self, dim + 1)
# repeats_per_dim is 1 for all dims except for the new unsqueezed dim, where it has value 'repeats'.
if const_repeats:
# 'Repeats' is a constant, 'repeats_per_dim' can be a constant.
onehot = torch.ones(_get_tensor_rank(unsqueezed), dtype=torch.int64)
onehot[dim + 1] = reps
repeats_per_dim = g.op("Constant", value_t=onehot)
else:
# 'Repeats' is a variable, 'repeats_per_dim' cannot be a constant.
onehot = g.op(
"OneHot",
unsqueeze(g, dim + 1, 0), # indices, must be >= 1-dimensional
g.op(
"Constant", value_t=torch.tensor(_get_tensor_rank(unsqueezed))
), # depth
g.op(
"Concat", g.op("Constant", value_t=torch.tensor([1])), repeats, axis_i=0
), # on/off values
)
repeats_per_dim = flatten(g, onehot, 0, 1)
tiled = g.op("Tile", unsqueezed, repeats_per_dim)
return flatten(g, tiled, dim, dim + 1)
@_beartype.beartype
def _arange_cast_helper(
g: jit_utils.GraphContext, end, start=None, step=None, dtype=None
) -> Tuple[
_type_utils.JitScalarType,
Optional[_C.Value],
Optional[_C.Value],
Optional[_C.Value],
]:
def _is_all_integral(scalars):
for scalar in scalars:
scalar_type = _type_utils.JitScalarType.from_value(
scalar, _type_utils.JitScalarType.UNDEFINED
)
if (
scalar_type != _type_utils.JitScalarType.INT64
and scalar_type != _type_utils.JitScalarType.UNDEFINED
):
return False
return True
# This logic is based on torch.arange docs. If "dtype" is provided,
# infer input types from dtype. If not, then check if any of start, stop,
# or step are floating point, and infer the type from get_default.
# Otherwise, the dtype is inferred to be torch.int64.
if dtype is None or (_is_value(dtype) and _is_none(dtype)):
if _is_all_integral([start, end, step]):
scalar_type = _type_utils.JitScalarType.INT64
else:
scalar_type = _type_utils.JitScalarType.from_dtype(
torch.get_default_dtype()
)
else:
assert isinstance(dtype, int)
# TODO(justinchuby): Check if dtype is indeed a int.
scalar_type = _type_utils.JitScalarType(dtype)
start = g.op("Cast", start, to_i=scalar_type.onnx_type()) if start else None
end = g.op("Cast", end, to_i=scalar_type.onnx_type()) if end else None
step = g.op("Cast", step, to_i=scalar_type.onnx_type()) if step else None
return scalar_type, end, start, step
@_beartype.beartype
def _arange_helper(g: jit_utils.GraphContext, *args):
if g.opset <= 10:
from torch.onnx.symbolic_opset9 import arange
else:
from torch.onnx.symbolic_opset11 import arange # type: ignore[no-redef]
return arange(g, *args)
@_beartype.beartype
def _size_helper(g: jit_utils.GraphContext, self, dim):
full_shape = g.op("Shape", self)
from torch.onnx.symbolic_opset9 import select
return select(g, full_shape, g.op("Constant", value_t=torch.tensor([0])), dim)
@_beartype.beartype
def _index_fill_reshape_helper(g: jit_utils.GraphContext, self, dim, index):
# 1. reshape index => [1, ..., 1, dim, 1, ..., 1]
# 2. expand index => [..., dim, ...], same shape as self except for dim.
# 3. expand value as well.
# 4. apply onnx::scatter.
from torch.onnx.symbolic_opset9 import expand
if g.opset <= 10:
from torch.onnx.symbolic_opset9 import scatter
else:
# for mypy, scatter was imported two lines above
from torch.onnx.symbolic_opset11 import scatter # type: ignore[no-redef]
if self.type().dim() is None:
return _unimplemented("index_fill", "input rank not accessible")
self_dim = self.type().dim()
dim_value = _parse_arg(dim, "i")
if dim_value < 0:
dim_value += self_dim
unsqueezed_index = _unsqueeze_helper(
g, index, [i for i in range(self_dim) if i != dim_value]
)
expanded_index_shape = scatter(
g, g.op("Shape", self), 0, _unsqueeze_helper(g, dim, [0]), g.op("Shape", index)
)
expanded_index = expand(g, unsqueezed_index, expanded_index_shape, None)
return expanded_index_shape, expanded_index
# By default, when any value in the 'shape' input is equal to zero
# the corresponding dimension value is copied from the input tensor dynamically.
# allowzero=1 indicates that if any value in the 'shape' input is set to zero,
# the zero value is honored, similar to NumPy.
# allowzero=1 is only supported for opset version >= 14.
@_beartype.beartype
def _reshape_helper(g: jit_utils.GraphContext, input, shape, allowzero=0):
shape = _maybe_get_const(shape, "is")
if not _is_value(shape):
shape = g.op("Constant", value_t=torch.LongTensor(shape))
if g.opset <= 13:
if allowzero == 1:
_onnx_opset_unsupported(
"Reshape with allowzero=1", GLOBALS.export_onnx_opset_version, 14, input
)
return g.op("Reshape", input, shape)
else:
return g.op("Reshape", input, shape, allowzero_i=allowzero)
@_beartype.beartype
def _batchnorm_helper(
g: jit_utils.GraphContext, input, weight, bias, running_mean, running_var
):
from torch.onnx.symbolic_opset9 import _var_mean
batch_size = _get_tensor_dim_size(input, 0)
channel_size = _get_tensor_dim_size(input, 1)
if weight is None or _is_none(weight):
if channel_size is None:
raise errors.SymbolicValueError(
"Unsupported: ONNX export of batch_norm for unknown channel size.",
input,
)
weight_value = torch.tensor(
[1.0] * channel_size,
dtype=_type_utils.JitScalarType.from_value(input).dtype(),
)
weight = g.op("Constant", value_t=weight_value)
if bias is None or _is_none(bias):
if channel_size is None:
raise errors.SymbolicValueError(
"Unsupported: ONNX export of batch_norm for unknown channel size.",
input,
)
bias_value = torch.tensor(
[0.0] * channel_size,
dtype=_type_utils.JitScalarType.from_value(input).dtype(),
)
bias = g.op("Constant", value_t=bias_value)
# If track_running_stats is set to False batch statistics are instead used during evaluation time
if (
running_mean is None
or _is_none(running_mean)
or running_var is None
or _is_none(running_var)
):
assert batch_size is not None and channel_size is not None
reshape_in = _reshape_helper(
g,
input,
g.op(
"Constant",
value_t=torch.tensor([batch_size, channel_size, -1], dtype=torch.int64),
),
)
trans_in = g.op("Transpose", reshape_in, perm_i=[0, 2, 1])
running_var, running_mean = _var_mean(
g,
trans_in,
g.op("Constant", value_t=torch.tensor([0, 1], dtype=torch.int64)),
False,
False,
)
return weight, bias, running_mean, running_var
@_beartype.beartype
def _avgpool_helper(
tuple_fn: Callable[[Any], Sequence[int]],
padding: Union[int, Sequence[int]],
kernel_size,
stride,
divisor_override,
name,
) -> Tuple[int, ...]:
if divisor_override and divisor_override.node().kind() != "prim::Constant":
_unimplemented(name, "divisor_override")
return tuple(tuple_fn(padding))
@_beartype.beartype
def check_training_mode(op_train_mode: int, op_name: str) -> None:
"""Warns the user if the model's training mode and the export mode do not agree."""
if GLOBALS.training_mode == _C_onnx.TrainingMode.PRESERVE:
return
if op_train_mode:
op_mode_enum = _C_onnx.TrainingMode.TRAINING
else:
op_mode_enum = _C_onnx.TrainingMode.EVAL
if op_mode_enum == GLOBALS.training_mode:
# The modes agree. Do nothing
return
op_mode_text = f"train={bool(op_train_mode)}"
# Setting the model mode could result in op_mode != GLOBALS.training_mode
# if the model is a FuncModule. In this case we warn the user of
# the state and export depending on op_mode
# This is to support use-cases of fixing certain layer weights
# in training.
warnings.warn(
f"ONNX export mode is set to {GLOBALS.training_mode}, but operator '{op_name}' "
f"is set to {op_mode_text}. Exporting with {op_mode_text}."
)
@_beartype.beartype
def _flatten_helper(g: jit_utils.GraphContext, input, start_dim, end_dim, dim):
input_size = g.op("Shape", input)
slice1 = _slice_helper(g, input_size, axes=[0], starts=[0], ends=[start_dim])
slices = [slice1, g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long))]
if end_dim < dim - 1:
slice3 = _slice_helper(
g, input_size, axes=[0], starts=[end_dim + 1], ends=[dim]
)
slices = [
slice1,
g.op("Constant", value_t=torch.tensor([-1], dtype=torch.long)),
slice3,
]
final_shape = g.op("Concat", *slices, axis_i=0)
from torch.onnx.symbolic_opset9 import _reshape_from_tensor
return _reshape_from_tensor(g, input, final_shape)
@_beartype.beartype
def _is_split_static(split_size_or_sizes, _outputs):
if _outputs is None:
return False
if (
_is_value(split_size_or_sizes)
and split_size_or_sizes.node().kind() != "onnx::Constant"
):
return False
return True
@_beartype.beartype
def _optional_input_placeholder_tensor(g):
n = g.op("prim::Constant")
n.setType(_C.OptionalType.ofTensor())
return n
@_beartype.beartype
def _handle_reduce_dim_none(g: jit_utils.GraphContext, self, op_name):
rank = _get_tensor_rank(self)
if rank is not None and any(
_get_tensor_dim_size(self, i) == 0 for i in range(rank)
):
# If input tensor is empty, according to ONNX ReduceSum definition,
# set keepdims=1 so that the resulted tensor has the same rank as the input.
return g.op(op_name, self, keepdims_i=1)
return g.op(op_name, self, keepdims_i=0)
@_beartype.beartype
def dequantize_helper(
g: jit_utils.GraphContext,
qtensor: _C.Value,
qdtype: Optional[_C_onnx.TensorProtoDataType] = None,
) -> Tuple[_C.Value, _C.Value, _C.Value, Optional[_C.Value]]:
"""Appends to graph `g` ONNX nodes that dequantizes `qtensor` into `tensor`.
Args:
g: Graph, the ONNX IR graph that is under construction.
qtensor: torch._C.Value, either a tuple of (quantized_tensor, scale, zero_point)
for per tensor quantization, or
(quantized_tensor, scale, zero_point, axis) for per channel quantization,
representing the quantized tensor.
qdtype: torch.onnx.TensorProtoDataType default None, if not None, represents the
data type of quantized tensor. It must be either
torch.onnx.TensorProtoDataType.UINT8 or torch.onnx.TensorProtoDataType.INT8.
"""
unpacked_qtensors = _unpack_quantized_tensor(qtensor)
tensor, scale, zero_point = unpacked_qtensors[:3]
axis = unpacked_qtensors[3] if len(unpacked_qtensors) >= 4 else None
axis_i = _get_const(axis, "i", "axis")
input_qdtype = _type_utils.JitScalarType.from_value(tensor)
if qdtype is None:
if input_qdtype is not None:
qdtype = input_qdtype.onnx_type()
else:
qdtype = _C_onnx.TensorProtoDataType.UINT8
value = g.op("Cast", tensor, to_i=qdtype)
scale = g.op("Cast", scale, to_i=_C_onnx.TensorProtoDataType.FLOAT)
zero_point = g.op("Cast", zero_point, to_i=qdtype)
if axis_i is not None and GLOBALS.export_onnx_opset_version < 13:
_onnx_opset_unsupported_detailed(
"DequantizeLinear",
GLOBALS.export_onnx_opset_version,
13,
"Attribute axis is not supported.",
qtensor,
)
return (
g.op("DequantizeLinear", value, scale, zero_point, axis_i=axis_i),
scale,
zero_point,
axis,
)
@_beartype.beartype
def quantize_helper(
g: jit_utils.GraphContext,
tensor: _C.Value,
scale: _C.Value,
zero_point: _C.Value,
axis: Optional[_C.Value] = None,
) -> _C.Value:
"""Appends to graph `g` ONNX nodes that quantizes `tensor` based on `scale`, `zero_point` and `axis`.
Args:
g: Graph, the ONNX IR graph that is under construction.
tensor: torch._C.Value, representing the tensor to be quantized.
scale: torch._C.Value, quantized scale.
zero_point: torch._C.Value, quantized zero point.
axis: Optional[torch._C.Value] default None, if None, represents per tensor quantization.
Otherwise, represents per channel quantization, along given axis.
Returns:
A TupleConstruct storing information of the quantized tensor.
"""
if (
axis is not None
and not _is_none(axis)
and GLOBALS.export_onnx_opset_version < 13
):
_onnx_opset_unsupported_detailed(
"QuantizeLinear",
GLOBALS.export_onnx_opset_version,
13,
"Attribute axis is not supported.",
tensor,
)
assert scale is not None
if (
_type_utils.JitScalarType.from_value(scale, _type_utils.JitScalarType.UNDEFINED)
!= _type_utils.JitScalarType.FLOAT
):
scale = g.op("Cast", scale, to_i=_C_onnx.TensorProtoDataType.FLOAT)
assert zero_point is not None
if _type_utils.JitScalarType.from_value(
zero_point, _type_utils.JitScalarType.UNDEFINED
) not in {
_type_utils.JitScalarType.UINT8,
_type_utils.JitScalarType.INT8,
}:
zero_point = g.op("Cast", zero_point, to_i=_C_onnx.TensorProtoDataType.UINT8)
output = g.op(
"QuantizeLinear",
tensor,
scale,
zero_point,
axis_i=_get_const(axis, "i", "axis"),
)
args = [output, scale, zero_point]
if axis is not None and not _is_none(axis):
args.append(axis)
return g.op("prim::TupleConstruct", *args)
@_beartype.beartype
def requantize_bias_helper(
g: jit_utils.GraphContext, bias, input_scale, weight_scale, axis=None
):
"""In PyTorch, bias is float and is quantized to int32 implicitly inside the quantized ATen op kernel.
In ONNX we need to make the quantization explicit because operators expect all of their inputs to be quantized.
Since int32 is not a supported output type by ONNX operator `QuantizeLinear`, quantization is exported using
regular operators.
"""
bias_scale = g.op("Mul", weight_scale, input_scale)
bias_scale_shape = g.op("Shape", bias_scale)
bias_zero_point = g.op(
"ConstantOfShape", bias_scale_shape, value_t=torch.tensor([0], dtype=torch.int)
)
q_bias = g.op(
"Cast", g.op("Div", bias, bias_scale), to_i=_C_onnx.TensorProtoDataType.INT32
)
axis_args = []
if axis is not None and not _is_none(axis):
axis_args.append(axis)
return g.op("prim::TupleConstruct", q_bias, bias_scale, bias_zero_point, *axis_args)
@_beartype.beartype
def args_have_same_dtype(args):
assert args
base_dtype = _type_utils.JitScalarType.from_value(args[0])
has_same_dtype = all(
_type_utils.JitScalarType.from_value(elem) == base_dtype for elem in args
)
return has_same_dtype
# Deprecated. Internally use _type_utils.ScalarType
# TODO: remove these once we support Type's in the JIT IR and we can once again
# use the unified toType operator
cast_pytorch_to_onnx = {
"Byte": _C_onnx.TensorProtoDataType.UINT8,
"Char": _C_onnx.TensorProtoDataType.INT8,
"Double": _C_onnx.TensorProtoDataType.DOUBLE,
"Float": _C_onnx.TensorProtoDataType.FLOAT,
"Half": _C_onnx.TensorProtoDataType.FLOAT16,
"Int": _C_onnx.TensorProtoDataType.INT32,
"Long": _C_onnx.TensorProtoDataType.INT64,
"Short": _C_onnx.TensorProtoDataType.INT16,
"Bool": _C_onnx.TensorProtoDataType.BOOL,
"ComplexFloat": _C_onnx.TensorProtoDataType.COMPLEX64,
"ComplexDouble": _C_onnx.TensorProtoDataType.COMPLEX128,
"BFloat16": _C_onnx.TensorProtoDataType.BFLOAT16,
"Undefined": _C_onnx.TensorProtoDataType.UNDEFINED,
}
# Deprecated. Internally use _type_utils.ScalarType
scalar_name_to_pytorch = {
"uint8_t": "Byte",
"int8_t": "Char",
"double": "Double",
"float": "Float",
"half": "Half",
"int": "Int",
"int64_t": "Long",
"int16_t": "Short",
"bool": "Bool",
"complex64": "ComplexFloat",
"complex128": "ComplexDouble",
"qint8": "QInt8",
"quint8": "QUInt8",
"qint32": "QInt32",
"bfloat16": "BFloat16",
}
# Deprecated. Internally use _type_utils.ScalarType
# This indicates each scalar type's corresponding
# torch type. Related source:
# https://github.com/pytorch/pytorch/blob/344defc9733a45fee8d0c4d3f5530f631e823196/c10/core/ScalarType.h
scalar_type_to_pytorch_type = [
torch.uint8, # 0
torch.int8, # 1
torch.short, # 2
torch.int, # 3
torch.int64, # 4
torch.half, # 5
torch.float, # 6
torch.double, # 7
torch.complex32, # 8
torch.complex64, # 9
torch.complex128, # 10
torch.bool, # 11
torch.qint8, # 12
torch.quint8, # 13
torch.qint32, # 14
torch.bfloat16, # 15
]
# Deprecated. Internally use _type_utils.ScalarType
# source of truth is
# https://github.com/pytorch/pytorch/blob/master/torch/csrc/utils/tensor_dtypes.cpp
pytorch_name_to_type = {
"Byte": torch.uint8,
"Char": torch.int8,
"Double": torch.double,
"Float": torch.float,
"Half": torch.half,
"Int": torch.int,
"Long": torch.int64,
"Short": torch.short,
"Bool": torch.bool,
"ComplexFloat": torch.complex64,
"ComplexDouble": torch.complex128,
"QInt8": torch.qint8,
"QUInt8": torch.quint8,
"QInt32": torch.qint32,
"BFloat16": torch.bfloat16,
}
# Deprecated. Internally use _type_utils.ScalarType
scalar_type_to_onnx = [
cast_pytorch_to_onnx["Byte"], # 0
cast_pytorch_to_onnx["Char"], # 1
cast_pytorch_to_onnx["Short"], # 2
cast_pytorch_to_onnx["Int"], # 3
cast_pytorch_to_onnx["Long"], # 4
cast_pytorch_to_onnx["Half"], # 5
cast_pytorch_to_onnx["Float"], # 6
cast_pytorch_to_onnx["Double"], # 7
cast_pytorch_to_onnx["Undefined"], # 8
cast_pytorch_to_onnx["ComplexFloat"], # 9
cast_pytorch_to_onnx["ComplexDouble"], # 10
cast_pytorch_to_onnx["Bool"], # 11
cast_pytorch_to_onnx["Char"], # 12
cast_pytorch_to_onnx["Byte"], # 13
cast_pytorch_to_onnx["Int"], # 14
cast_pytorch_to_onnx["BFloat16"], # 15
]
# Global set to store the list of quantized operators in the network.
# This is currently only used in the conversion of quantized ops from PT -> C2 via ONNX.
_quantized_ops: Set[int] = set()
|