File size: 21,780 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
import warnings
from typing import Iterable, List, NamedTuple, Tuple, Union

import torch
from torch import Tensor
from ... import _VF
from ..._jit_internal import Optional


__all__ = ['PackedSequence', 'invert_permutation', 'pack_padded_sequence', 'pad_packed_sequence', 'pad_sequence',
           'unpad_sequence', 'pack_sequence', 'unpack_sequence']


class PackedSequence_(NamedTuple):
    data: torch.Tensor
    batch_sizes: torch.Tensor
    sorted_indices: Optional[torch.Tensor]
    unsorted_indices: Optional[torch.Tensor]


def bind(optional, fn):
    if optional is None:
        return None
    return fn(optional)


class PackedSequence(PackedSequence_):
    r"""Holds the data and list of :attr:`batch_sizes` of a packed sequence.



    All RNN modules accept packed sequences as inputs.



    Note:

        Instances of this class should never be created manually. They are meant

        to be instantiated by functions like :func:`pack_padded_sequence`.



        Batch sizes represent the number elements at each sequence step in

        the batch, not the varying sequence lengths passed to

        :func:`pack_padded_sequence`.  For instance, given data ``abc`` and ``x``

        the :class:`PackedSequence` would contain data ``axbc`` with

        ``batch_sizes=[2,1,1]``.



    Attributes:

        data (Tensor): Tensor containing packed sequence

        batch_sizes (Tensor): Tensor of integers holding

            information about the batch size at each sequence step

        sorted_indices (Tensor, optional): Tensor of integers holding how this

            :class:`PackedSequence` is constructed from sequences.

        unsorted_indices (Tensor, optional): Tensor of integers holding how this

            to recover the original sequences with correct order.



    .. note::

        :attr:`data` can be on arbitrary device and of arbitrary dtype.

        :attr:`sorted_indices` and :attr:`unsorted_indices` must be ``torch.int64``

        tensors on the same device as :attr:`data`.



        However, :attr:`batch_sizes` should always be a CPU ``torch.int64`` tensor.



        This invariant is maintained throughout :class:`PackedSequence` class,

        and all functions that construct a :class:`PackedSequence` in PyTorch

        (i.e., they only pass in tensors conforming to this constraint).



    """

    def __new__(cls, data, batch_sizes=None, sorted_indices=None, unsorted_indices=None):
        return super().__new__(
            cls,
            *_packed_sequence_init_args(data, batch_sizes, sorted_indices,
                                        unsorted_indices))

    # NOTE [ device and dtype of a PackedSequence ]
    #
    # See the note above in doc string (starting with ":attr:`data` can be on
    # arbitrary device...").
    def pin_memory(self):
        # Why not convert `batch_sizes`?
        # See NOTE [ device and dtype of a PackedSequence ]
        return type(self)(self.data.pin_memory(), self.batch_sizes,
                          bind(self.sorted_indices, lambda t: t.pin_memory()),
                          bind(self.unsorted_indices, lambda t: t.pin_memory()))

    def cuda(self, *args, **kwargs):
        # Tests to see if 'cuda' should be added to kwargs
        ex = torch.tensor((), dtype=self.data.dtype, device=self.data.device).to(*args, **kwargs)
        if ex.is_cuda:
            return self.to(*args, **kwargs)
        return self.to(*args, device='cuda', **kwargs)

    def cpu(self, *args, **kwargs):

        ex = torch.tensor((), dtype=self.data.dtype, device=self.data.device).to(*args, **kwargs)
        if ex.device.type == 'cpu':
            return self.to(*args, **kwargs)
        return self.to(*args, device='cpu', **kwargs)

    def double(self):
        return self.to(dtype=torch.double)

    def float(self):
        return self.to(dtype=torch.float)

    def half(self):
        return self.to(dtype=torch.half)

    def long(self):
        return self.to(dtype=torch.long)

    def int(self):
        return self.to(dtype=torch.int)

    def short(self):
        return self.to(dtype=torch.short)

    def char(self):
        return self.to(dtype=torch.int8)

    def byte(self):
        return self.to(dtype=torch.uint8)

    def to(self, *args, **kwargs):
        r"""Perform dtype and/or device conversion on `self.data`.



        It has similar signature as :meth:`torch.Tensor.to`, except optional

        arguments like `non_blocking` and `copy` should be passed as kwargs,

        not args, or they will not apply to the index tensors.



        .. note::



            If the ``self.data`` Tensor already has the correct :class:`torch.dtype`

            and :class:`torch.device`, then ``self`` is returned.

            Otherwise, returns a copy with the desired configuration.

        """
        # Why not convert `batch_sizes`?
        # See NOTE [ device and dtype of a PackedSequence ]
        data = self.data.to(*args, **kwargs)
        if data is self.data:
            return self
        else:
            # Does not forward device or dtype arg/kwargs, device is set from data.device
            kwargs = dict(filter(lambda t: t[0] != 'device' and t[0] != 'dtype', kwargs.items()))
            sorted_indices = bind(self.sorted_indices, lambda t: t.to(data.device, **kwargs))
            unsorted_indices = bind(self.unsorted_indices, lambda t: t.to(data.device, **kwargs))
            return type(self)(data, self.batch_sizes, sorted_indices, unsorted_indices)

    @property
    def is_cuda(self):
        r"""Return true if `self.data` stored on a gpu."""
        return self.data.is_cuda

    def is_pinned(self):
        r"""Return true if `self.data` stored on in pinned memory."""
        return self.data.is_pinned()


# TorchScript doesn't support constructors on named tuples, so we use this helper
# method to construct PackedSequence
def _packed_sequence_init_args(

    data: Tensor,

    batch_sizes: Optional[Tensor] = None,

    sorted_indices: Optional[Tensor] = None,

    unsorted_indices: Optional[Tensor] = None,

) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
    # NB: if unsorted_indices is provided, it should be the inverse permutation
    # to sorted_indices. Don't assert it here because the PackedSequence ctor
    # should only be used internally.

    if unsorted_indices is None:
        unsorted_indices = invert_permutation(sorted_indices)

    # support being called as `PackedSequence(data, batch_sizes, sorted_indices)`
    if batch_sizes is not None:
        # TODO: Re-enable this check (.type isn't supported in TorchScript)
        if batch_sizes.device.type != 'cpu':
            raise ValueError(
                "batch_sizes should always be on CPU. "
                "Instances of PackedSequence should never be created manually. "
                "They should be instantiated by functions like pack_sequence "
                "and pack_padded_sequences in nn.utils.rnn. "
                "https://pytorch.org/docs/stable/nn.html#torch.nn.utils.rnn.pack_sequence")
        return data, batch_sizes, sorted_indices, unsorted_indices

    # support being called as `PackedSequence((data, batch_sizes), *, sorted_indices)`
    else:
        assert isinstance(data, (list, tuple)) and len(data) == 2
        return data[0], data[1], sorted_indices, unsorted_indices


def _packed_sequence_init(

    data: Tensor,

    batch_sizes: Optional[Tensor] = None,

    sorted_indices: Optional[Tensor] = None,

    unsorted_indices: Optional[Tensor] = None,

) -> PackedSequence:
    data, batch_sizes, sorted_indices, unsorted_indices = _packed_sequence_init_args(
        data, batch_sizes, sorted_indices, unsorted_indices)
    return PackedSequence(data, batch_sizes, sorted_indices, unsorted_indices)


def invert_permutation(permutation: Optional[Tensor]) -> Optional[Tensor]:
    if permutation is None:
        return None
    output = torch.empty_like(permutation, memory_format=torch.legacy_contiguous_format)
    output.scatter_(0, permutation,
                    torch.arange(0, permutation.numel(), device=permutation.device))
    return output


def pack_padded_sequence(

    input: Tensor,

    lengths: Tensor,

    batch_first: bool = False,

    enforce_sorted: bool = True,

) -> PackedSequence:
    r"""Packs a Tensor containing padded sequences of variable length.



    :attr:`input` can be of size ``T x B x *`` where `T` is the length of the

    longest sequence (equal to ``lengths[0]``), ``B`` is the batch size, and

    ``*`` is any number of dimensions (including 0). If ``batch_first`` is

    ``True``, ``B x T x *`` :attr:`input` is expected.



    For unsorted sequences, use `enforce_sorted = False`. If :attr:`enforce_sorted` is

    ``True``, the sequences should be sorted by length in a decreasing order, i.e.

    ``input[:,0]`` should be the longest sequence, and ``input[:,B-1]`` the shortest

    one. `enforce_sorted = True` is only necessary for ONNX export.



    Note:

        This function accepts any input that has at least two dimensions. You

        can apply it to pack the labels, and use the output of the RNN with

        them to compute the loss directly. A Tensor can be retrieved from

        a :class:`PackedSequence` object by accessing its ``.data`` attribute.



    Args:

        input (Tensor): padded batch of variable length sequences.

        lengths (Tensor or list(int)): list of sequence lengths of each batch

            element (must be on the CPU if provided as a tensor).

        batch_first (bool, optional): if ``True``, the input is expected in ``B x T x *``

            format.

        enforce_sorted (bool, optional): if ``True``, the input is expected to

            contain sequences sorted by length in a decreasing order. If

            ``False``, the input will get sorted unconditionally. Default: ``True``.



    Returns:

        a :class:`PackedSequence` object

    """
    if not isinstance(lengths, torch.Tensor):
        if torch._C._get_tracing_state():
            warnings.warn('pack_padded_sequence has been called with a Python list of '
                          'sequence lengths. The tracer cannot track the data flow of Python '
                          'values, and it will treat them as constants, likely rendering '
                          'the trace incorrect for any other combination of lengths.',
                          stacklevel=2)
        lengths = torch.as_tensor(lengths, dtype=torch.int64, device='cpu')
    else:
        lengths = lengths.to(dtype=torch.int64)

    if enforce_sorted:
        sorted_indices = None
    else:
        lengths, sorted_indices = torch.sort(lengths, descending=True)
        sorted_indices = sorted_indices.to(input.device)
        batch_dim = 0 if batch_first else 1
        input = input.index_select(batch_dim, sorted_indices)

    data, batch_sizes = \
        _VF._pack_padded_sequence(input, lengths, batch_first)
    return _packed_sequence_init(data, batch_sizes, sorted_indices, None)


def pad_packed_sequence(

    sequence: PackedSequence,

    batch_first: bool = False,

    padding_value: float = 0.0,

    total_length: Optional[int] = None,

) -> Tuple[Tensor, Tensor]:
    r"""Pad a packed batch of variable length sequences.



    It is an inverse operation to :func:`pack_padded_sequence`.



    The returned Tensor's data will be of size ``T x B x *``, where `T` is the length

    of the longest sequence and `B` is the batch size. If ``batch_first`` is True,

    the data will be transposed into ``B x T x *`` format.



    Example:

        >>> from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence

        >>> seq = torch.tensor([[1, 2, 0], [3, 0, 0], [4, 5, 6]])

        >>> lens = [2, 1, 3]

        >>> packed = pack_padded_sequence(seq, lens, batch_first=True, enforce_sorted=False)

        >>> packed

        PackedSequence(data=tensor([4, 1, 3, 5, 2, 6]), batch_sizes=tensor([3, 2, 1]),

                       sorted_indices=tensor([2, 0, 1]), unsorted_indices=tensor([1, 2, 0]))

        >>> seq_unpacked, lens_unpacked = pad_packed_sequence(packed, batch_first=True)

        >>> seq_unpacked

        tensor([[1, 2, 0],

                [3, 0, 0],

                [4, 5, 6]])

        >>> lens_unpacked

        tensor([2, 1, 3])



    .. note::

        :attr:`total_length` is useful to implement the

        ``pack sequence -> recurrent network -> unpack sequence`` pattern in a

        :class:`~torch.nn.Module` wrapped in :class:`~torch.nn.DataParallel`.

        See :ref:`this FAQ section <pack-rnn-unpack-with-data-parallelism>` for

        details.



    Args:

        sequence (PackedSequence): batch to pad

        batch_first (bool, optional): if ``True``, the output will be in ``B x T x *``

            format.

        padding_value (float, optional): values for padded elements.

        total_length (int, optional): if not ``None``, the output will be padded to

            have length :attr:`total_length`. This method will throw :class:`ValueError`

            if :attr:`total_length` is less than the max sequence length in

            :attr:`sequence`.



    Returns:

        Tuple of Tensor containing the padded sequence, and a Tensor

        containing the list of lengths of each sequence in the batch.

        Batch elements will be re-ordered as they were ordered originally when

        the batch was passed to ``pack_padded_sequence`` or ``pack_sequence``.









    """
    max_seq_length = sequence.batch_sizes.size(0)
    if total_length is not None:
        if total_length < max_seq_length:
            raise ValueError("Expected total_length to be at least the length "
                             "of the longest sequence in input, but got "
                             f"total_length={total_length} and max sequence length being {max_seq_length}"
                             )
        max_seq_length = total_length
    padded_output, lengths = _VF._pad_packed_sequence(
        sequence.data, sequence.batch_sizes, batch_first, padding_value, max_seq_length)
    unsorted_indices = sequence.unsorted_indices
    if unsorted_indices is not None:
        batch_dim = 0 if batch_first else 1
        return padded_output.index_select(batch_dim, unsorted_indices), lengths[unsorted_indices.cpu()]
    return padded_output, lengths

# NOTE: .pyi stub allows Iterable[Tensor], but for JIT-compatibility we need to be more restrictive here.
def pad_sequence(

    sequences: Union[Tensor, List[Tensor]],

    batch_first: bool = False,

    padding_value: float = 0.0,

) -> Tensor:
    r"""Pad a list of variable length Tensors with ``padding_value``.



    ``pad_sequence`` stacks a list of Tensors along a new dimension,

    and pads them to equal length. For example, if the input is a list of

    sequences with size ``L x *`` and ``batch_first`` is False, the output is

    of size ``T x B x *``.



    `B` is batch size. It is equal to the number of elements in ``sequences``.

    `T` is length of the longest sequence.

    `L` is length of the sequence.

    `*` is any number of trailing dimensions, including none.



    Example:

        >>> from torch.nn.utils.rnn import pad_sequence

        >>> a = torch.ones(25, 300)

        >>> b = torch.ones(22, 300)

        >>> c = torch.ones(15, 300)

        >>> pad_sequence([a, b, c]).size()

        torch.Size([25, 3, 300])



    Note:

        This function returns a Tensor of size ``T x B x *`` or ``B x T x *``

        where `T` is the length of the longest sequence. This function assumes

        trailing dimensions and type of all the Tensors in sequences are same.



    Args:

        sequences (list[Tensor]): list of variable length sequences.

        batch_first (bool, optional): output will be in ``B x T x *`` if True, or in

            ``T x B x *`` otherwise. Default: False.

        padding_value (float, optional): value for padded elements. Default: 0.



    Returns:

        Tensor of size ``T x B x *`` if :attr:`batch_first` is ``False``.

        Tensor of size ``B x T x *`` otherwise

    """
    if not (torch.jit.is_tracing() or torch.jit.is_scripting()):
        # JIT doesn't support `Iterable`
        if not isinstance(sequences, Iterable):
            msg = ('pad_sequence: Expected iterable for input sequences, but got arg of type: '
                   f'{type(sequences)}')
            raise RuntimeError(msg)

        # In JIT context this leads to,
        # RuntimeError: cannot statically infer the expected size of a list in this context
        sequences = tuple(sequences)
    else:
        # For JIT, we only support Union[Tensor, Tuple[Tensor]]
        if isinstance(sequences, torch.Tensor):
            sequences = sequences.unbind(0)

    # assuming trailing dimensions and type of all the Tensors
    # in sequences are same and fetching those from sequences[0]
    return torch._C._nn.pad_sequence(sequences, batch_first, padding_value)


def unpad_sequence(

    padded_sequences: Tensor,

    lengths: Tensor,

    batch_first: bool = False,

) -> List[Tensor]:
    r"""Unpad padded Tensor into a list of variable length Tensors.



    ``unpad_sequence`` unstacks padded Tensor into a list of variable length Tensors.



    Example:

        >>> from torch.nn.utils.rnn import pad_sequence, unpad_sequence

        >>> a = torch.ones(25, 300)

        >>> b = torch.ones(22, 300)

        >>> c = torch.ones(15, 300)

        >>> sequences = [a, b, c]

        >>> padded_sequences = pad_sequence(sequences)

        >>> lengths = torch.as_tensor([v.size(0) for v in sequences])

        >>> unpadded_sequences = unpad_sequence(padded_sequences, lengths)

        >>> torch.allclose(sequences[0], unpadded_sequences[0])

        True

        >>> torch.allclose(sequences[1], unpadded_sequences[1])

        True

        >>> torch.allclose(sequences[2], unpadded_sequences[2])

        True



    Args:

        padded_sequences (Tensor): padded sequences.

        lengths (Tensor): length of original (unpadded) sequences.

        batch_first (bool, optional): whether batch dimension first or not. Default: False.



    Returns:

        a list of :class:`Tensor` objects

    """
    unpadded_sequences = []

    if not batch_first:
        padded_sequences.transpose_(0, 1)

    max_length = padded_sequences.shape[1]
    idx = torch.arange(max_length, device=lengths.device)

    for seq, length in zip(padded_sequences, lengths):
        mask = idx < length
        unpacked_seq = seq[mask]
        unpadded_sequences.append(unpacked_seq)

    return unpadded_sequences


def pack_sequence(sequences: List[Tensor], enforce_sorted: bool = True) -> PackedSequence:
    r"""Packs a list of variable length Tensors.



    Consecutive call of the next functions: ``pad_sequence``, ``pack_padded_sequence``.



    ``sequences`` should be a list of Tensors of size ``L x *``, where `L` is

    the length of a sequence and `*` is any number of trailing dimensions,

    including zero.



    For unsorted sequences, use `enforce_sorted = False`. If ``enforce_sorted``

    is ``True``, the sequences should be sorted in the order of decreasing length.

    ``enforce_sorted = True`` is only necessary for ONNX export.





    Example:

        >>> from torch.nn.utils.rnn import pack_sequence

        >>> a = torch.tensor([1, 2, 3])

        >>> b = torch.tensor([4, 5])

        >>> c = torch.tensor([6])

        >>> pack_sequence([a, b, c])

        PackedSequence(data=tensor([1, 4, 6, 2, 5, 3]), batch_sizes=tensor([3, 2, 1]), sorted_indices=None, unsorted_indices=None)





    Args:

        sequences (list[Tensor]): A list of sequences of decreasing length.

        enforce_sorted (bool, optional): if ``True``, checks that the input

            contains sequences sorted by length in a decreasing order. If

            ``False``, this condition is not checked. Default: ``True``.



    Returns:

        a :class:`PackedSequence` object

    """
    lengths = torch.as_tensor([v.size(0) for v in sequences])
    return pack_padded_sequence(pad_sequence(sequences), lengths, enforce_sorted=enforce_sorted)


def unpack_sequence(packed_sequences: PackedSequence) -> List[Tensor]:
    r"""Unpack PackedSequence into a list of variable length Tensors.



    ``packed_sequences`` should be a PackedSequence object.





    Example:

        >>> from torch.nn.utils.rnn import pack_sequence, unpack_sequence

        >>> a = torch.tensor([1, 2, 3])

        >>> b = torch.tensor([4, 5])

        >>> c = torch.tensor([6])

        >>> sequences = [a, b, c]

        >>> print(sequences)

        [tensor([1, 2, 3]), tensor([4, 5]), tensor([6])]

        >>> packed_sequences = pack_sequence(sequences)

        >>> print(packed_sequences)

        PackedSequence(data=tensor([1, 4, 6, 2, 5, 3]), batch_sizes=tensor([3, 2, 1]), sorted_indices=None, unsorted_indices=None)

        >>> unpacked_sequences = unpack_sequence(packed_sequences)

        >>> print(unpacked_sequences)

        [tensor([1, 2, 3]), tensor([4, 5]), tensor([6])]





    Args:

        packed_sequences (PackedSequence): A PackedSequence object.



    Returns:

        a list of :class:`Tensor` objects

    """
    padded_sequences, lengths = pad_packed_sequence(packed_sequences, batch_first=True)
    unpacked_sequences = unpad_sequence(padded_sequences, lengths, batch_first=True)
    return unpacked_sequences