File size: 25,760 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
from enum import Enum, auto

import torch
from torch import Tensor
from ..utils import parametrize
from ..modules import Module
from .. import functional as F

from typing import Optional

__all__ = ['orthogonal', 'spectral_norm', 'weight_norm']


def _is_orthogonal(Q, eps=None):
    n, k = Q.size(-2), Q.size(-1)
    Id = torch.eye(k, dtype=Q.dtype, device=Q.device)
    # A reasonable eps, but not too large
    eps = 10. * n * torch.finfo(Q.dtype).eps
    return torch.allclose(Q.mH @ Q, Id, atol=eps)


def _make_orthogonal(A):
    """Assume that A is a tall matrix.



    Compute the Q factor s.t. A = QR (A may be complex) and diag(R) is real and non-negative.

    """
    X, tau = torch.geqrf(A)
    Q = torch.linalg.householder_product(X, tau)
    # The diagonal of X is the diagonal of R (which is always real) so we normalise by its signs
    Q *= X.diagonal(dim1=-2, dim2=-1).sgn().unsqueeze(-2)
    return Q


class _OrthMaps(Enum):
    matrix_exp = auto()
    cayley = auto()
    householder = auto()


class _Orthogonal(Module):
    base: Tensor

    def __init__(self,

                 weight,

                 orthogonal_map: _OrthMaps,

                 *,

                 use_trivialization=True) -> None:
        super().__init__()

        # Note [Householder complex]
        # For complex tensors, it is not possible to compute the tensor `tau` necessary for
        # linalg.householder_product from the reflectors.
        # To see this, note that the reflectors have a shape like:
        # 0 0 0
        # * 0 0
        # * * 0
        # which, for complex matrices, give n(n-1) (real) parameters. Now, you need n^2 parameters
        # to parametrize the unitary matrices. Saving tau on its own does not work either, because
        # not every combination of `(A, tau)` gives a unitary matrix, meaning that if we optimise
        # them as independent tensors we would not maintain the constraint
        # An equivalent reasoning holds for rectangular matrices
        if weight.is_complex() and orthogonal_map == _OrthMaps.householder:
            raise ValueError("The householder parametrization does not support complex tensors.")

        self.shape = weight.shape
        self.orthogonal_map = orthogonal_map
        if use_trivialization:
            self.register_buffer("base", None)

    def forward(self, X: torch.Tensor) -> torch.Tensor:
        n, k = X.size(-2), X.size(-1)
        transposed = n < k
        if transposed:
            X = X.mT
            n, k = k, n
        # Here n > k and X is a tall matrix
        if self.orthogonal_map == _OrthMaps.matrix_exp or self.orthogonal_map == _OrthMaps.cayley:
            # We just need n x k - k(k-1)/2 parameters
            X = X.tril()
            if n != k:
                # Embed into a square matrix
                X = torch.cat([X, X.new_zeros(n, n - k).expand(*X.shape[:-2], -1, -1)], dim=-1)
            A = X - X.mH
            # A is skew-symmetric (or skew-hermitian)
            if self.orthogonal_map == _OrthMaps.matrix_exp:
                Q = torch.matrix_exp(A)
            elif self.orthogonal_map == _OrthMaps.cayley:
                # Computes the Cayley retraction (I+A/2)(I-A/2)^{-1}
                Id = torch.eye(n, dtype=A.dtype, device=A.device)
                Q = torch.linalg.solve(torch.add(Id, A, alpha=-0.5), torch.add(Id, A, alpha=0.5))
            # Q is now orthogonal (or unitary) of size (..., n, n)
            if n != k:
                Q = Q[..., :k]
            # Q is now the size of the X (albeit perhaps transposed)
        else:
            # X is real here, as we do not support householder with complex numbers
            A = X.tril(diagonal=-1)
            tau = 2. / (1. + (A * A).sum(dim=-2))
            Q = torch.linalg.householder_product(A, tau)
            # The diagonal of X is 1's and -1's
            # We do not want to differentiate through this or update the diagonal of X hence the casting
            Q = Q * X.diagonal(dim1=-2, dim2=-1).int().unsqueeze(-2)

        if hasattr(self, "base"):
            Q = self.base @ Q
        if transposed:
            Q = Q.mT
        return Q  # type: ignore[possibly-undefined]

    @torch.autograd.no_grad()
    def right_inverse(self, Q: torch.Tensor) -> torch.Tensor:
        if Q.shape != self.shape:
            raise ValueError(f"Expected a matrix or batch of matrices of shape {self.shape}. "
                             f"Got a tensor of shape {Q.shape}.")

        Q_init = Q
        n, k = Q.size(-2), Q.size(-1)
        transpose = n < k
        if transpose:
            Q = Q.mT
            n, k = k, n

        # We always make sure to always copy Q in every path
        if not hasattr(self, "base"):
            # Note [right_inverse expm cayley]
            # If we do not have use_trivialization=True, we just implement the inverse of the forward
            # map for the Householder. To see why, think that for the Cayley map,
            # we would need to find the matrix X \in R^{n x k} such that:
            # Y = torch.cat([X.tril(), X.new_zeros(n, n - k).expand(*X.shape[:-2], -1, -1)], dim=-1)
            # A = Y - Y.mH
            # cayley(A)[:, :k]
            # gives the original tensor. It is not clear how to do this.
            # Perhaps via some algebraic manipulation involving the QR like that of
            # Corollary 2.2 in Edelman, Arias and Smith?
            if self.orthogonal_map == _OrthMaps.cayley or self.orthogonal_map == _OrthMaps.matrix_exp:
                raise NotImplementedError("It is not possible to assign to the matrix exponential "
                                          "or the Cayley parametrizations when use_trivialization=False.")

            # If parametrization == _OrthMaps.householder, make Q orthogonal via the QR decomposition.
            # Here Q is always real because we do not support householder and complex matrices.
            # See note [Householder complex]
            A, tau = torch.geqrf(Q)
            # We want to have a decomposition X = QR with diag(R) > 0, as otherwise we could
            # decompose an orthogonal matrix Q as Q = (-Q)@(-Id), which is a valid QR decomposition
            # The diagonal of Q is the diagonal of R from the qr decomposition
            A.diagonal(dim1=-2, dim2=-1).sign_()
            # Equality with zero is ok because LAPACK returns exactly zero when it does not want
            # to use a particular reflection
            A.diagonal(dim1=-2, dim2=-1)[tau == 0.] *= -1
            return A.mT if transpose else A
        else:
            if n == k:
                # We check whether Q is orthogonal
                if not _is_orthogonal(Q):
                    Q = _make_orthogonal(Q)
                else:  # Is orthogonal
                    Q = Q.clone()
            else:
                # Complete Q into a full n x n orthogonal matrix
                N = torch.randn(*(Q.size()[:-2] + (n, n - k)), dtype=Q.dtype, device=Q.device)
                Q = torch.cat([Q, N], dim=-1)
                Q = _make_orthogonal(Q)
            self.base = Q

            # It is necessary to return the -Id, as we use the diagonal for the
            # Householder parametrization. Using -Id makes:
            # householder(torch.zeros(m,n)) == torch.eye(m,n)
            # Poor man's version of eye_like
            neg_Id = torch.zeros_like(Q_init)
            neg_Id.diagonal(dim1=-2, dim2=-1).fill_(-1.)
            return neg_Id


def orthogonal(module: Module,

               name: str = 'weight',

               orthogonal_map: Optional[str] = None,

               *,

               use_trivialization: bool = True) -> Module:
    r"""Apply an orthogonal or unitary parametrization to a matrix or a batch of matrices.



    Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, the parametrized

    matrix :math:`Q \in \mathbb{K}^{m \times n}` is **orthogonal** as



    .. math::



        \begin{align*}

            Q^{\text{H}}Q &= \mathrm{I}_n \mathrlap{\qquad \text{if }m \geq n}\\

            QQ^{\text{H}} &= \mathrm{I}_m \mathrlap{\qquad \text{if }m < n}

        \end{align*}



    where :math:`Q^{\text{H}}` is the conjugate transpose when :math:`Q` is complex

    and the transpose when :math:`Q` is real-valued, and

    :math:`\mathrm{I}_n` is the `n`-dimensional identity matrix.

    In plain words, :math:`Q` will have orthonormal columns whenever :math:`m \geq n`

    and orthonormal rows otherwise.



    If the tensor has more than two dimensions, we consider it as a batch of matrices of shape `(..., m, n)`.



    The matrix :math:`Q` may be parametrized via three different ``orthogonal_map`` in terms of the original tensor:



    - ``"matrix_exp"``/``"cayley"``:

      the :func:`~torch.matrix_exp` :math:`Q = \exp(A)` and the `Cayley map`_

      :math:`Q = (\mathrm{I}_n + A/2)(\mathrm{I}_n - A/2)^{-1}` are applied to a skew-symmetric

      :math:`A` to give an orthogonal matrix.

    - ``"householder"``: computes a product of Householder reflectors

      (:func:`~torch.linalg.householder_product`).



    ``"matrix_exp"``/``"cayley"`` often make the parametrized weight converge faster than

    ``"householder"``, but they are slower to compute for very thin or very wide matrices.



    If ``use_trivialization=True`` (default), the parametrization implements the "Dynamic Trivialization Framework",

    where an extra matrix :math:`B \in \mathbb{K}^{n \times n}` is stored under

    ``module.parametrizations.weight[0].base``. This helps the

    convergence of the parametrized layer at the expense of some extra memory use.

    See `Trivializations for Gradient-Based Optimization on Manifolds`_ .



    Initial value of :math:`Q`:

    If the original tensor is not parametrized and ``use_trivialization=True`` (default), the initial value

    of :math:`Q` is that of the original tensor if it is orthogonal (or unitary in the complex case)

    and it is orthogonalized via the QR decomposition otherwise (see :func:`torch.linalg.qr`).

    Same happens when it is not parametrized and ``orthogonal_map="householder"`` even when ``use_trivialization=False``.

    Otherwise, the initial value is the result of the composition of all the registered

    parametrizations applied to the original tensor.



    .. note::

        This function is implemented using the parametrization functionality

        in :func:`~torch.nn.utils.parametrize.register_parametrization`.





    .. _`Cayley map`: https://en.wikipedia.org/wiki/Cayley_transform#Matrix_map

    .. _`Trivializations for Gradient-Based Optimization on Manifolds`: https://arxiv.org/abs/1909.09501



    Args:

        module (nn.Module): module on which to register the parametrization.

        name (str, optional): name of the tensor to make orthogonal. Default: ``"weight"``.

        orthogonal_map (str, optional): One of the following: ``"matrix_exp"``, ``"cayley"``, ``"householder"``.

            Default: ``"matrix_exp"`` if the matrix is square or complex, ``"householder"`` otherwise.

        use_trivialization (bool, optional): whether to use the dynamic trivialization framework.

            Default: ``True``.



    Returns:

        The original module with an orthogonal parametrization registered to the specified

        weight



    Example::



        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)

        >>> orth_linear = orthogonal(nn.Linear(20, 40))

        >>> orth_linear

        ParametrizedLinear(

        in_features=20, out_features=40, bias=True

        (parametrizations): ModuleDict(

            (weight): ParametrizationList(

            (0): _Orthogonal()

            )

        )

        )

        >>> # xdoctest: +IGNORE_WANT

        >>> Q = orth_linear.weight

        >>> torch.dist(Q.T @ Q, torch.eye(20))

        tensor(4.9332e-07)

    """
    weight = getattr(module, name, None)
    if not isinstance(weight, Tensor):
        raise ValueError(
            f"Module '{module}' has no parameter or buffer with name '{name}'"
        )

    # We could implement this for 1-dim tensors as the maps on the sphere
    # but I believe it'd bite more people than it'd help
    if weight.ndim < 2:
        raise ValueError("Expected a matrix or batch of matrices. "
                         f"Got a tensor of {weight.ndim} dimensions.")

    if orthogonal_map is None:
        orthogonal_map = "matrix_exp" if weight.size(-2) == weight.size(-1) or weight.is_complex() else "householder"

    orth_enum = getattr(_OrthMaps, orthogonal_map, None)
    if orth_enum is None:
        raise ValueError('orthogonal_map has to be one of "matrix_exp", "cayley", "householder". '
                         f'Got: {orthogonal_map}')
    orth = _Orthogonal(weight,
                       orth_enum,
                       use_trivialization=use_trivialization)
    parametrize.register_parametrization(module, name, orth, unsafe=True)
    return module


class _WeightNorm(Module):
    def __init__(

        self,

        dim: Optional[int] = 0,

    ) -> None:
        super().__init__()
        if dim is None:
            dim = -1
        self.dim = dim

    def forward(self, weight_g, weight_v):
        return torch._weight_norm(weight_v, weight_g, self.dim)

    def right_inverse(self, weight):
        weight_g = torch.norm_except_dim(weight, 2, self.dim)
        weight_v = weight

        return weight_g, weight_v


def weight_norm(module: Module, name: str = 'weight', dim: int = 0):
    r"""Apply weight normalization to a parameter in the given module.



    .. math::

         \mathbf{w} = g \dfrac{\mathbf{v}}{\|\mathbf{v}\|}



    Weight normalization is a reparameterization that decouples the magnitude

    of a weight tensor from its direction. This replaces the parameter specified

    by :attr:`name` with two parameters: one specifying the magnitude

    and one specifying the direction.



    By default, with ``dim=0``, the norm is computed independently per output

    channel/plane. To compute a norm over the entire weight tensor, use

    ``dim=None``.



    See https://arxiv.org/abs/1602.07868



    Args:

        module (Module): containing module

        name (str, optional): name of weight parameter

        dim (int, optional): dimension over which to compute the norm



    Returns:

        The original module with the weight norm hook



    Example::



        >>> m = weight_norm(nn.Linear(20, 40), name='weight')

        >>> m

        ParametrizedLinear(

          in_features=20, out_features=40, bias=True

          (parametrizations): ModuleDict(

            (weight): ParametrizationList(

              (0): _WeightNorm()

            )

          )

        )

        >>> m.parametrizations.weight.original0.size()

        torch.Size([40, 1])

        >>> m.parametrizations.weight.original1.size()

        torch.Size([40, 20])



    """
    _weight_norm = _WeightNorm(dim)
    parametrize.register_parametrization(module, name, _weight_norm, unsafe=True)

    def _weight_norm_compat_hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        g_key = f"{prefix}{name}_g"
        v_key = f"{prefix}{name}_v"
        if g_key in state_dict and v_key in state_dict:
            original0 = state_dict.pop(g_key)
            original1 = state_dict.pop(v_key)
            state_dict[f"{prefix}parametrizations.{name}.original0"] = original0
            state_dict[f"{prefix}parametrizations.{name}.original1"] = original1
    module._register_load_state_dict_pre_hook(_weight_norm_compat_hook)
    return module


class _SpectralNorm(Module):
    def __init__(

        self,

        weight: torch.Tensor,

        n_power_iterations: int = 1,

        dim: int = 0,

        eps: float = 1e-12

    ) -> None:
        super().__init__()
        ndim = weight.ndim
        if dim >= ndim or dim < -ndim:
            raise IndexError("Dimension out of range (expected to be in range of "
                             f"[-{ndim}, {ndim - 1}] but got {dim})")

        if n_power_iterations <= 0:
            raise ValueError('Expected n_power_iterations to be positive, but '
                             f'got n_power_iterations={n_power_iterations}')
        self.dim = dim if dim >= 0 else dim + ndim
        self.eps = eps
        if ndim > 1:
            # For ndim == 1 we do not need to approximate anything (see _SpectralNorm.forward)
            self.n_power_iterations = n_power_iterations
            weight_mat = self._reshape_weight_to_matrix(weight)
            h, w = weight_mat.size()

            u = weight_mat.new_empty(h).normal_(0, 1)
            v = weight_mat.new_empty(w).normal_(0, 1)
            self.register_buffer('_u', F.normalize(u, dim=0, eps=self.eps))
            self.register_buffer('_v', F.normalize(v, dim=0, eps=self.eps))

            # Start with u, v initialized to some reasonable values by performing a number
            # of iterations of the power method
            self._power_method(weight_mat, 15)

    def _reshape_weight_to_matrix(self, weight: torch.Tensor) -> torch.Tensor:
        # Precondition
        assert weight.ndim > 1

        if self.dim != 0:
            # permute dim to front
            weight = weight.permute(self.dim, *(d for d in range(weight.dim()) if d != self.dim))

        return weight.flatten(1)

    @torch.autograd.no_grad()
    def _power_method(self, weight_mat: torch.Tensor, n_power_iterations: int) -> None:
        # See original note at torch/nn/utils/spectral_norm.py
        # NB: If `do_power_iteration` is set, the `u` and `v` vectors are
        #     updated in power iteration **in-place**. This is very important
        #     because in `DataParallel` forward, the vectors (being buffers) are
        #     broadcast from the parallelized module to each module replica,
        #     which is a new module object created on the fly. And each replica
        #     runs its own spectral norm power iteration. So simply assigning
        #     the updated vectors to the module this function runs on will cause
        #     the update to be lost forever. And the next time the parallelized
        #     module is replicated, the same randomly initialized vectors are
        #     broadcast and used!
        #
        #     Therefore, to make the change propagate back, we rely on two
        #     important behaviors (also enforced via tests):
        #       1. `DataParallel` doesn't clone storage if the broadcast tensor
        #          is already on correct device; and it makes sure that the
        #          parallelized module is already on `device[0]`.
        #       2. If the out tensor in `out=` kwarg has correct shape, it will
        #          just fill in the values.
        #     Therefore, since the same power iteration is performed on all
        #     devices, simply updating the tensors in-place will make sure that
        #     the module replica on `device[0]` will update the _u vector on the
        #     parallelized module (by shared storage).
        #
        #    However, after we update `u` and `v` in-place, we need to **clone**
        #    them before using them to normalize the weight. This is to support
        #    backproping through two forward passes, e.g., the common pattern in
        #    GAN training: loss = D(real) - D(fake). Otherwise, engine will
        #    complain that variables needed to do backward for the first forward
        #    (i.e., the `u` and `v` vectors) are changed in the second forward.

        # Precondition
        assert weight_mat.ndim > 1

        for _ in range(n_power_iterations):
            # Spectral norm of weight equals to `u^T W v`, where `u` and `v`
            # are the first left and right singular vectors.
            # This power iteration produces approximations of `u` and `v`.
            self._u = F.normalize(torch.mv(weight_mat, self._v),      # type: ignore[has-type]
                                  dim=0, eps=self.eps, out=self._u)   # type: ignore[has-type]
            self._v = F.normalize(torch.mv(weight_mat.H, self._u),
                                  dim=0, eps=self.eps, out=self._v)   # type: ignore[has-type]

    def forward(self, weight: torch.Tensor) -> torch.Tensor:
        if weight.ndim == 1:
            # Faster and more exact path, no need to approximate anything
            return F.normalize(weight, dim=0, eps=self.eps)
        else:
            weight_mat = self._reshape_weight_to_matrix(weight)
            if self.training:
                self._power_method(weight_mat, self.n_power_iterations)
            # See above on why we need to clone
            u = self._u.clone(memory_format=torch.contiguous_format)
            v = self._v.clone(memory_format=torch.contiguous_format)
            # The proper way of computing this should be through F.bilinear, but
            # it seems to have some efficiency issues:
            # https://github.com/pytorch/pytorch/issues/58093
            sigma = torch.vdot(u, torch.mv(weight_mat, v))
            return weight / sigma

    def right_inverse(self, value: torch.Tensor) -> torch.Tensor:
        # we may want to assert here that the passed value already
        # satisfies constraints
        return value


def spectral_norm(module: Module,

                  name: str = 'weight',

                  n_power_iterations: int = 1,

                  eps: float = 1e-12,

                  dim: Optional[int] = None) -> Module:
    r"""Apply spectral normalization to a parameter in the given module.



    .. math::

        \mathbf{W}_{SN} = \dfrac{\mathbf{W}}{\sigma(\mathbf{W})},

        \sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}



    When applied on a vector, it simplifies to



    .. math::

        \mathbf{x}_{SN} = \dfrac{\mathbf{x}}{\|\mathbf{x}\|_2}



    Spectral normalization stabilizes the training of discriminators (critics)

    in Generative Adversarial Networks (GANs) by reducing the Lipschitz constant

    of the model. :math:`\sigma` is approximated performing one iteration of the

    `power method`_ every time the weight is accessed. If the dimension of the

    weight tensor is greater than 2, it is reshaped to 2D in power iteration

    method to get spectral norm.





    See `Spectral Normalization for Generative Adversarial Networks`_ .



    .. _`power method`: https://en.wikipedia.org/wiki/Power_iteration

    .. _`Spectral Normalization for Generative Adversarial Networks`: https://arxiv.org/abs/1802.05957



    .. note::

        This function is implemented using the parametrization functionality

        in :func:`~torch.nn.utils.parametrize.register_parametrization`. It is a

        reimplementation of :func:`torch.nn.utils.spectral_norm`.



    .. note::

        When this constraint is registered, the singular vectors associated to the largest

        singular value are estimated rather than sampled at random. These are then updated

        performing :attr:`n_power_iterations` of the `power method`_ whenever the tensor

        is accessed with the module on `training` mode.



    .. note::

        If the `_SpectralNorm` module, i.e., `module.parametrization.weight[idx]`,

        is in training mode on removal, it will perform another power iteration.

        If you'd like to avoid this iteration, set the module to eval mode

        before its removal.



    Args:

        module (nn.Module): containing module

        name (str, optional): name of weight parameter. Default: ``"weight"``.

        n_power_iterations (int, optional): number of power iterations to

            calculate spectral norm. Default: ``1``.

        eps (float, optional): epsilon for numerical stability in

            calculating norms. Default: ``1e-12``.

        dim (int, optional): dimension corresponding to number of outputs.

            Default: ``0``, except for modules that are instances of

            ConvTranspose{1,2,3}d, when it is ``1``



    Returns:

        The original module with a new parametrization registered to the specified

        weight



    Example::



        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")

        >>> snm = spectral_norm(nn.Linear(20, 40))

        >>> snm

        ParametrizedLinear(

          in_features=20, out_features=40, bias=True

          (parametrizations): ModuleDict(

            (weight): ParametrizationList(

              (0): _SpectralNorm()

            )

          )

        )

        >>> torch.linalg.matrix_norm(snm.weight, 2)

        tensor(1.0081, grad_fn=<AmaxBackward0>)

    """
    weight = getattr(module, name, None)
    if not isinstance(weight, Tensor):
        raise ValueError(
            f"Module '{module}' has no parameter or buffer with name '{name}'"
        )

    if dim is None:
        if isinstance(module, (torch.nn.ConvTranspose1d,
                               torch.nn.ConvTranspose2d,
                               torch.nn.ConvTranspose3d)):
            dim = 1
        else:
            dim = 0
    parametrize.register_parametrization(module, name, _SpectralNorm(weight, n_power_iterations, dim, eps))
    return module