Spaces:
Sleeping
Sleeping
File size: 71,490 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 |
import math
import warnings
import numbers
import weakref
from typing import List, Tuple, Optional, overload
import torch
from torch import Tensor
from .module import Module
from ..parameter import Parameter
from ..utils.rnn import PackedSequence
from .. import init
from ... import _VF
__all__ = ['RNNBase', 'RNN', 'LSTM', 'GRU', 'RNNCellBase', 'RNNCell', 'LSTMCell', 'GRUCell']
_rnn_impls = {
'RNN_TANH': _VF.rnn_tanh,
'RNN_RELU': _VF.rnn_relu,
}
def _apply_permutation(tensor: Tensor, permutation: Tensor, dim: int = 1) -> Tensor:
return tensor.index_select(dim, permutation)
def apply_permutation(tensor: Tensor, permutation: Tensor, dim: int = 1) -> Tensor:
warnings.warn("apply_permutation is deprecated, please use tensor.index_select(dim, permutation) instead")
return _apply_permutation(tensor, permutation, dim)
class RNNBase(Module):
r"""Base class for RNN modules (RNN, LSTM, GRU).
Implements aspects of RNNs shared by the RNN, LSTM, and GRU classes, such as module initialization
and utility methods for parameter storage management.
.. note::
The forward method is not implemented by the RNNBase class.
.. note::
LSTM and GRU classes override some methods implemented by RNNBase.
"""
__constants__ = ['mode', 'input_size', 'hidden_size', 'num_layers', 'bias',
'batch_first', 'dropout', 'bidirectional', 'proj_size']
__jit_unused_properties__ = ['all_weights']
mode: str
input_size: int
hidden_size: int
num_layers: int
bias: bool
batch_first: bool
dropout: float
bidirectional: bool
proj_size: int
def __init__(self, mode: str, input_size: int, hidden_size: int,
num_layers: int = 1, bias: bool = True, batch_first: bool = False,
dropout: float = 0., bidirectional: bool = False, proj_size: int = 0,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.mode = mode
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bias = bias
self.batch_first = batch_first
self.dropout = float(dropout)
self.bidirectional = bidirectional
self.proj_size = proj_size
self._flat_weight_refs: List[Optional[weakref.ReferenceType[Parameter]]] = []
num_directions = 2 if bidirectional else 1
if not isinstance(dropout, numbers.Number) or not 0 <= dropout <= 1 or \
isinstance(dropout, bool):
raise ValueError("dropout should be a number in range [0, 1] "
"representing the probability of an element being "
"zeroed")
if dropout > 0 and num_layers == 1:
warnings.warn("dropout option adds dropout after all but last "
"recurrent layer, so non-zero dropout expects "
f"num_layers greater than 1, but got dropout={dropout} and "
f"num_layers={num_layers}")
if not isinstance(hidden_size, int):
raise TypeError(f"hidden_size should be of type int, got: {type(hidden_size).__name__}")
if hidden_size <= 0:
raise ValueError("hidden_size must be greater than zero")
if num_layers <= 0:
raise ValueError("num_layers must be greater than zero")
if proj_size < 0:
raise ValueError("proj_size should be a positive integer or zero to disable projections")
if proj_size >= hidden_size:
raise ValueError("proj_size has to be smaller than hidden_size")
if mode == 'LSTM':
gate_size = 4 * hidden_size
elif mode == 'GRU':
gate_size = 3 * hidden_size
elif mode == 'RNN_TANH':
gate_size = hidden_size
elif mode == 'RNN_RELU':
gate_size = hidden_size
else:
raise ValueError("Unrecognized RNN mode: " + mode)
self._flat_weights_names = []
self._all_weights = []
for layer in range(num_layers):
for direction in range(num_directions):
real_hidden_size = proj_size if proj_size > 0 else hidden_size
layer_input_size = input_size if layer == 0 else real_hidden_size * num_directions
w_ih = Parameter(torch.empty((gate_size, layer_input_size), **factory_kwargs))
w_hh = Parameter(torch.empty((gate_size, real_hidden_size), **factory_kwargs))
b_ih = Parameter(torch.empty(gate_size, **factory_kwargs))
# Second bias vector included for CuDNN compatibility. Only one
# bias vector is needed in standard definition.
b_hh = Parameter(torch.empty(gate_size, **factory_kwargs))
layer_params: Tuple[Tensor, ...] = ()
if self.proj_size == 0:
if bias:
layer_params = (w_ih, w_hh, b_ih, b_hh)
else:
layer_params = (w_ih, w_hh)
else:
w_hr = Parameter(torch.empty((proj_size, hidden_size), **factory_kwargs))
if bias:
layer_params = (w_ih, w_hh, b_ih, b_hh, w_hr)
else:
layer_params = (w_ih, w_hh, w_hr)
suffix = '_reverse' if direction == 1 else ''
param_names = ['weight_ih_l{}{}', 'weight_hh_l{}{}']
if bias:
param_names += ['bias_ih_l{}{}', 'bias_hh_l{}{}']
if self.proj_size > 0:
param_names += ['weight_hr_l{}{}']
param_names = [x.format(layer, suffix) for x in param_names]
for name, param in zip(param_names, layer_params):
setattr(self, name, param)
self._flat_weights_names.extend(param_names)
self._all_weights.append(param_names)
self._init_flat_weights()
self.reset_parameters()
def _init_flat_weights(self):
self._flat_weights = [getattr(self, wn) if hasattr(self, wn) else None
for wn in self._flat_weights_names]
self._flat_weight_refs = [weakref.ref(w) if w is not None else None
for w in self._flat_weights]
self.flatten_parameters()
def __setattr__(self, attr, value):
if hasattr(self, "_flat_weights_names") and attr in self._flat_weights_names:
# keep self._flat_weights up to date if you do self.weight = ...
idx = self._flat_weights_names.index(attr)
self._flat_weights[idx] = value
super().__setattr__(attr, value)
def flatten_parameters(self) -> None:
"""Reset parameter data pointer so that they can use faster code paths.
Right now, this works only if the module is on the GPU and cuDNN is enabled.
Otherwise, it's a no-op.
"""
# Short-circuits if _flat_weights is only partially instantiated
if len(self._flat_weights) != len(self._flat_weights_names):
return
for w in self._flat_weights:
if not isinstance(w, Tensor):
return
# Short-circuits if any tensor in self._flat_weights is not acceptable to cuDNN
# or the tensors in _flat_weights are of different dtypes
first_fw = self._flat_weights[0]
dtype = first_fw.dtype
for fw in self._flat_weights:
if (not isinstance(fw.data, Tensor) or not (fw.data.dtype == dtype) or
not fw.data.is_cuda or
not torch.backends.cudnn.is_acceptable(fw.data)):
return
# If any parameters alias, we fall back to the slower, copying code path. This is
# a sufficient check, because overlapping parameter buffers that don't completely
# alias would break the assumptions of the uniqueness check in
# Module.named_parameters().
unique_data_ptrs = {p.data_ptr() for p in self._flat_weights}
if len(unique_data_ptrs) != len(self._flat_weights):
return
with torch.cuda.device_of(first_fw):
import torch.backends.cudnn.rnn as rnn
# Note: no_grad() is necessary since _cudnn_rnn_flatten_weight is
# an inplace operation on self._flat_weights
with torch.no_grad():
if torch._use_cudnn_rnn_flatten_weight():
num_weights = 4 if self.bias else 2
if self.proj_size > 0:
num_weights += 1
torch._cudnn_rnn_flatten_weight(
self._flat_weights, num_weights,
self.input_size, rnn.get_cudnn_mode(self.mode),
self.hidden_size, self.proj_size, self.num_layers,
self.batch_first, bool(self.bidirectional))
def _apply(self, fn, recurse=True):
self._flat_weight_refs = []
ret = super()._apply(fn, recurse)
# Resets _flat_weights
# Note: be v. careful before removing this, as 3rd party device types
# likely rely on this behavior to properly .to() modules like LSTM.
self._init_flat_weights()
return ret
def reset_parameters(self) -> None:
stdv = 1.0 / math.sqrt(self.hidden_size) if self.hidden_size > 0 else 0
for weight in self.parameters():
init.uniform_(weight, -stdv, stdv)
def check_input(self, input: Tensor, batch_sizes: Optional[Tensor]) -> None:
if not torch.jit.is_scripting():
if input.dtype != self._flat_weights[0].dtype and not torch._C._is_any_autocast_enabled():
raise ValueError(f'input must have the type {self._flat_weights[0].dtype}, got type {input.dtype}')
expected_input_dim = 2 if batch_sizes is not None else 3
if input.dim() != expected_input_dim:
raise RuntimeError(
f'input must have {expected_input_dim} dimensions, got {input.dim()}')
if self.input_size != input.size(-1):
raise RuntimeError(
f'input.size(-1) must be equal to input_size. Expected {self.input_size}, got {input.size(-1)}')
def get_expected_hidden_size(self, input: Tensor, batch_sizes: Optional[Tensor]) -> Tuple[int, int, int]:
if batch_sizes is not None:
mini_batch = int(batch_sizes[0])
else:
mini_batch = input.size(0) if self.batch_first else input.size(1)
num_directions = 2 if self.bidirectional else 1
if self.proj_size > 0:
expected_hidden_size = (self.num_layers * num_directions,
mini_batch, self.proj_size)
else:
expected_hidden_size = (self.num_layers * num_directions,
mini_batch, self.hidden_size)
return expected_hidden_size
def check_hidden_size(self, hx: Tensor, expected_hidden_size: Tuple[int, int, int],
msg: str = 'Expected hidden size {}, got {}') -> None:
if hx.size() != expected_hidden_size:
raise RuntimeError(msg.format(expected_hidden_size, list(hx.size())))
def _weights_have_changed(self):
# Returns True if the weight tensors have changed since the last forward pass.
# This is the case when used with torch.func.functional_call(), for example.
weights_changed = False
for ref, name in zip(self._flat_weight_refs, self._flat_weights_names):
weight = getattr(self, name) if hasattr(self, name) else None
if weight is not None and ref is not None and ref() is not weight:
weights_changed = True
break
return weights_changed
def check_forward_args(self, input: Tensor, hidden: Tensor, batch_sizes: Optional[Tensor]):
self.check_input(input, batch_sizes)
expected_hidden_size = self.get_expected_hidden_size(input, batch_sizes)
self.check_hidden_size(hidden, expected_hidden_size)
def permute_hidden(self, hx: Tensor, permutation: Optional[Tensor]):
if permutation is None:
return hx
return _apply_permutation(hx, permutation)
def extra_repr(self) -> str:
s = '{input_size}, {hidden_size}'
if self.proj_size != 0:
s += ', proj_size={proj_size}'
if self.num_layers != 1:
s += ', num_layers={num_layers}'
if self.bias is not True:
s += ', bias={bias}'
if self.batch_first is not False:
s += ', batch_first={batch_first}'
if self.dropout != 0:
s += ', dropout={dropout}'
if self.bidirectional is not False:
s += ', bidirectional={bidirectional}'
return s.format(**self.__dict__)
def _update_flat_weights(self):
if not torch.jit.is_scripting():
if self._weights_have_changed():
self._init_flat_weights()
def __getstate__(self):
# If weights have been changed, update the _flat_weights in __getstate__ here.
self._update_flat_weights()
# Don't serialize the weight references.
state = self.__dict__.copy()
del state['_flat_weight_refs']
return state
def __setstate__(self, d):
super().__setstate__(d)
if 'all_weights' in d:
self._all_weights = d['all_weights']
# In PyTorch 1.8 we added a proj_size member variable to LSTM.
# LSTMs that were serialized via torch.save(module) before PyTorch 1.8
# don't have it, so to preserve compatibility we set proj_size here.
if 'proj_size' not in d:
self.proj_size = 0
if not isinstance(self._all_weights[0][0], str):
num_layers = self.num_layers
num_directions = 2 if self.bidirectional else 1
self._flat_weights_names = []
self._all_weights = []
for layer in range(num_layers):
for direction in range(num_directions):
suffix = '_reverse' if direction == 1 else ''
weights = ['weight_ih_l{}{}', 'weight_hh_l{}{}', 'bias_ih_l{}{}',
'bias_hh_l{}{}', 'weight_hr_l{}{}']
weights = [x.format(layer, suffix) for x in weights]
if self.bias:
if self.proj_size > 0:
self._all_weights += [weights]
self._flat_weights_names.extend(weights)
else:
self._all_weights += [weights[:4]]
self._flat_weights_names.extend(weights[:4])
else:
if self.proj_size > 0:
self._all_weights += [weights[:2]] + [weights[-1:]]
self._flat_weights_names.extend(weights[:2] + [weights[-1:]])
else:
self._all_weights += [weights[:2]]
self._flat_weights_names.extend(weights[:2])
self._flat_weights = [getattr(self, wn) if hasattr(self, wn) else None
for wn in self._flat_weights_names]
self._flat_weight_refs = [weakref.ref(w) if w is not None else None
for w in self._flat_weights]
@property
def all_weights(self) -> List[List[Parameter]]:
return [[getattr(self, weight) for weight in weights] for weights in self._all_weights]
def _replicate_for_data_parallel(self):
replica = super()._replicate_for_data_parallel()
# Need to copy these caches, otherwise the replica will share the same
# flat weights list.
replica._flat_weights = replica._flat_weights[:]
replica._flat_weights_names = replica._flat_weights_names[:]
return replica
class RNN(RNNBase):
r"""__init__(input_size,hidden_size,num_layers=1,nonlinearity='tanh',bias=True,batch_first=False,dropout=0.0,bidirectional=False,device=None,dtype=None)
Apply a multi-layer Elman RNN with :math:`\tanh` or :math:`\text{ReLU}`
non-linearity to an input sequence. For each element in the input sequence,
each layer computes the following function:
.. math::
h_t = \tanh(x_t W_{ih}^T + b_{ih} + h_{t-1}W_{hh}^T + b_{hh})
where :math:`h_t` is the hidden state at time `t`, :math:`x_t` is
the input at time `t`, and :math:`h_{(t-1)}` is the hidden state of the
previous layer at time `t-1` or the initial hidden state at time `0`.
If :attr:`nonlinearity` is ``'relu'``, then :math:`\text{ReLU}` is used instead of :math:`\tanh`.
.. code-block:: python
# Efficient implementation equivalent to the following with bidirectional=False
def forward(x, h_0=None):
if batch_first:
x = x.transpose(0, 1)
seq_len, batch_size, _ = x.size()
if h_0 is None:
h_0 = torch.zeros(num_layers, batch_size, hidden_size)
h_t_minus_1 = h_0
h_t = h_0
output = []
for t in range(seq_len):
for layer in range(num_layers):
h_t[layer] = torch.tanh(
x[t] @ weight_ih[layer].T
+ bias_ih[layer]
+ h_t_minus_1[layer] @ weight_hh[layer].T
+ bias_hh[layer]
)
output.append(h_t[-1])
h_t_minus_1 = h_t
output = torch.stack(output)
if batch_first:
output = output.transpose(0, 1)
return output, h_t
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
num_layers: Number of recurrent layers. E.g., setting ``num_layers=2``
would mean stacking two RNNs together to form a `stacked RNN`,
with the second RNN taking in outputs of the first RNN and
computing the final results. Default: 1
nonlinearity: The non-linearity to use. Can be either ``'tanh'`` or ``'relu'``. Default: ``'tanh'``
bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
Default: ``True``
batch_first: If ``True``, then the input and output tensors are provided
as `(batch, seq, feature)` instead of `(seq, batch, feature)`.
Note that this does not apply to hidden or cell states. See the
Inputs/Outputs sections below for details. Default: ``False``
dropout: If non-zero, introduces a `Dropout` layer on the outputs of each
RNN layer except the last layer, with dropout probability equal to
:attr:`dropout`. Default: 0
bidirectional: If ``True``, becomes a bidirectional RNN. Default: ``False``
Inputs: input, h_0
* **input**: tensor of shape :math:`(L, H_{in})` for unbatched input,
:math:`(L, N, H_{in})` when ``batch_first=False`` or
:math:`(N, L, H_{in})` when ``batch_first=True`` containing the features of
the input sequence. The input can also be a packed variable length sequence.
See :func:`torch.nn.utils.rnn.pack_padded_sequence` or
:func:`torch.nn.utils.rnn.pack_sequence` for details.
* **h_0**: tensor of shape :math:`(D * \text{num\_layers}, H_{out})` for unbatched input or
:math:`(D * \text{num\_layers}, N, H_{out})` containing the initial hidden
state for the input sequence batch. Defaults to zeros if not provided.
where:
.. math::
\begin{aligned}
N ={} & \text{batch size} \\
L ={} & \text{sequence length} \\
D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\
H_{in} ={} & \text{input\_size} \\
H_{out} ={} & \text{hidden\_size}
\end{aligned}
Outputs: output, h_n
* **output**: tensor of shape :math:`(L, D * H_{out})` for unbatched input,
:math:`(L, N, D * H_{out})` when ``batch_first=False`` or
:math:`(N, L, D * H_{out})` when ``batch_first=True`` containing the output features
`(h_t)` from the last layer of the RNN, for each `t`. If a
:class:`torch.nn.utils.rnn.PackedSequence` has been given as the input, the output
will also be a packed sequence.
* **h_n**: tensor of shape :math:`(D * \text{num\_layers}, H_{out})` for unbatched input or
:math:`(D * \text{num\_layers}, N, H_{out})` containing the final hidden state
for each element in the batch.
Attributes:
weight_ih_l[k]: the learnable input-hidden weights of the k-th layer,
of shape `(hidden_size, input_size)` for `k = 0`. Otherwise, the shape is
`(hidden_size, num_directions * hidden_size)`
weight_hh_l[k]: the learnable hidden-hidden weights of the k-th layer,
of shape `(hidden_size, hidden_size)`
bias_ih_l[k]: the learnable input-hidden bias of the k-th layer,
of shape `(hidden_size)`
bias_hh_l[k]: the learnable hidden-hidden bias of the k-th layer,
of shape `(hidden_size)`
.. note::
All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
where :math:`k = \frac{1}{\text{hidden\_size}}`
.. note::
For bidirectional RNNs, forward and backward are directions 0 and 1 respectively.
Example of splitting the output layers when ``batch_first=False``:
``output.view(seq_len, batch, num_directions, hidden_size)``.
.. note::
``batch_first`` argument is ignored for unbatched inputs.
.. include:: ../cudnn_rnn_determinism.rst
.. include:: ../cudnn_persistent_rnn.rst
Examples::
>>> rnn = nn.RNN(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> output, hn = rnn(input, h0)
"""
@overload
def __init__(self, input_size: int, hidden_size: int, num_layers: int = 1,
nonlinearity: str = 'tanh', bias: bool = True, batch_first: bool = False,
dropout: float = 0., bidirectional: bool = False, device=None,
dtype=None) -> None:
...
@overload
def __init__(self, *args, **kwargs):
...
def __init__(self, *args, **kwargs):
if 'proj_size' in kwargs:
raise ValueError("proj_size argument is only supported for LSTM, not RNN or GRU")
if len(args) > 3:
self.nonlinearity = args[3]
args = args[:3] + args[4:]
else:
self.nonlinearity = kwargs.pop('nonlinearity', 'tanh')
if self.nonlinearity == 'tanh':
mode = 'RNN_TANH'
elif self.nonlinearity == 'relu':
mode = 'RNN_RELU'
else:
raise ValueError(f"Unknown nonlinearity '{self.nonlinearity}'. Select from 'tanh' or 'relu'.")
super().__init__(mode, *args, **kwargs)
@overload
@torch._jit_internal._overload_method # noqa: F811
def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
pass
@overload
@torch._jit_internal._overload_method # noqa: F811
def forward(self, input: PackedSequence, hx: Optional[Tensor] = None) -> Tuple[PackedSequence, Tensor]:
pass
def forward(self, input, hx=None): # noqa: F811
self._update_flat_weights()
num_directions = 2 if self.bidirectional else 1
orig_input = input
if isinstance(orig_input, PackedSequence):
input, batch_sizes, sorted_indices, unsorted_indices = input
max_batch_size = batch_sizes[0]
# script() is unhappy when max_batch_size is different type in cond branches, so we duplicate
if hx is None:
hx = torch.zeros(self.num_layers * num_directions,
max_batch_size, self.hidden_size,
dtype=input.dtype, device=input.device)
else:
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
hx = self.permute_hidden(hx, sorted_indices)
else:
batch_sizes = None
if input.dim() not in (2, 3):
raise ValueError(f"RNN: Expected input to be 2D or 3D, got {input.dim()}D tensor instead")
is_batched = input.dim() == 3
batch_dim = 0 if self.batch_first else 1
if not is_batched:
input = input.unsqueeze(batch_dim)
if hx is not None:
if hx.dim() != 2:
raise RuntimeError(
f"For unbatched 2-D input, hx should also be 2-D but got {hx.dim()}-D tensor")
hx = hx.unsqueeze(1)
else:
if hx is not None and hx.dim() != 3:
raise RuntimeError(
f"For batched 3-D input, hx should also be 3-D but got {hx.dim()}-D tensor")
max_batch_size = input.size(0) if self.batch_first else input.size(1)
sorted_indices = None
unsorted_indices = None
if hx is None:
hx = torch.zeros(self.num_layers * num_directions,
max_batch_size, self.hidden_size,
dtype=input.dtype, device=input.device)
else:
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
hx = self.permute_hidden(hx, sorted_indices)
assert hx is not None
self.check_forward_args(input, hx, batch_sizes)
assert self.mode == 'RNN_TANH' or self.mode == 'RNN_RELU'
if batch_sizes is None:
if self.mode == 'RNN_TANH':
result = _VF.rnn_tanh(input, hx, self._flat_weights, self.bias, self.num_layers,
self.dropout, self.training, self.bidirectional,
self.batch_first)
else:
result = _VF.rnn_relu(input, hx, self._flat_weights, self.bias, self.num_layers,
self.dropout, self.training, self.bidirectional,
self.batch_first)
else:
if self.mode == 'RNN_TANH':
result = _VF.rnn_tanh(input, batch_sizes, hx, self._flat_weights, self.bias,
self.num_layers, self.dropout, self.training,
self.bidirectional)
else:
result = _VF.rnn_relu(input, batch_sizes, hx, self._flat_weights, self.bias,
self.num_layers, self.dropout, self.training,
self.bidirectional)
output = result[0]
hidden = result[1]
if isinstance(orig_input, PackedSequence):
output_packed = PackedSequence(output, batch_sizes, sorted_indices, unsorted_indices)
return output_packed, self.permute_hidden(hidden, unsorted_indices)
if not is_batched: # type: ignore[possibly-undefined]
output = output.squeeze(batch_dim) # type: ignore[possibly-undefined]
hidden = hidden.squeeze(1)
return output, self.permute_hidden(hidden, unsorted_indices)
# XXX: LSTM and GRU implementation is different from RNNBase, this is because:
# 1. we want to support nn.LSTM and nn.GRU in TorchScript and TorchScript in
# its current state could not support the python Union Type or Any Type
# 2. TorchScript static typing does not allow a Function or Callable type in
# Dict values, so we have to separately call _VF instead of using _rnn_impls
# 3. This is temporary only and in the transition state that we want to make it
# on time for the release
#
# More discussion details in https://github.com/pytorch/pytorch/pull/23266
#
# TODO: remove the overriding implementations for LSTM and GRU when TorchScript
# support expressing these two modules generally.
class LSTM(RNNBase):
r"""__init__(input_size,hidden_size,num_layers=1,bias=True,batch_first=False,dropout=0.0,bidirectional=False,proj_size=0,device=None,dtype=None)
Apply a multi-layer long short-term memory (LSTM) RNN to an input sequence.
For each element in the input sequence, each layer computes the following
function:
.. math::
\begin{array}{ll} \\
i_t = \sigma(W_{ii} x_t + b_{ii} + W_{hi} h_{t-1} + b_{hi}) \\
f_t = \sigma(W_{if} x_t + b_{if} + W_{hf} h_{t-1} + b_{hf}) \\
g_t = \tanh(W_{ig} x_t + b_{ig} + W_{hg} h_{t-1} + b_{hg}) \\
o_t = \sigma(W_{io} x_t + b_{io} + W_{ho} h_{t-1} + b_{ho}) \\
c_t = f_t \odot c_{t-1} + i_t \odot g_t \\
h_t = o_t \odot \tanh(c_t) \\
\end{array}
where :math:`h_t` is the hidden state at time `t`, :math:`c_t` is the cell
state at time `t`, :math:`x_t` is the input at time `t`, :math:`h_{t-1}`
is the hidden state of the layer at time `t-1` or the initial hidden
state at time `0`, and :math:`i_t`, :math:`f_t`, :math:`g_t`,
:math:`o_t` are the input, forget, cell, and output gates, respectively.
:math:`\sigma` is the sigmoid function, and :math:`\odot` is the Hadamard product.
In a multilayer LSTM, the input :math:`x^{(l)}_t` of the :math:`l` -th layer
(:math:`l \ge 2`) is the hidden state :math:`h^{(l-1)}_t` of the previous layer multiplied by
dropout :math:`\delta^{(l-1)}_t` where each :math:`\delta^{(l-1)}_t` is a Bernoulli random
variable which is :math:`0` with probability :attr:`dropout`.
If ``proj_size > 0`` is specified, LSTM with projections will be used. This changes
the LSTM cell in the following way. First, the dimension of :math:`h_t` will be changed from
``hidden_size`` to ``proj_size`` (dimensions of :math:`W_{hi}` will be changed accordingly).
Second, the output hidden state of each layer will be multiplied by a learnable projection
matrix: :math:`h_t = W_{hr}h_t`. Note that as a consequence of this, the output
of LSTM network will be of different shape as well. See Inputs/Outputs sections below for exact
dimensions of all variables. You can find more details in https://arxiv.org/abs/1402.1128.
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
num_layers: Number of recurrent layers. E.g., setting ``num_layers=2``
would mean stacking two LSTMs together to form a `stacked LSTM`,
with the second LSTM taking in outputs of the first LSTM and
computing the final results. Default: 1
bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
Default: ``True``
batch_first: If ``True``, then the input and output tensors are provided
as `(batch, seq, feature)` instead of `(seq, batch, feature)`.
Note that this does not apply to hidden or cell states. See the
Inputs/Outputs sections below for details. Default: ``False``
dropout: If non-zero, introduces a `Dropout` layer on the outputs of each
LSTM layer except the last layer, with dropout probability equal to
:attr:`dropout`. Default: 0
bidirectional: If ``True``, becomes a bidirectional LSTM. Default: ``False``
proj_size: If ``> 0``, will use LSTM with projections of corresponding size. Default: 0
Inputs: input, (h_0, c_0)
* **input**: tensor of shape :math:`(L, H_{in})` for unbatched input,
:math:`(L, N, H_{in})` when ``batch_first=False`` or
:math:`(N, L, H_{in})` when ``batch_first=True`` containing the features of
the input sequence. The input can also be a packed variable length sequence.
See :func:`torch.nn.utils.rnn.pack_padded_sequence` or
:func:`torch.nn.utils.rnn.pack_sequence` for details.
* **h_0**: tensor of shape :math:`(D * \text{num\_layers}, H_{out})` for unbatched input or
:math:`(D * \text{num\_layers}, N, H_{out})` containing the
initial hidden state for each element in the input sequence.
Defaults to zeros if (h_0, c_0) is not provided.
* **c_0**: tensor of shape :math:`(D * \text{num\_layers}, H_{cell})` for unbatched input or
:math:`(D * \text{num\_layers}, N, H_{cell})` containing the
initial cell state for each element in the input sequence.
Defaults to zeros if (h_0, c_0) is not provided.
where:
.. math::
\begin{aligned}
N ={} & \text{batch size} \\
L ={} & \text{sequence length} \\
D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\
H_{in} ={} & \text{input\_size} \\
H_{cell} ={} & \text{hidden\_size} \\
H_{out} ={} & \text{proj\_size if } \text{proj\_size}>0 \text{ otherwise hidden\_size} \\
\end{aligned}
Outputs: output, (h_n, c_n)
* **output**: tensor of shape :math:`(L, D * H_{out})` for unbatched input,
:math:`(L, N, D * H_{out})` when ``batch_first=False`` or
:math:`(N, L, D * H_{out})` when ``batch_first=True`` containing the output features
`(h_t)` from the last layer of the LSTM, for each `t`. If a
:class:`torch.nn.utils.rnn.PackedSequence` has been given as the input, the output
will also be a packed sequence. When ``bidirectional=True``, `output` will contain
a concatenation of the forward and reverse hidden states at each time step in the sequence.
* **h_n**: tensor of shape :math:`(D * \text{num\_layers}, H_{out})` for unbatched input or
:math:`(D * \text{num\_layers}, N, H_{out})` containing the
final hidden state for each element in the sequence. When ``bidirectional=True``,
`h_n` will contain a concatenation of the final forward and reverse hidden states, respectively.
* **c_n**: tensor of shape :math:`(D * \text{num\_layers}, H_{cell})` for unbatched input or
:math:`(D * \text{num\_layers}, N, H_{cell})` containing the
final cell state for each element in the sequence. When ``bidirectional=True``,
`c_n` will contain a concatenation of the final forward and reverse cell states, respectively.
Attributes:
weight_ih_l[k] : the learnable input-hidden weights of the :math:`\text{k}^{th}` layer
`(W_ii|W_if|W_ig|W_io)`, of shape `(4*hidden_size, input_size)` for `k = 0`.
Otherwise, the shape is `(4*hidden_size, num_directions * hidden_size)`. If
``proj_size > 0`` was specified, the shape will be
`(4*hidden_size, num_directions * proj_size)` for `k > 0`
weight_hh_l[k] : the learnable hidden-hidden weights of the :math:`\text{k}^{th}` layer
`(W_hi|W_hf|W_hg|W_ho)`, of shape `(4*hidden_size, hidden_size)`. If ``proj_size > 0``
was specified, the shape will be `(4*hidden_size, proj_size)`.
bias_ih_l[k] : the learnable input-hidden bias of the :math:`\text{k}^{th}` layer
`(b_ii|b_if|b_ig|b_io)`, of shape `(4*hidden_size)`
bias_hh_l[k] : the learnable hidden-hidden bias of the :math:`\text{k}^{th}` layer
`(b_hi|b_hf|b_hg|b_ho)`, of shape `(4*hidden_size)`
weight_hr_l[k] : the learnable projection weights of the :math:`\text{k}^{th}` layer
of shape `(proj_size, hidden_size)`. Only present when ``proj_size > 0`` was
specified.
weight_ih_l[k]_reverse: Analogous to `weight_ih_l[k]` for the reverse direction.
Only present when ``bidirectional=True``.
weight_hh_l[k]_reverse: Analogous to `weight_hh_l[k]` for the reverse direction.
Only present when ``bidirectional=True``.
bias_ih_l[k]_reverse: Analogous to `bias_ih_l[k]` for the reverse direction.
Only present when ``bidirectional=True``.
bias_hh_l[k]_reverse: Analogous to `bias_hh_l[k]` for the reverse direction.
Only present when ``bidirectional=True``.
weight_hr_l[k]_reverse: Analogous to `weight_hr_l[k]` for the reverse direction.
Only present when ``bidirectional=True`` and ``proj_size > 0`` was specified.
.. note::
All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
where :math:`k = \frac{1}{\text{hidden\_size}}`
.. note::
For bidirectional LSTMs, forward and backward are directions 0 and 1 respectively.
Example of splitting the output layers when ``batch_first=False``:
``output.view(seq_len, batch, num_directions, hidden_size)``.
.. note::
For bidirectional LSTMs, `h_n` is not equivalent to the last element of `output`; the
former contains the final forward and reverse hidden states, while the latter contains the
final forward hidden state and the initial reverse hidden state.
.. note::
``batch_first`` argument is ignored for unbatched inputs.
.. note::
``proj_size`` should be smaller than ``hidden_size``.
.. include:: ../cudnn_rnn_determinism.rst
.. include:: ../cudnn_persistent_rnn.rst
Examples::
>>> rnn = nn.LSTM(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> c0 = torch.randn(2, 3, 20)
>>> output, (hn, cn) = rnn(input, (h0, c0))
"""
@overload
def __init__(self, input_size: int, hidden_size: int, num_layers: int = 1, bias: bool = True,
batch_first: bool = False, dropout: float = 0., bidirectional: bool = False,
proj_size: int = 0, device=None, dtype=None) -> None:
...
@overload
def __init__(self, *args, **kwargs):
...
def __init__(self, *args, **kwargs):
super().__init__('LSTM', *args, **kwargs)
def get_expected_cell_size(self, input: Tensor, batch_sizes: Optional[Tensor]) -> Tuple[int, int, int]:
if batch_sizes is not None:
mini_batch = int(batch_sizes[0])
else:
mini_batch = input.size(0) if self.batch_first else input.size(1)
num_directions = 2 if self.bidirectional else 1
expected_hidden_size = (self.num_layers * num_directions,
mini_batch, self.hidden_size)
return expected_hidden_size
# In the future, we should prevent mypy from applying contravariance rules here.
# See torch/nn/modules/module.py::_forward_unimplemented
def check_forward_args(self, # type: ignore[override]
input: Tensor,
hidden: Tuple[Tensor, Tensor],
batch_sizes: Optional[Tensor],
):
self.check_input(input, batch_sizes)
self.check_hidden_size(hidden[0], self.get_expected_hidden_size(input, batch_sizes),
'Expected hidden[0] size {}, got {}')
self.check_hidden_size(hidden[1], self.get_expected_cell_size(input, batch_sizes),
'Expected hidden[1] size {}, got {}')
# Same as above, see torch/nn/modules/module.py::_forward_unimplemented
def permute_hidden(self, # type: ignore[override]
hx: Tuple[Tensor, Tensor],
permutation: Optional[Tensor]
) -> Tuple[Tensor, Tensor]:
if permutation is None:
return hx
return _apply_permutation(hx[0], permutation), _apply_permutation(hx[1], permutation)
# Same as above, see torch/nn/modules/module.py::_forward_unimplemented
@overload # type: ignore[override]
@torch._jit_internal._overload_method # noqa: F811
def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None
) -> Tuple[Tensor, Tuple[Tensor, Tensor]]: # noqa: F811
pass
# Same as above, see torch/nn/modules/module.py::_forward_unimplemented
@overload
@torch._jit_internal._overload_method # noqa: F811
def forward(self, input: PackedSequence, hx: Optional[Tuple[Tensor, Tensor]] = None
) -> Tuple[PackedSequence, Tuple[Tensor, Tensor]]: # noqa: F811
pass
def forward(self, input, hx=None): # noqa: F811
self._update_flat_weights()
orig_input = input
# xxx: isinstance check needs to be in conditional for TorchScript to compile
batch_sizes = None
do_permute = False
num_directions = 2 if self.bidirectional else 1
real_hidden_size = self.proj_size if self.proj_size > 0 else self.hidden_size
if isinstance(orig_input, PackedSequence):
input, batch_sizes, sorted_indices, unsorted_indices = input
max_batch_size = batch_sizes[0]
if hx is None:
h_zeros = torch.zeros(self.num_layers * num_directions,
max_batch_size, real_hidden_size,
dtype=input.dtype, device=input.device)
c_zeros = torch.zeros(self.num_layers * num_directions,
max_batch_size, self.hidden_size,
dtype=input.dtype, device=input.device)
hx = (h_zeros, c_zeros)
else:
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
hx = self.permute_hidden(hx, sorted_indices)
else:
if input.dim() not in (2, 3):
raise ValueError(f"LSTM: Expected input to be 2D or 3D, got {input.dim()}D instead")
is_batched = input.dim() == 3
batch_dim = 0 if self.batch_first else 1
if not is_batched:
input = input.unsqueeze(batch_dim)
max_batch_size = input.size(0) if self.batch_first else input.size(1)
sorted_indices = None
unsorted_indices = None
if hx is None:
h_zeros = torch.zeros(self.num_layers * num_directions,
max_batch_size, real_hidden_size,
dtype=input.dtype, device=input.device)
c_zeros = torch.zeros(self.num_layers * num_directions,
max_batch_size, self.hidden_size,
dtype=input.dtype, device=input.device)
hx = (h_zeros, c_zeros)
self.check_forward_args(input, hx, batch_sizes)
else:
if is_batched:
if (hx[0].dim() != 3 or hx[1].dim() != 3):
msg = ("For batched 3-D input, hx and cx should "
f"also be 3-D but got ({hx[0].dim()}-D, {hx[1].dim()}-D) tensors")
raise RuntimeError(msg)
else:
if hx[0].dim() != 2 or hx[1].dim() != 2:
msg = ("For unbatched 2-D input, hx and cx should "
f"also be 2-D but got ({hx[0].dim()}-D, {hx[1].dim()}-D) tensors")
raise RuntimeError(msg)
hx = (hx[0].unsqueeze(1), hx[1].unsqueeze(1))
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
self.check_forward_args(input, hx, batch_sizes)
hx = self.permute_hidden(hx, sorted_indices)
if batch_sizes is None:
result = _VF.lstm(input, hx, self._flat_weights, self.bias, self.num_layers,
self.dropout, self.training, self.bidirectional, self.batch_first)
else:
result = _VF.lstm(input, batch_sizes, hx, self._flat_weights, self.bias,
self.num_layers, self.dropout, self.training, self.bidirectional)
output = result[0]
hidden = result[1:]
# xxx: isinstance check needs to be in conditional for TorchScript to compile
if isinstance(orig_input, PackedSequence):
output_packed = PackedSequence(output, batch_sizes, sorted_indices, unsorted_indices)
return output_packed, self.permute_hidden(hidden, unsorted_indices)
else:
if not is_batched: # type: ignore[possibly-undefined]
output = output.squeeze(batch_dim) # type: ignore[possibly-undefined]
hidden = (hidden[0].squeeze(1), hidden[1].squeeze(1))
return output, self.permute_hidden(hidden, unsorted_indices)
class GRU(RNNBase):
r"""__init__(input_size,hidden_size,num_layers=1,bias=True,batch_first=False,dropout=0.0,bidirectional=False,device=None,dtype=None)
Apply a multi-layer gated recurrent unit (GRU) RNN to an input sequence.
For each element in the input sequence, each layer computes the following
function:
.. math::
\begin{array}{ll}
r_t = \sigma(W_{ir} x_t + b_{ir} + W_{hr} h_{(t-1)} + b_{hr}) \\
z_t = \sigma(W_{iz} x_t + b_{iz} + W_{hz} h_{(t-1)} + b_{hz}) \\
n_t = \tanh(W_{in} x_t + b_{in} + r_t \odot (W_{hn} h_{(t-1)}+ b_{hn})) \\
h_t = (1 - z_t) \odot n_t + z_t \odot h_{(t-1)}
\end{array}
where :math:`h_t` is the hidden state at time `t`, :math:`x_t` is the input
at time `t`, :math:`h_{(t-1)}` is the hidden state of the layer
at time `t-1` or the initial hidden state at time `0`, and :math:`r_t`,
:math:`z_t`, :math:`n_t` are the reset, update, and new gates, respectively.
:math:`\sigma` is the sigmoid function, and :math:`\odot` is the Hadamard product.
In a multilayer GRU, the input :math:`x^{(l)}_t` of the :math:`l` -th layer
(:math:`l \ge 2`) is the hidden state :math:`h^{(l-1)}_t` of the previous layer multiplied by
dropout :math:`\delta^{(l-1)}_t` where each :math:`\delta^{(l-1)}_t` is a Bernoulli random
variable which is :math:`0` with probability :attr:`dropout`.
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
num_layers: Number of recurrent layers. E.g., setting ``num_layers=2``
would mean stacking two GRUs together to form a `stacked GRU`,
with the second GRU taking in outputs of the first GRU and
computing the final results. Default: 1
bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
Default: ``True``
batch_first: If ``True``, then the input and output tensors are provided
as `(batch, seq, feature)` instead of `(seq, batch, feature)`.
Note that this does not apply to hidden or cell states. See the
Inputs/Outputs sections below for details. Default: ``False``
dropout: If non-zero, introduces a `Dropout` layer on the outputs of each
GRU layer except the last layer, with dropout probability equal to
:attr:`dropout`. Default: 0
bidirectional: If ``True``, becomes a bidirectional GRU. Default: ``False``
Inputs: input, h_0
* **input**: tensor of shape :math:`(L, H_{in})` for unbatched input,
:math:`(L, N, H_{in})` when ``batch_first=False`` or
:math:`(N, L, H_{in})` when ``batch_first=True`` containing the features of
the input sequence. The input can also be a packed variable length sequence.
See :func:`torch.nn.utils.rnn.pack_padded_sequence` or
:func:`torch.nn.utils.rnn.pack_sequence` for details.
* **h_0**: tensor of shape :math:`(D * \text{num\_layers}, H_{out})` or
:math:`(D * \text{num\_layers}, N, H_{out})`
containing the initial hidden state for the input sequence. Defaults to zeros if not provided.
where:
.. math::
\begin{aligned}
N ={} & \text{batch size} \\
L ={} & \text{sequence length} \\
D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\
H_{in} ={} & \text{input\_size} \\
H_{out} ={} & \text{hidden\_size}
\end{aligned}
Outputs: output, h_n
* **output**: tensor of shape :math:`(L, D * H_{out})` for unbatched input,
:math:`(L, N, D * H_{out})` when ``batch_first=False`` or
:math:`(N, L, D * H_{out})` when ``batch_first=True`` containing the output features
`(h_t)` from the last layer of the GRU, for each `t`. If a
:class:`torch.nn.utils.rnn.PackedSequence` has been given as the input, the output
will also be a packed sequence.
* **h_n**: tensor of shape :math:`(D * \text{num\_layers}, H_{out})` or
:math:`(D * \text{num\_layers}, N, H_{out})` containing the final hidden state
for the input sequence.
Attributes:
weight_ih_l[k] : the learnable input-hidden weights of the :math:`\text{k}^{th}` layer
(W_ir|W_iz|W_in), of shape `(3*hidden_size, input_size)` for `k = 0`.
Otherwise, the shape is `(3*hidden_size, num_directions * hidden_size)`
weight_hh_l[k] : the learnable hidden-hidden weights of the :math:`\text{k}^{th}` layer
(W_hr|W_hz|W_hn), of shape `(3*hidden_size, hidden_size)`
bias_ih_l[k] : the learnable input-hidden bias of the :math:`\text{k}^{th}` layer
(b_ir|b_iz|b_in), of shape `(3*hidden_size)`
bias_hh_l[k] : the learnable hidden-hidden bias of the :math:`\text{k}^{th}` layer
(b_hr|b_hz|b_hn), of shape `(3*hidden_size)`
.. note::
All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
where :math:`k = \frac{1}{\text{hidden\_size}}`
.. note::
For bidirectional GRUs, forward and backward are directions 0 and 1 respectively.
Example of splitting the output layers when ``batch_first=False``:
``output.view(seq_len, batch, num_directions, hidden_size)``.
.. note::
``batch_first`` argument is ignored for unbatched inputs.
.. note::
The calculation of new gate :math:`n_t` subtly differs from the original paper and other frameworks.
In the original implementation, the Hadamard product :math:`(\odot)` between :math:`r_t` and the
previous hidden state :math:`h_{(t-1)}` is done before the multiplication with the weight matrix
`W` and addition of bias:
.. math::
\begin{aligned}
n_t = \tanh(W_{in} x_t + b_{in} + W_{hn} ( r_t \odot h_{(t-1)} ) + b_{hn})
\end{aligned}
This is in contrast to PyTorch implementation, which is done after :math:`W_{hn} h_{(t-1)}`
.. math::
\begin{aligned}
n_t = \tanh(W_{in} x_t + b_{in} + r_t \odot (W_{hn} h_{(t-1)}+ b_{hn}))
\end{aligned}
This implementation differs on purpose for efficiency.
.. include:: ../cudnn_persistent_rnn.rst
Examples::
>>> rnn = nn.GRU(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> output, hn = rnn(input, h0)
"""
@overload
def __init__(self, input_size: int, hidden_size: int, num_layers: int = 1, bias: bool = True,
batch_first: bool = False, dropout: float = 0., bidirectional: bool = False,
device=None, dtype=None) -> None:
...
@overload
def __init__(self, *args, **kwargs):
...
def __init__(self, *args, **kwargs):
if 'proj_size' in kwargs:
raise ValueError("proj_size argument is only supported for LSTM, not RNN or GRU")
super().__init__('GRU', *args, **kwargs)
@overload # type: ignore[override]
@torch._jit_internal._overload_method # noqa: F811
def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: # noqa: F811
pass
@overload
@torch._jit_internal._overload_method # noqa: F811
def forward(self, input: PackedSequence, hx: Optional[Tensor] = None) -> Tuple[PackedSequence, Tensor]: # noqa: F811
pass
def forward(self, input, hx=None): # noqa: F811
self._update_flat_weights()
orig_input = input
# xxx: isinstance check needs to be in conditional for TorchScript to compile
if isinstance(orig_input, PackedSequence):
input, batch_sizes, sorted_indices, unsorted_indices = input
max_batch_size = batch_sizes[0]
if hx is None:
num_directions = 2 if self.bidirectional else 1
hx = torch.zeros(self.num_layers * num_directions,
max_batch_size, self.hidden_size,
dtype=input.dtype, device=input.device)
else:
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
hx = self.permute_hidden(hx, sorted_indices)
else:
batch_sizes = None
if input.dim() not in (2, 3):
raise ValueError(f"GRU: Expected input to be 2D or 3D, got {input.dim()}D instead")
is_batched = input.dim() == 3
batch_dim = 0 if self.batch_first else 1
if not is_batched:
input = input.unsqueeze(batch_dim)
if hx is not None:
if hx.dim() != 2:
raise RuntimeError(
f"For unbatched 2-D input, hx should also be 2-D but got {hx.dim()}-D tensor")
hx = hx.unsqueeze(1)
else:
if hx is not None and hx.dim() != 3:
raise RuntimeError(
f"For batched 3-D input, hx should also be 3-D but got {hx.dim()}-D tensor")
max_batch_size = input.size(0) if self.batch_first else input.size(1)
sorted_indices = None
unsorted_indices = None
if hx is None:
num_directions = 2 if self.bidirectional else 1
hx = torch.zeros(self.num_layers * num_directions,
max_batch_size, self.hidden_size,
dtype=input.dtype, device=input.device)
else:
# Each batch of the hidden state should match the input sequence that
# the user believes he/she is passing in.
hx = self.permute_hidden(hx, sorted_indices)
self.check_forward_args(input, hx, batch_sizes)
if batch_sizes is None:
result = _VF.gru(input, hx, self._flat_weights, self.bias, self.num_layers,
self.dropout, self.training, self.bidirectional, self.batch_first)
else:
result = _VF.gru(input, batch_sizes, hx, self._flat_weights, self.bias,
self.num_layers, self.dropout, self.training, self.bidirectional)
output = result[0]
hidden = result[1]
# xxx: isinstance check needs to be in conditional for TorchScript to compile
if isinstance(orig_input, PackedSequence):
output_packed = PackedSequence(output, batch_sizes, sorted_indices, unsorted_indices)
return output_packed, self.permute_hidden(hidden, unsorted_indices)
else:
if not is_batched: # type: ignore[possibly-undefined]
output = output.squeeze(batch_dim) # type: ignore[possibly-undefined]
hidden = hidden.squeeze(1)
return output, self.permute_hidden(hidden, unsorted_indices)
class RNNCellBase(Module):
__constants__ = ['input_size', 'hidden_size', 'bias']
input_size: int
hidden_size: int
bias: bool
weight_ih: Tensor
weight_hh: Tensor
# WARNING: bias_ih and bias_hh purposely not defined here.
# See https://github.com/pytorch/pytorch/issues/39670
def __init__(self, input_size: int, hidden_size: int, bias: bool, num_chunks: int,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.weight_ih = Parameter(torch.empty((num_chunks * hidden_size, input_size), **factory_kwargs))
self.weight_hh = Parameter(torch.empty((num_chunks * hidden_size, hidden_size), **factory_kwargs))
if bias:
self.bias_ih = Parameter(torch.empty(num_chunks * hidden_size, **factory_kwargs))
self.bias_hh = Parameter(torch.empty(num_chunks * hidden_size, **factory_kwargs))
else:
self.register_parameter('bias_ih', None)
self.register_parameter('bias_hh', None)
self.reset_parameters()
def extra_repr(self) -> str:
s = '{input_size}, {hidden_size}'
if 'bias' in self.__dict__ and self.bias is not True:
s += ', bias={bias}'
if 'nonlinearity' in self.__dict__ and self.nonlinearity != "tanh":
s += ', nonlinearity={nonlinearity}'
return s.format(**self.__dict__)
def reset_parameters(self) -> None:
stdv = 1.0 / math.sqrt(self.hidden_size) if self.hidden_size > 0 else 0
for weight in self.parameters():
init.uniform_(weight, -stdv, stdv)
class RNNCell(RNNCellBase):
r"""An Elman RNN cell with tanh or ReLU non-linearity.
.. math::
h' = \tanh(W_{ih} x + b_{ih} + W_{hh} h + b_{hh})
If :attr:`nonlinearity` is `'relu'`, then ReLU is used in place of tanh.
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
bias: If ``False``, then the layer does not use bias weights `b_ih` and `b_hh`.
Default: ``True``
nonlinearity: The non-linearity to use. Can be either ``'tanh'`` or ``'relu'``. Default: ``'tanh'``
Inputs: input, hidden
- **input**: tensor containing input features
- **hidden**: tensor containing the initial hidden state
Defaults to zero if not provided.
Outputs: h'
- **h'** of shape `(batch, hidden_size)`: tensor containing the next hidden state
for each element in the batch
Shape:
- input: :math:`(N, H_{in})` or :math:`(H_{in})` tensor containing input features where
:math:`H_{in}` = `input_size`.
- hidden: :math:`(N, H_{out})` or :math:`(H_{out})` tensor containing the initial hidden
state where :math:`H_{out}` = `hidden_size`. Defaults to zero if not provided.
- output: :math:`(N, H_{out})` or :math:`(H_{out})` tensor containing the next hidden state.
Attributes:
weight_ih: the learnable input-hidden weights, of shape
`(hidden_size, input_size)`
weight_hh: the learnable hidden-hidden weights, of shape
`(hidden_size, hidden_size)`
bias_ih: the learnable input-hidden bias, of shape `(hidden_size)`
bias_hh: the learnable hidden-hidden bias, of shape `(hidden_size)`
.. note::
All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
where :math:`k = \frac{1}{\text{hidden\_size}}`
Examples::
>>> rnn = nn.RNNCell(10, 20)
>>> input = torch.randn(6, 3, 10)
>>> hx = torch.randn(3, 20)
>>> output = []
>>> for i in range(6):
... hx = rnn(input[i], hx)
... output.append(hx)
"""
__constants__ = ['input_size', 'hidden_size', 'bias', 'nonlinearity']
nonlinearity: str
def __init__(self, input_size: int, hidden_size: int, bias: bool = True, nonlinearity: str = "tanh",
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__(input_size, hidden_size, bias, num_chunks=1, **factory_kwargs)
self.nonlinearity = nonlinearity
def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor:
if input.dim() not in (1, 2):
raise ValueError(f"RNNCell: Expected input to be 1D or 2D, got {input.dim()}D instead")
if hx is not None and hx.dim() not in (1, 2):
raise ValueError(f"RNNCell: Expected hidden to be 1D or 2D, got {hx.dim()}D instead")
is_batched = input.dim() == 2
if not is_batched:
input = input.unsqueeze(0)
if hx is None:
hx = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device)
else:
hx = hx.unsqueeze(0) if not is_batched else hx
if self.nonlinearity == "tanh":
ret = _VF.rnn_tanh_cell(
input, hx,
self.weight_ih, self.weight_hh,
self.bias_ih, self.bias_hh,
)
elif self.nonlinearity == "relu":
ret = _VF.rnn_relu_cell(
input, hx,
self.weight_ih, self.weight_hh,
self.bias_ih, self.bias_hh,
)
else:
ret = input # TODO: remove when jit supports exception flow
raise RuntimeError(
f"Unknown nonlinearity: {self.nonlinearity}")
if not is_batched:
ret = ret.squeeze(0)
return ret
class LSTMCell(RNNCellBase):
r"""A long short-term memory (LSTM) cell.
.. math::
\begin{array}{ll}
i = \sigma(W_{ii} x + b_{ii} + W_{hi} h + b_{hi}) \\
f = \sigma(W_{if} x + b_{if} + W_{hf} h + b_{hf}) \\
g = \tanh(W_{ig} x + b_{ig} + W_{hg} h + b_{hg}) \\
o = \sigma(W_{io} x + b_{io} + W_{ho} h + b_{ho}) \\
c' = f \odot c + i \odot g \\
h' = o \odot \tanh(c') \\
\end{array}
where :math:`\sigma` is the sigmoid function, and :math:`\odot` is the Hadamard product.
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
bias: If ``False``, then the layer does not use bias weights `b_ih` and
`b_hh`. Default: ``True``
Inputs: input, (h_0, c_0)
- **input** of shape `(batch, input_size)` or `(input_size)`: tensor containing input features
- **h_0** of shape `(batch, hidden_size)` or `(hidden_size)`: tensor containing the initial hidden state
- **c_0** of shape `(batch, hidden_size)` or `(hidden_size)`: tensor containing the initial cell state
If `(h_0, c_0)` is not provided, both **h_0** and **c_0** default to zero.
Outputs: (h_1, c_1)
- **h_1** of shape `(batch, hidden_size)` or `(hidden_size)`: tensor containing the next hidden state
- **c_1** of shape `(batch, hidden_size)` or `(hidden_size)`: tensor containing the next cell state
Attributes:
weight_ih: the learnable input-hidden weights, of shape
`(4*hidden_size, input_size)`
weight_hh: the learnable hidden-hidden weights, of shape
`(4*hidden_size, hidden_size)`
bias_ih: the learnable input-hidden bias, of shape `(4*hidden_size)`
bias_hh: the learnable hidden-hidden bias, of shape `(4*hidden_size)`
.. note::
All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
where :math:`k = \frac{1}{\text{hidden\_size}}`
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
Examples::
>>> rnn = nn.LSTMCell(10, 20) # (input_size, hidden_size)
>>> input = torch.randn(2, 3, 10) # (time_steps, batch, input_size)
>>> hx = torch.randn(3, 20) # (batch, hidden_size)
>>> cx = torch.randn(3, 20)
>>> output = []
>>> for i in range(input.size()[0]):
... hx, cx = rnn(input[i], (hx, cx))
... output.append(hx)
>>> output = torch.stack(output, dim=0)
"""
def __init__(self, input_size: int, hidden_size: int, bias: bool = True,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__(input_size, hidden_size, bias, num_chunks=4, **factory_kwargs)
def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = None) -> Tuple[Tensor, Tensor]:
if input.dim() not in (1, 2):
raise ValueError(f"LSTMCell: Expected input to be 1D or 2D, got {input.dim()}D instead")
if hx is not None:
for idx, value in enumerate(hx):
if value.dim() not in (1, 2):
raise ValueError(f"LSTMCell: Expected hx[{idx}] to be 1D or 2D, got {value.dim()}D instead")
is_batched = input.dim() == 2
if not is_batched:
input = input.unsqueeze(0)
if hx is None:
zeros = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device)
hx = (zeros, zeros)
else:
hx = (hx[0].unsqueeze(0), hx[1].unsqueeze(0)) if not is_batched else hx
ret = _VF.lstm_cell(
input, hx,
self.weight_ih, self.weight_hh,
self.bias_ih, self.bias_hh,
)
if not is_batched:
ret = (ret[0].squeeze(0), ret[1].squeeze(0))
return ret
class GRUCell(RNNCellBase):
r"""A gated recurrent unit (GRU) cell.
.. math::
\begin{array}{ll}
r = \sigma(W_{ir} x + b_{ir} + W_{hr} h + b_{hr}) \\
z = \sigma(W_{iz} x + b_{iz} + W_{hz} h + b_{hz}) \\
n = \tanh(W_{in} x + b_{in} + r \odot (W_{hn} h + b_{hn})) \\
h' = (1 - z) \odot n + z \odot h
\end{array}
where :math:`\sigma` is the sigmoid function, and :math:`\odot` is the Hadamard product.
Args:
input_size: The number of expected features in the input `x`
hidden_size: The number of features in the hidden state `h`
bias: If ``False``, then the layer does not use bias weights `b_ih` and
`b_hh`. Default: ``True``
Inputs: input, hidden
- **input** : tensor containing input features
- **hidden** : tensor containing the initial hidden
state for each element in the batch.
Defaults to zero if not provided.
Outputs: h'
- **h'** : tensor containing the next hidden state
for each element in the batch
Shape:
- input: :math:`(N, H_{in})` or :math:`(H_{in})` tensor containing input features where
:math:`H_{in}` = `input_size`.
- hidden: :math:`(N, H_{out})` or :math:`(H_{out})` tensor containing the initial hidden
state where :math:`H_{out}` = `hidden_size`. Defaults to zero if not provided.
- output: :math:`(N, H_{out})` or :math:`(H_{out})` tensor containing the next hidden state.
Attributes:
weight_ih: the learnable input-hidden weights, of shape
`(3*hidden_size, input_size)`
weight_hh: the learnable hidden-hidden weights, of shape
`(3*hidden_size, hidden_size)`
bias_ih: the learnable input-hidden bias, of shape `(3*hidden_size)`
bias_hh: the learnable hidden-hidden bias, of shape `(3*hidden_size)`
.. note::
All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
where :math:`k = \frac{1}{\text{hidden\_size}}`
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
Examples::
>>> rnn = nn.GRUCell(10, 20)
>>> input = torch.randn(6, 3, 10)
>>> hx = torch.randn(3, 20)
>>> output = []
>>> for i in range(6):
... hx = rnn(input[i], hx)
... output.append(hx)
"""
def __init__(self, input_size: int, hidden_size: int, bias: bool = True,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__(input_size, hidden_size, bias, num_chunks=3, **factory_kwargs)
def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tensor:
if input.dim() not in (1, 2):
raise ValueError(f"GRUCell: Expected input to be 1D or 2D, got {input.dim()}D instead")
if hx is not None and hx.dim() not in (1, 2):
raise ValueError(f"GRUCell: Expected hidden to be 1D or 2D, got {hx.dim()}D instead")
is_batched = input.dim() == 2
if not is_batched:
input = input.unsqueeze(0)
if hx is None:
hx = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device)
else:
hx = hx.unsqueeze(0) if not is_batched else hx
ret = _VF.gru_cell(
input, hx,
self.weight_ih, self.weight_hh,
self.bias_ih, self.bias_hh,
)
if not is_batched:
ret = ret.squeeze(0)
return ret
|