File size: 3,790 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from .module import Module
from .. import functional as F

from torch import Tensor

__all__ = ['PixelShuffle', 'PixelUnshuffle']

class PixelShuffle(Module):
    r"""Rearrange elements in a tensor according to an upscaling factor.



    Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`

    to a tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is an upscale factor.



    This is useful for implementing efficient sub-pixel convolution

    with a stride of :math:`1/r`.



    See the paper:

    `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_

    by Shi et. al (2016) for more details.



    Args:

        upscale_factor (int): factor to increase spatial resolution by



    Shape:

        - Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions

        - Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where



    .. math::

        C_{out} = C_{in} \div \text{upscale\_factor}^2



    .. math::

        H_{out} = H_{in} \times \text{upscale\_factor}



    .. math::

        W_{out} = W_{in} \times \text{upscale\_factor}



    Examples::



        >>> pixel_shuffle = nn.PixelShuffle(3)

        >>> input = torch.randn(1, 9, 4, 4)

        >>> output = pixel_shuffle(input)

        >>> print(output.size())

        torch.Size([1, 1, 12, 12])



    .. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:

        https://arxiv.org/abs/1609.05158

    """

    __constants__ = ['upscale_factor']
    upscale_factor: int

    def __init__(self, upscale_factor: int) -> None:
        super().__init__()
        self.upscale_factor = upscale_factor

    def forward(self, input: Tensor) -> Tensor:
        return F.pixel_shuffle(input, self.upscale_factor)

    def extra_repr(self) -> str:
        return f'upscale_factor={self.upscale_factor}'


class PixelUnshuffle(Module):
    r"""Reverse the PixelShuffle operation.



    Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements

    in a tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape

    :math:`(*, C \times r^2, H, W)`, where r is a downscale factor.



    See the paper:

    `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_

    by Shi et. al (2016) for more details.



    Args:

        downscale_factor (int): factor to decrease spatial resolution by



    Shape:

        - Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions

        - Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where



    .. math::

        C_{out} = C_{in} \times \text{downscale\_factor}^2



    .. math::

        H_{out} = H_{in} \div \text{downscale\_factor}



    .. math::

        W_{out} = W_{in} \div \text{downscale\_factor}



    Examples::



        >>> pixel_unshuffle = nn.PixelUnshuffle(3)

        >>> input = torch.randn(1, 1, 12, 12)

        >>> output = pixel_unshuffle(input)

        >>> print(output.size())

        torch.Size([1, 9, 4, 4])



    .. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:

        https://arxiv.org/abs/1609.05158

    """

    __constants__ = ['downscale_factor']
    downscale_factor: int

    def __init__(self, downscale_factor: int) -> None:
        super().__init__()
        self.downscale_factor = downscale_factor

    def forward(self, input: Tensor) -> Tensor:
        return F.pixel_unshuffle(input, self.downscale_factor)

    def extra_repr(self) -> str:
        return f'downscale_factor={self.downscale_factor}'