File size: 116,391 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
from collections import OrderedDict, namedtuple
import itertools
import warnings
import functools
import weakref

import torch
from torch._prims_common import DeviceLikeType
from ..parameter import Parameter
import torch.utils.hooks as hooks

from torch import Tensor, device, dtype
from typing import Union, Tuple, Any, Callable, Iterator, Set, Optional, overload, TypeVar, Mapping, Dict, List
from typing_extensions import Self
from ...utils.hooks import RemovableHandle
from torch.utils._python_dispatch import is_traceable_wrapper_subclass

__all__ = ['register_module_forward_pre_hook', 'register_module_forward_hook',
           'register_module_full_backward_pre_hook', 'register_module_backward_hook',
           'register_module_full_backward_hook', 'register_module_buffer_registration_hook',
           'register_module_module_registration_hook', 'register_module_parameter_registration_hook', 'Module']

_grad_t = Union[Tuple[Tensor, ...], Tensor]
# See https://mypy.readthedocs.io/en/latest/generics.html#generic-methods-and-generic-self for the use
# of `T` to annotate `self`. Many methods of `Module` return `self` and we want those return values to be
# the type of the subclass, not the looser type of `Module`.
T = TypeVar('T', bound='Module')


class _IncompatibleKeys(namedtuple('IncompatibleKeys', ['missing_keys', 'unexpected_keys'])):
    def __repr__(self):
        if not self.missing_keys and not self.unexpected_keys:
            return '<All keys matched successfully>'
        return super().__repr__()

    __str__ = __repr__


def _addindent(s_, numSpaces):
    s = s_.split('\n')
    # don't do anything for single-line stuff
    if len(s) == 1:
        return s_
    first = s.pop(0)
    s = [(numSpaces * ' ') + line for line in s]
    s = '\n'.join(s)
    s = first + '\n' + s
    return s

r"""This tracks hooks common to all modules that are executed immediately before

.registering the buffer/module/parameter"""
_global_buffer_registration_hooks: Dict[int, Callable] = OrderedDict()
_global_module_registration_hooks: Dict[int, Callable] = OrderedDict()
_global_parameter_registration_hooks: Dict[int, Callable] = OrderedDict()

class _WrappedHook:
    def __init__(self, hook: Callable, module: Optional["Module"] = None):
        self.hook: Callable = hook
        functools.update_wrapper(self, hook)

        self.with_module: bool = False

        if module is not None:
            self.module: weakref.ReferenceType[Module] = weakref.ref(module)
            self.with_module = True

    def __call__(self, *args: Any, **kwargs: Any) -> Any:
        if self.with_module:
            module = self.module()
            if module is None:
                raise RuntimeError("You are trying to call the hook of a dead Module!")
            return self.hook(module, *args, **kwargs)
        return self.hook(*args, **kwargs)

    def __getstate__(self) -> Dict:
        result = {"hook": self.hook, "with_module": self.with_module}
        if self.with_module:
            result["module"] = self.module()

        return result

    def __setstate__(self, state: Dict):
        self.hook = state["hook"]
        self.with_module = state["with_module"]

        if self.with_module:
            if state["module"] is None:
                raise RuntimeError("You are trying to revive the hook of a dead Module!")
            self.module = weakref.ref(state["module"])


r"""This tracks hooks common to all modules that are executed before/after

calling forward and backward. This is global state used for debugging/profiling

purposes"""
_global_backward_pre_hooks: Dict[int, Callable] = OrderedDict()
_global_backward_hooks: Dict[int, Callable] = OrderedDict()
_global_is_full_backward_hook: Optional[bool] = None
_global_forward_pre_hooks: Dict[int, Callable] = OrderedDict()
_global_forward_hooks: Dict[int, Callable] = OrderedDict()
_global_forward_hooks_always_called: Dict[int, bool] = OrderedDict()

_EXTRA_STATE_KEY_SUFFIX = '_extra_state'


def register_module_buffer_registration_hook(hook: Callable[..., None]) -> RemovableHandle:
    r"""Register a buffer registration hook common to all modules.



    .. warning ::



        This adds global state to the `nn.Module` module



    The hook will be called every time :func:`register_buffer` is invoked.

    It should have the following signature::



        hook(module, name, buffer) -> None or new buffer



    The hook can modify the input or return a single modified value in the hook.



    Returns:

        :class:`torch.utils.hooks.RemovableHandle`:

            a handle that can be used to remove the added hook by calling

            ``handle.remove()``

    """
    handle = hooks.RemovableHandle(_global_buffer_registration_hooks)
    _global_buffer_registration_hooks[handle.id] = hook
    return handle


def register_module_module_registration_hook(hook: Callable[..., None]) -> RemovableHandle:
    r"""Register a module registration hook common to all modules.



    .. warning ::



        This adds global state to the `nn.Module` module



    The hook will be called every time :func:`register_module` is invoked.

    It should have the following signature::



        hook(module, name, submodule) -> None or new submodule



    The hook can modify the input or return a single modified value in the hook.



    Returns:

        :class:`torch.utils.hooks.RemovableHandle`:

            a handle that can be used to remove the added hook by calling

            ``handle.remove()``

    """
    handle = hooks.RemovableHandle(_global_module_registration_hooks)
    _global_module_registration_hooks[handle.id] = hook
    return handle


def register_module_parameter_registration_hook(hook: Callable[..., None]) -> RemovableHandle:
    r"""Register a parameter registration hook common to all modules.



    .. warning ::



        This adds global state to the `nn.Module` module



    The hook will be called every time :func:`register_parameter` is invoked.

    It should have the following signature::



        hook(module, name, param) -> None or new parameter



    The hook can modify the input or return a single modified value in the hook.



    Returns:

        :class:`torch.utils.hooks.RemovableHandle`:

            a handle that can be used to remove the added hook by calling

            ``handle.remove()``

    """
    handle = hooks.RemovableHandle(_global_parameter_registration_hooks)
    _global_parameter_registration_hooks[handle.id] = hook
    return handle


def register_module_forward_pre_hook(hook: Callable[..., None]) -> RemovableHandle:
    r"""Register a forward pre-hook common to all modules.



    .. warning ::



        This adds global state to the `nn.module` module

        and it is only intended for debugging/profiling purposes.



    The hook will be called every time before :func:`forward` is invoked.

    It should have the following signature::



        hook(module, input) -> None or modified input



    The input contains only the positional arguments given to the module.

    Keyword arguments won't be passed to the hooks and only to the ``forward``.

    The hook can modify the input. User can either return a tuple or a

    single modified value in the hook. We will wrap the value into a tuple

    if a single value is returned(unless that value is already a tuple).



    This hook has precedence over the specific module hooks registered with

    ``register_forward_pre_hook``.



    Returns:

        :class:`torch.utils.hooks.RemovableHandle`:

            a handle that can be used to remove the added hook by calling

            ``handle.remove()``

    """
    handle = hooks.RemovableHandle(_global_forward_pre_hooks)
    _global_forward_pre_hooks[handle.id] = hook
    return handle


def register_module_forward_hook(hook: Callable[..., None], *, always_call: bool = False) -> RemovableHandle:
    r"""Register a global forward hook for all the modules.



    .. warning ::



        This adds global state to the `nn.module` module

        and it is only intended for debugging/profiling purposes.



    The hook will be called every time after :func:`forward` has computed an output.

    It should have the following signature::



        hook(module, input, output) -> None or modified output



    The input contains only the positional arguments given to the module.

    Keyword arguments won't be passed to the hooks and only to the ``forward``.

    The hook can modify the output. It can modify the input inplace but

    it will not have effect on forward since this is called after

    :func:`forward` is called.



    Parameters:

        hook (Callable): The user defined hook to be registered.

        always_call (bool): If ``True`` the ``hook`` will be run regardless of

            whether an exception is raised while calling the Module.

            Default: ``False``

    Returns:

        :class:`torch.utils.hooks.RemovableHandle`:

            a handle that can be used to remove the added hook by calling

            ``handle.remove()``



    This hook will be executed before specific module hooks registered with

    ``register_forward_hook``.

    """
    handle = hooks.RemovableHandle(_global_forward_hooks,
                                   extra_dict=_global_forward_hooks_always_called)
    _global_forward_hooks[handle.id] = hook
    if always_call:
        _global_forward_hooks_always_called[handle.id] = True
    return handle


def register_module_backward_hook(

    hook: Callable[['Module', _grad_t, _grad_t], Union[None, _grad_t]]

) -> RemovableHandle:
    r"""Register a backward hook common to all the modules.



    This function is deprecated in favor of

    :func:`torch.nn.modules.module.register_module_full_backward_hook`

    and the behavior of this function will change in future versions.



    Returns:

        :class:`torch.utils.hooks.RemovableHandle`:

            a handle that can be used to remove the added hook by calling

            ``handle.remove()``



    """
    global _global_is_full_backward_hook
    if _global_is_full_backward_hook is True:
        raise RuntimeError("Cannot use both regular backward hooks and full backward hooks as a "
                           "global Module hook. Please use only one of them.")

    _global_is_full_backward_hook = False

    handle = hooks.RemovableHandle(_global_backward_hooks)
    _global_backward_hooks[handle.id] = hook
    return handle


def register_module_full_backward_pre_hook(

    hook: Callable[['Module', _grad_t], Union[None, _grad_t]]

) -> RemovableHandle:
    r"""Register a backward pre-hook common to all the modules.



    .. warning ::

        This adds global state to the `nn.module` module

        and it is only intended for debugging/profiling purposes.



    Hooks registered using this function behave in the same way as those

    registered by :meth:`torch.nn.Module.register_full_backward_pre_hook`.

    Refer to its documentation for more details.



    Hooks registered using this function will be called before hooks registered

    using :meth:`torch.nn.Module.register_full_backward_pre_hook`.



    Returns:

        :class:`torch.utils.hooks.RemovableHandle`:

            a handle that can be used to remove the added hook by calling

            ``handle.remove()``



    """
    handle = hooks.RemovableHandle(_global_backward_pre_hooks)
    _global_backward_pre_hooks[handle.id] = hook
    return handle


def register_module_full_backward_hook(

    hook: Callable[['Module', _grad_t, _grad_t], Union[None, _grad_t]]

) -> RemovableHandle:
    r"""Register a backward hook common to all the modules.



    .. warning ::

        This adds global state to the `nn.module` module

        and it is only intended for debugging/profiling purposes.



    Hooks registered using this function behave in the same way as those

    registered by :meth:`torch.nn.Module.register_full_backward_hook`.

    Refer to its documentation for more details.



    Hooks registered using this function will be called before hooks registered

    using :meth:`torch.nn.Module.register_full_backward_hook`.



    Returns:

        :class:`torch.utils.hooks.RemovableHandle`:

            a handle that can be used to remove the added hook by calling

            ``handle.remove()``



    """
    global _global_is_full_backward_hook
    if _global_is_full_backward_hook is False:
        raise RuntimeError("Cannot use both regular backward hooks and full backward hooks as a "
                           "global Module hook. Please use only one of them.")

    _global_is_full_backward_hook = True

    handle = hooks.RemovableHandle(_global_backward_hooks)
    _global_backward_hooks[handle.id] = hook
    return handle


# Trick mypy into not applying contravariance rules to inputs by defining
# forward as a value, rather than a function.  See also
# https://github.com/python/mypy/issues/8795
def _forward_unimplemented(self, *input: Any) -> None:
    r"""Define the computation performed at every call.



    Should be overridden by all subclasses.



    .. note::

        Although the recipe for forward pass needs to be defined within

        this function, one should call the :class:`Module` instance afterwards

        instead of this since the former takes care of running the

        registered hooks while the latter silently ignores them.

    """
    raise NotImplementedError(f"Module [{type(self).__name__}] is missing the required \"forward\" function")


class Module:
    r"""Base class for all neural network modules.



    Your models should also subclass this class.



    Modules can also contain other Modules, allowing to nest them in

    a tree structure. You can assign the submodules as regular attributes::



        import torch.nn as nn

        import torch.nn.functional as F



        class Model(nn.Module):

            def __init__(self):

                super().__init__()

                self.conv1 = nn.Conv2d(1, 20, 5)

                self.conv2 = nn.Conv2d(20, 20, 5)



            def forward(self, x):

                x = F.relu(self.conv1(x))

                return F.relu(self.conv2(x))



    Submodules assigned in this way will be registered, and will have their

    parameters converted too when you call :meth:`to`, etc.



    .. note::

        As per the example above, an ``__init__()`` call to the parent class

        must be made before assignment on the child.



    :ivar training: Boolean represents whether this module is in training or

                    evaluation mode.

    :vartype training: bool

    """

    dump_patches: bool = False

    _version: int = 1
    r"""This allows better BC support for :meth:`load_state_dict`. In

    :meth:`state_dict`, the version number will be saved as in the attribute

    `_metadata` of the returned state dict, and thus pickled. `_metadata` is a

    dictionary with keys that follow the naming convention of state dict. See

    ``_load_from_state_dict`` on how to use this information in loading.



    If new parameters/buffers are added/removed from a module, this number shall

    be bumped, and the module's `_load_from_state_dict` method can compare the

    version number and do appropriate changes if the state dict is from before

    the change."""

    training: bool
    _parameters: Dict[str, Optional[Parameter]]
    _buffers: Dict[str, Optional[Tensor]]
    _non_persistent_buffers_set: Set[str]
    _backward_pre_hooks: Dict[int, Callable]
    _backward_hooks: Dict[int, Callable]
    _is_full_backward_hook: Optional[bool]
    _forward_hooks: Dict[int, Callable]
    # Marks whether the corresponding _forward_hooks accept kwargs or not.
    # As JIT does not support Set[int], this dict is used as a set, where all
    # hooks represented in this dict accept kwargs.
    _forward_hooks_with_kwargs: Dict[int, bool]
    # forward hooks that should always be called even if an exception is raised
    _forward_hooks_always_called: Dict[int, bool]
    _forward_pre_hooks: Dict[int, Callable]
    # Marks whether the corresponding _forward_hooks accept kwargs or not.
    # As JIT does not support Set[int], this dict is used as a set, where all
    # hooks represented in this dict accept kwargs.
    _forward_pre_hooks_with_kwargs: Dict[int, bool]
    _state_dict_hooks: Dict[int, Callable]
    _load_state_dict_pre_hooks: Dict[int, Callable]
    _state_dict_pre_hooks: Dict[int, Callable]
    _load_state_dict_post_hooks: Dict[int, Callable]
    _modules: Dict[str, Optional['Module']]
    call_super_init: bool = False
    _compiled_call_impl : Optional[Callable] = None

    def __init__(self, *args, **kwargs) -> None:
        """Initialize internal Module state, shared by both nn.Module and ScriptModule."""
        torch._C._log_api_usage_once("python.nn_module")

        # Backward compatibility: no args used to be allowed when call_super_init=False
        if self.call_super_init is False and bool(kwargs):
            raise TypeError("{}.__init__() got an unexpected keyword argument '{}'"
                            "".format(type(self).__name__, next(iter(kwargs))))

        if self.call_super_init is False and bool(args):
            raise TypeError(f"{type(self).__name__}.__init__() takes 1 positional argument but {len(args) + 1} were"
                            " given")

        """

        Calls super().__setattr__('a', a) instead of the typical self.a = a

        to avoid Module.__setattr__ overhead. Module's __setattr__ has special

        handling for parameters, submodules, and buffers but simply calls into

        super().__setattr__ for all other attributes.

        """
        super().__setattr__('training', True)
        super().__setattr__('_parameters', OrderedDict())
        super().__setattr__('_buffers', OrderedDict())
        super().__setattr__('_non_persistent_buffers_set', set())
        super().__setattr__('_backward_pre_hooks', OrderedDict())
        super().__setattr__('_backward_hooks', OrderedDict())
        super().__setattr__('_is_full_backward_hook', None)
        super().__setattr__('_forward_hooks', OrderedDict())
        super().__setattr__('_forward_hooks_with_kwargs', OrderedDict())
        super().__setattr__('_forward_hooks_always_called', OrderedDict())
        super().__setattr__('_forward_pre_hooks', OrderedDict())
        super().__setattr__('_forward_pre_hooks_with_kwargs', OrderedDict())
        super().__setattr__('_state_dict_hooks', OrderedDict())
        super().__setattr__('_state_dict_pre_hooks', OrderedDict())
        super().__setattr__('_load_state_dict_pre_hooks', OrderedDict())
        super().__setattr__('_load_state_dict_post_hooks', OrderedDict())
        super().__setattr__('_modules', OrderedDict())

        if self.call_super_init:
            super().__init__(*args, **kwargs)

    forward: Callable[..., Any] = _forward_unimplemented

    def register_buffer(self, name: str, tensor: Optional[Tensor], persistent: bool = True) -> None:
        r"""Add a buffer to the module.



        This is typically used to register a buffer that should not to be

        considered a model parameter. For example, BatchNorm's ``running_mean``

        is not a parameter, but is part of the module's state. Buffers, by

        default, are persistent and will be saved alongside parameters. This

        behavior can be changed by setting :attr:`persistent` to ``False``. The

        only difference between a persistent buffer and a non-persistent buffer

        is that the latter will not be a part of this module's

        :attr:`state_dict`.



        Buffers can be accessed as attributes using given names.



        Args:

            name (str): name of the buffer. The buffer can be accessed

                from this module using the given name

            tensor (Tensor or None): buffer to be registered. If ``None``, then operations

                that run on buffers, such as :attr:`cuda`, are ignored. If ``None``,

                the buffer is **not** included in the module's :attr:`state_dict`.

            persistent (bool): whether the buffer is part of this module's

                :attr:`state_dict`.



        Example::



            >>> # xdoctest: +SKIP("undefined vars")

            >>> self.register_buffer('running_mean', torch.zeros(num_features))



        """
        if persistent is False and isinstance(self, torch.jit.ScriptModule):
            raise RuntimeError("ScriptModule does not support non-persistent buffers")

        if '_buffers' not in self.__dict__:
            raise AttributeError(
                "cannot assign buffer before Module.__init__() call")
        elif not isinstance(name, str):
            raise TypeError(f"buffer name should be a string. Got {torch.typename(name)}")
        elif '.' in name:
            raise KeyError("buffer name can't contain \".\"")
        elif name == '':
            raise KeyError("buffer name can't be empty string \"\"")
        elif hasattr(self, name) and name not in self._buffers:
            raise KeyError(f"attribute '{name}' already exists")
        elif tensor is not None and not isinstance(tensor, torch.Tensor):
            raise TypeError(f"cannot assign '{torch.typename(tensor)}' object to buffer '{name}' "
                            "(torch Tensor or None required)"
                            )
        else:
            for hook in _global_buffer_registration_hooks.values():
                output = hook(self, name, tensor)
                if output is not None:
                    tensor = output
            self._buffers[name] = tensor
            if persistent:
                self._non_persistent_buffers_set.discard(name)
            else:
                self._non_persistent_buffers_set.add(name)

    def register_parameter(self, name: str, param: Optional[Parameter]) -> None:
        r"""Add a parameter to the module.



        The parameter can be accessed as an attribute using given name.



        Args:

            name (str): name of the parameter. The parameter can be accessed

                from this module using the given name

            param (Parameter or None): parameter to be added to the module. If

                ``None``, then operations that run on parameters, such as :attr:`cuda`,

                are ignored. If ``None``, the parameter is **not** included in the

                module's :attr:`state_dict`.

        """
        if '_parameters' not in self.__dict__:
            raise AttributeError(
                "cannot assign parameter before Module.__init__() call")

        elif not isinstance(name, str):
            raise TypeError(f"parameter name should be a string. Got {torch.typename(name)}")
        elif '.' in name:
            raise KeyError("parameter name can't contain \".\"")
        elif name == '':
            raise KeyError("parameter name can't be empty string \"\"")
        elif hasattr(self, name) and name not in self._parameters:
            raise KeyError(f"attribute '{name}' already exists")

        if param is None:
            self._parameters[name] = None
        elif not isinstance(param, Parameter):
            raise TypeError(f"cannot assign '{torch.typename(param)}' object to parameter '{name}' "
                            "(torch.nn.Parameter or None required)"
                            )
        elif param.grad_fn:
            raise ValueError(
                f"Cannot assign non-leaf Tensor to parameter '{name}'. Model "
                f"parameters must be created explicitly. To express '{name}' "
                "as a function of another Tensor, compute the value in "
                "the forward() method.")
        else:
            for hook in _global_parameter_registration_hooks.values():
                output = hook(self, name, param)
                if output is not None:
                    param = output
            self._parameters[name] = param

    def add_module(self, name: str, module: Optional['Module']) -> None:
        r"""Add a child module to the current module.



        The module can be accessed as an attribute using the given name.



        Args:

            name (str): name of the child module. The child module can be

                accessed from this module using the given name

            module (Module): child module to be added to the module.

        """
        if not isinstance(module, Module) and module is not None:
            raise TypeError(f"{torch.typename(module)} is not a Module subclass")
        elif not isinstance(name, str):
            raise TypeError(f"module name should be a string. Got {torch.typename(name)}")
        elif hasattr(self, name) and name not in self._modules:
            raise KeyError(f"attribute '{name}' already exists")
        elif '.' in name:
            raise KeyError(f"module name can't contain \".\", got: {name}")
        elif name == '':
            raise KeyError("module name can't be empty string \"\"")
        for hook in _global_module_registration_hooks.values():
            output = hook(self, name, module)
            if output is not None:
                module = output
        self._modules[name] = module

    def register_module(self, name: str, module: Optional['Module']) -> None:
        r"""Alias for :func:`add_module`."""
        self.add_module(name, module)

    def get_submodule(self, target: str) -> "Module":
        """Return the submodule given by ``target`` if it exists, otherwise throw an error.



        For example, let's say you have an ``nn.Module`` ``A`` that

        looks like this:



        .. code-block:: text



            A(

                (net_b): Module(

                    (net_c): Module(

                        (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))

                    )

                    (linear): Linear(in_features=100, out_features=200, bias=True)

                )

            )



        (The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested

        submodule ``net_b``, which itself has two submodules ``net_c``

        and ``linear``. ``net_c`` then has a submodule ``conv``.)



        To check whether or not we have the ``linear`` submodule, we

        would call ``get_submodule("net_b.linear")``. To check whether

        we have the ``conv`` submodule, we would call

        ``get_submodule("net_b.net_c.conv")``.



        The runtime of ``get_submodule`` is bounded by the degree

        of module nesting in ``target``. A query against

        ``named_modules`` achieves the same result, but it is O(N) in

        the number of transitive modules. So, for a simple check to see

        if some submodule exists, ``get_submodule`` should always be

        used.



        Args:

            target: The fully-qualified string name of the submodule

                to look for. (See above example for how to specify a

                fully-qualified string.)



        Returns:

            torch.nn.Module: The submodule referenced by ``target``



        Raises:

            AttributeError: If the target string references an invalid

                path or resolves to something that is not an

                ``nn.Module``

        """
        if target == "":
            return self

        atoms: List[str] = target.split(".")
        mod: torch.nn.Module = self

        for item in atoms:

            if not hasattr(mod, item):
                raise AttributeError(mod._get_name() + " has no "
                                     "attribute `" + item + "`")

            mod = getattr(mod, item)

            if not isinstance(mod, torch.nn.Module):
                raise AttributeError("`" + item + "` is not "
                                     "an nn.Module")

        return mod

    def get_parameter(self, target: str) -> "Parameter":
        """Return the parameter given by ``target`` if it exists, otherwise throw an error.



        See the docstring for ``get_submodule`` for a more detailed

        explanation of this method's functionality as well as how to

        correctly specify ``target``.



        Args:

            target: The fully-qualified string name of the Parameter

                to look for. (See ``get_submodule`` for how to specify a

                fully-qualified string.)



        Returns:

            torch.nn.Parameter: The Parameter referenced by ``target``



        Raises:

            AttributeError: If the target string references an invalid

                path or resolves to something that is not an

                ``nn.Parameter``

        """
        module_path, _, param_name = target.rpartition(".")

        mod: torch.nn.Module = self.get_submodule(module_path)

        if not hasattr(mod, param_name):
            raise AttributeError(mod._get_name() + " has no attribute `"
                                 + param_name + "`")

        param: torch.nn.Parameter = getattr(mod, param_name)

        if not isinstance(param, torch.nn.Parameter):
            raise AttributeError("`" + param_name + "` is not an "
                                 "nn.Parameter")

        return param

    def get_buffer(self, target: str) -> "Tensor":
        """Return the buffer given by ``target`` if it exists, otherwise throw an error.



        See the docstring for ``get_submodule`` for a more detailed

        explanation of this method's functionality as well as how to

        correctly specify ``target``.



        Args:

            target: The fully-qualified string name of the buffer

                to look for. (See ``get_submodule`` for how to specify a

                fully-qualified string.)



        Returns:

            torch.Tensor: The buffer referenced by ``target``



        Raises:

            AttributeError: If the target string references an invalid

                path or resolves to something that is not a

                buffer

        """
        module_path, _, buffer_name = target.rpartition(".")

        mod: torch.nn.Module = self.get_submodule(module_path)

        if not hasattr(mod, buffer_name):
            raise AttributeError(mod._get_name() + " has no attribute `"
                                 + buffer_name + "`")

        buffer: torch.Tensor = getattr(mod, buffer_name)

        if buffer_name not in mod._buffers:
            raise AttributeError("`" + buffer_name + "` is not a buffer")

        return buffer

    def get_extra_state(self) -> Any:
        """Return any extra state to include in the module's state_dict.



        Implement this and a corresponding :func:`set_extra_state` for your module

        if you need to store extra state. This function is called when building the

        module's `state_dict()`.



        Note that extra state should be picklable to ensure working serialization

        of the state_dict. We only provide provide backwards compatibility guarantees

        for serializing Tensors; other objects may break backwards compatibility if

        their serialized pickled form changes.



        Returns:

            object: Any extra state to store in the module's state_dict

        """
        raise RuntimeError(
            "Reached a code path in Module.get_extra_state() that should never be called. "
            "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
            "to report this bug.")

    def set_extra_state(self, state: Any) -> None:
        """Set extra state contained in the loaded `state_dict`.



        This function is called from :func:`load_state_dict` to handle any extra state

        found within the `state_dict`. Implement this function and a corresponding

        :func:`get_extra_state` for your module if you need to store extra state within its

        `state_dict`.



        Args:

            state (dict): Extra state from the `state_dict`

        """
        raise RuntimeError(
            "Reached a code path in Module.set_extra_state() that should never be called. "
            "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
            "to report this bug.")

    def _apply(self, fn, recurse=True):
        if recurse:
            for module in self.children():
                module._apply(fn)

        def compute_should_use_set_data(tensor, tensor_applied):
            if torch._has_compatible_shallow_copy_type(tensor, tensor_applied):
                # If the new tensor has compatible tensor type as the existing tensor,
                # the current behavior is to change the tensor in-place using `.data =`,
                # and the future behavior is to overwrite the existing tensor. However,
                # changing the current behavior is a BC-breaking change, and we want it
                # to happen in future releases. So for now we introduce the
                # `torch.__future__.get_overwrite_module_params_on_conversion()`
                # global flag to let the user control whether they want the future
                # behavior of overwriting the existing tensor or not.
                return not torch.__future__.get_overwrite_module_params_on_conversion()
            else:
                return False

        should_use_swap_tensors = torch.__future__.get_swap_module_params_on_conversion()

        for key, param in self._parameters.items():
            if param is None:
                continue
            # Tensors stored in modules are graph leaves, and we don't want to
            # track autograd history of `param_applied`, so we have to use
            # `with torch.no_grad():`
            with torch.no_grad():
                param_applied = fn(param)
            p_should_use_set_data = compute_should_use_set_data(param, param_applied)

            # subclasses may have multiple child tensors so we need to use swap_tensors
            p_should_use_swap_tensors = should_use_swap_tensors or is_traceable_wrapper_subclass(param_applied)

            param_grad = param.grad
            if p_should_use_swap_tensors:
                try:
                    if param_grad is not None:
                        # Accessing param.grad makes its at::Tensor's use_count 2, which will prevent swapping.
                        # Decrement use count of the gradient by setting to None
                        param.grad = None
                    param_applied = torch.nn.Parameter(param_applied, requires_grad=param.requires_grad)
                    torch.utils.swap_tensors(param, param_applied)
                except Exception as e:
                    if param_grad is not None:
                        param.grad = param_grad
                    raise RuntimeError(f"_apply(): Couldn't swap {self._get_name()}.{key}") from e
                out_param = param
            elif p_should_use_set_data:
                param.data = param_applied
                out_param = param
            else:
                assert isinstance(param, Parameter)
                assert param.is_leaf
                out_param = Parameter(param_applied, param.requires_grad)
                self._parameters[key] = out_param

            if param_grad is not None:
                with torch.no_grad():
                    grad_applied = fn(param_grad)
                g_should_use_set_data = compute_should_use_set_data(param_grad, grad_applied)
                if p_should_use_swap_tensors:
                    grad_applied.requires_grad_(param_grad.requires_grad)
                    try:
                        torch.utils.swap_tensors(param_grad, grad_applied)
                    except Exception as e:
                        raise RuntimeError(f"_apply(): Couldn't swap {self._get_name()}.{key}.grad") from e
                    out_param.grad = param_grad
                elif g_should_use_set_data:
                    assert out_param.grad is not None
                    out_param.grad.data = grad_applied
                else:
                    assert param_grad.is_leaf
                    out_param.grad = grad_applied.requires_grad_(param_grad.requires_grad)

        for key, buf in self._buffers.items():
            if buf is not None:
                self._buffers[key] = fn(buf)

        return self

    def apply(self: T, fn: Callable[['Module'], None]) -> T:
        r"""Apply ``fn`` recursively to every submodule (as returned by ``.children()``) as well as self.



        Typical use includes initializing the parameters of a model

        (see also :ref:`nn-init-doc`).



        Args:

            fn (:class:`Module` -> None): function to be applied to each submodule



        Returns:

            Module: self



        Example::



            >>> @torch.no_grad()

            >>> def init_weights(m):

            >>>     print(m)

            >>>     if type(m) == nn.Linear:

            >>>         m.weight.fill_(1.0)

            >>>         print(m.weight)

            >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))

            >>> net.apply(init_weights)

            Linear(in_features=2, out_features=2, bias=True)

            Parameter containing:

            tensor([[1., 1.],

                    [1., 1.]], requires_grad=True)

            Linear(in_features=2, out_features=2, bias=True)

            Parameter containing:

            tensor([[1., 1.],

                    [1., 1.]], requires_grad=True)

            Sequential(

              (0): Linear(in_features=2, out_features=2, bias=True)

              (1): Linear(in_features=2, out_features=2, bias=True)

            )



        """
        for module in self.children():
            module.apply(fn)
        fn(self)
        return self

    def cuda(self: T, device: Optional[Union[int, device]] = None) -> T:
        r"""Move all model parameters and buffers to the GPU.



        This also makes associated parameters and buffers different objects. So

        it should be called before constructing optimizer if the module will

        live on GPU while being optimized.



        .. note::

            This method modifies the module in-place.



        Args:

            device (int, optional): if specified, all parameters will be

                copied to that device



        Returns:

            Module: self

        """
        return self._apply(lambda t: t.cuda(device))

    def ipu(self: T, device: Optional[Union[int, device]] = None) -> T:
        r"""Move all model parameters and buffers to the IPU.



        This also makes associated parameters and buffers different objects. So

        it should be called before constructing optimizer if the module will

        live on IPU while being optimized.



        .. note::

            This method modifies the module in-place.



        Arguments:

            device (int, optional): if specified, all parameters will be

                copied to that device



        Returns:

            Module: self

        """
        return self._apply(lambda t: t.ipu(device))

    def xpu(self: T, device: Optional[Union[int, device]] = None) -> T:
        r"""Move all model parameters and buffers to the XPU.



        This also makes associated parameters and buffers different objects. So

        it should be called before constructing optimizer if the module will

        live on XPU while being optimized.



        .. note::

            This method modifies the module in-place.



        Arguments:

            device (int, optional): if specified, all parameters will be

                copied to that device



        Returns:

            Module: self

        """
        return self._apply(lambda t: t.xpu(device))

    def cpu(self: T) -> T:
        r"""Move all model parameters and buffers to the CPU.



        .. note::

            This method modifies the module in-place.



        Returns:

            Module: self

        """
        return self._apply(lambda t: t.cpu())

    def type(self: T, dst_type: Union[dtype, str]) -> T:
        r"""Casts all parameters and buffers to :attr:`dst_type`.



        .. note::

            This method modifies the module in-place.



        Args:

            dst_type (type or string): the desired type



        Returns:

            Module: self

        """
        return self._apply(lambda t: t.type(dst_type))

    def float(self: T) -> T:
        r"""Casts all floating point parameters and buffers to ``float`` datatype.



        .. note::

            This method modifies the module in-place.



        Returns:

            Module: self

        """
        return self._apply(lambda t: t.float() if t.is_floating_point() else t)

    def double(self: T) -> T:
        r"""Casts all floating point parameters and buffers to ``double`` datatype.



        .. note::

            This method modifies the module in-place.



        Returns:

            Module: self

        """
        return self._apply(lambda t: t.double() if t.is_floating_point() else t)

    def half(self: T) -> T:
        r"""Casts all floating point parameters and buffers to ``half`` datatype.



        .. note::

            This method modifies the module in-place.



        Returns:

            Module: self

        """
        return self._apply(lambda t: t.half() if t.is_floating_point() else t)

    def bfloat16(self: T) -> T:
        r"""Casts all floating point parameters and buffers to ``bfloat16`` datatype.



        .. note::

            This method modifies the module in-place.



        Returns:

            Module: self

        """
        return self._apply(lambda t: t.bfloat16() if t.is_floating_point() else t)

    def to_empty(self: T, *, device: Optional[DeviceLikeType], recurse: bool = True) -> T:
        r"""Move the parameters and buffers to the specified device without copying storage.



        Args:

            device (:class:`torch.device`): The desired device of the parameters

                and buffers in this module.

            recurse (bool): Whether parameters and buffers of submodules should

                be recursively moved to the specified device.



        Returns:

            Module: self

        """
        return self._apply(lambda t: torch.empty_like(t, device=device), recurse=recurse)

    @overload
    def to(self, device: Optional[DeviceLikeType] = ..., dtype: Optional[dtype] = ...,

           non_blocking: bool = ...) -> Self:
        ...

    @overload
    def to(self, dtype: dtype, non_blocking: bool = ...) -> Self:
        ...

    @overload
    def to(self, tensor: Tensor, non_blocking: bool = ...) -> Self:
        ...

    def to(self, *args, **kwargs):
        r"""Move and/or cast the parameters and buffers.



        This can be called as



        .. function:: to(device=None, dtype=None, non_blocking=False)

           :noindex:



        .. function:: to(dtype, non_blocking=False)

           :noindex:



        .. function:: to(tensor, non_blocking=False)

           :noindex:



        .. function:: to(memory_format=torch.channels_last)

           :noindex:



        Its signature is similar to :meth:`torch.Tensor.to`, but only accepts

        floating point or complex :attr:`dtype`\ s. In addition, this method will

        only cast the floating point or complex parameters and buffers to :attr:`dtype`

        (if given). The integral parameters and buffers will be moved

        :attr:`device`, if that is given, but with dtypes unchanged. When

        :attr:`non_blocking` is set, it tries to convert/move asynchronously

        with respect to the host if possible, e.g., moving CPU Tensors with

        pinned memory to CUDA devices.



        See below for examples.



        .. note::

            This method modifies the module in-place.



        Args:

            device (:class:`torch.device`): the desired device of the parameters

                and buffers in this module

            dtype (:class:`torch.dtype`): the desired floating point or complex dtype of

                the parameters and buffers in this module

            tensor (torch.Tensor): Tensor whose dtype and device are the desired

                dtype and device for all parameters and buffers in this module

            memory_format (:class:`torch.memory_format`): the desired memory

                format for 4D parameters and buffers in this module (keyword

                only argument)



        Returns:

            Module: self



        Examples::



            >>> # xdoctest: +IGNORE_WANT("non-deterministic")

            >>> linear = nn.Linear(2, 2)

            >>> linear.weight

            Parameter containing:

            tensor([[ 0.1913, -0.3420],

                    [-0.5113, -0.2325]])

            >>> linear.to(torch.double)

            Linear(in_features=2, out_features=2, bias=True)

            >>> linear.weight

            Parameter containing:

            tensor([[ 0.1913, -0.3420],

                    [-0.5113, -0.2325]], dtype=torch.float64)

            >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)

            >>> gpu1 = torch.device("cuda:1")

            >>> linear.to(gpu1, dtype=torch.half, non_blocking=True)

            Linear(in_features=2, out_features=2, bias=True)

            >>> linear.weight

            Parameter containing:

            tensor([[ 0.1914, -0.3420],

                    [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')

            >>> cpu = torch.device("cpu")

            >>> linear.to(cpu)

            Linear(in_features=2, out_features=2, bias=True)

            >>> linear.weight

            Parameter containing:

            tensor([[ 0.1914, -0.3420],

                    [-0.5112, -0.2324]], dtype=torch.float16)



            >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)

            >>> linear.weight

            Parameter containing:

            tensor([[ 0.3741+0.j,  0.2382+0.j],

                    [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)

            >>> linear(torch.ones(3, 2, dtype=torch.cdouble))

            tensor([[0.6122+0.j, 0.1150+0.j],

                    [0.6122+0.j, 0.1150+0.j],

                    [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)



        """
        device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)

        if dtype is not None:
            if not (dtype.is_floating_point or dtype.is_complex):
                raise TypeError('nn.Module.to only accepts floating point or complex '
                                f'dtypes, but got desired dtype={dtype}')
            if dtype.is_complex:
                warnings.warn(
                    "Complex modules are a new feature under active development whose design may change, "
                    "and some modules might not work as expected when using complex tensors as parameters or buffers. "
                    "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml "
                    "if a complex module does not work as expected.")

        def convert(t):
            try:
                if convert_to_format is not None and t.dim() in (4, 5):
                    return t.to(
                        device,
                        dtype if t.is_floating_point() or t.is_complex() else None,
                        non_blocking,
                        memory_format=convert_to_format,
                    )
                return t.to(
                    device,
                    dtype if t.is_floating_point() or t.is_complex() else None,
                    non_blocking,
                )
            except NotImplementedError as e:
                if str(e) == "Cannot copy out of meta tensor; no data!":
                    raise NotImplementedError(
                        f"{e} Please use torch.nn.Module.to_empty() instead of torch.nn.Module.to() "
                        f"when moving module from meta to a different device."
                    ) from None
                else:
                    raise

        return self._apply(convert)

    def register_full_backward_pre_hook(

        self,

        hook: Callable[["Module", _grad_t], Union[None, _grad_t]],

        prepend: bool = False,

    ) -> RemovableHandle:
        r"""Register a backward pre-hook on the module.



        The hook will be called every time the gradients for the module are computed.

        The hook should have the following signature::



            hook(module, grad_output) -> tuple[Tensor] or None



        The :attr:`grad_output` is a tuple. The hook should

        not modify its arguments, but it can optionally return a new gradient with

        respect to the output that will be used in place of :attr:`grad_output` in

        subsequent computations. Entries in :attr:`grad_output` will be ``None`` for

        all non-Tensor arguments.



        For technical reasons, when this hook is applied to a Module, its forward function will

        receive a view of each Tensor passed to the Module. Similarly the caller will receive a view

        of each Tensor returned by the Module's forward function.



        .. warning ::

            Modifying inputs inplace is not allowed when using backward hooks and

            will raise an error.



        Args:

            hook (Callable): The user-defined hook to be registered.

            prepend (bool): If true, the provided ``hook`` will be fired before

                all existing ``backward_pre`` hooks on this

                :class:`torch.nn.modules.Module`. Otherwise, the provided

                ``hook`` will be fired after all existing ``backward_pre`` hooks

                on this :class:`torch.nn.modules.Module`. Note that global

                ``backward_pre`` hooks registered with

                :func:`register_module_full_backward_pre_hook` will fire before

                all hooks registered by this method.



        Returns:

            :class:`torch.utils.hooks.RemovableHandle`:

                a handle that can be used to remove the added hook by calling

                ``handle.remove()``



        """
        handle = hooks.RemovableHandle(self._backward_pre_hooks)
        self._backward_pre_hooks[handle.id] = hook
        if prepend:
            self._backward_pre_hooks.move_to_end(handle.id, last=False)  # type: ignore[attr-defined]
        return handle

    def register_backward_hook(

        self, hook: Callable[['Module', _grad_t, _grad_t], Union[None, _grad_t]]

    ) -> RemovableHandle:
        r"""Register a backward hook on the module.



        This function is deprecated in favor of :meth:`~torch.nn.Module.register_full_backward_hook` and

        the behavior of this function will change in future versions.



        Returns:

            :class:`torch.utils.hooks.RemovableHandle`:

                a handle that can be used to remove the added hook by calling

                ``handle.remove()``



        """
        if self._is_full_backward_hook is True:
            raise RuntimeError("Cannot use both regular backward hooks and full backward hooks on a "
                               "single Module. Please use only one of them.")

        self._is_full_backward_hook = False

        handle = hooks.RemovableHandle(self._backward_hooks)
        self._backward_hooks[handle.id] = hook
        return handle

    def register_full_backward_hook(

        self,

        hook: Callable[["Module", _grad_t, _grad_t], Union[None, _grad_t]],

        prepend: bool = False,

    ) -> RemovableHandle:
        r"""Register a backward hook on the module.



        The hook will be called every time the gradients with respect to a module

        are computed, i.e. the hook will execute if and only if the gradients with

        respect to module outputs are computed. The hook should have the following

        signature::



            hook(module, grad_input, grad_output) -> tuple(Tensor) or None



        The :attr:`grad_input` and :attr:`grad_output` are tuples that contain the gradients

        with respect to the inputs and outputs respectively. The hook should

        not modify its arguments, but it can optionally return a new gradient with

        respect to the input that will be used in place of :attr:`grad_input` in

        subsequent computations. :attr:`grad_input` will only correspond to the inputs given

        as positional arguments and all kwarg arguments are ignored. Entries

        in :attr:`grad_input` and :attr:`grad_output` will be ``None`` for all non-Tensor

        arguments.



        For technical reasons, when this hook is applied to a Module, its forward function will

        receive a view of each Tensor passed to the Module. Similarly the caller will receive a view

        of each Tensor returned by the Module's forward function.



        .. warning ::

            Modifying inputs or outputs inplace is not allowed when using backward hooks and

            will raise an error.



        Args:

            hook (Callable): The user-defined hook to be registered.

            prepend (bool): If true, the provided ``hook`` will be fired before

                all existing ``backward`` hooks on this

                :class:`torch.nn.modules.Module`. Otherwise, the provided

                ``hook`` will be fired after all existing ``backward`` hooks on

                this :class:`torch.nn.modules.Module`. Note that global

                ``backward`` hooks registered with

                :func:`register_module_full_backward_hook` will fire before

                all hooks registered by this method.



        Returns:

            :class:`torch.utils.hooks.RemovableHandle`:

                a handle that can be used to remove the added hook by calling

                ``handle.remove()``



        """
        if self._is_full_backward_hook is False:
            raise RuntimeError("Cannot use both regular backward hooks and full backward hooks on a "
                               "single Module. Please use only one of them.")

        self._is_full_backward_hook = True

        handle = hooks.RemovableHandle(self._backward_hooks)
        self._backward_hooks[handle.id] = hook
        if prepend:
            self._backward_hooks.move_to_end(handle.id, last=False)  # type: ignore[attr-defined]
        return handle

    def _get_backward_hooks(self):
        r"""Return the backward hooks for use in the call function.



        It returns two lists, one with the full backward hooks and one with the non-full

        backward hooks.

        """
        full_backward_hooks: List[Callable] = []
        if (_global_is_full_backward_hook is True):
            full_backward_hooks += _global_backward_hooks.values()
        if (self._is_full_backward_hook is True):
            full_backward_hooks += self._backward_hooks.values()

        non_full_backward_hooks: List[Callable] = []
        if (_global_is_full_backward_hook is False):
            non_full_backward_hooks += _global_backward_hooks.values()
        if (self._is_full_backward_hook is False):
            non_full_backward_hooks += self._backward_hooks.values()

        return full_backward_hooks, non_full_backward_hooks

    def _get_backward_pre_hooks(self):
        backward_pre_hooks: List[Callable] = []
        backward_pre_hooks += _global_backward_pre_hooks.values()
        backward_pre_hooks += self._backward_pre_hooks.values()

        return backward_pre_hooks

    def _maybe_warn_non_full_backward_hook(self, inputs, result, grad_fn):
        if not isinstance(result, torch.Tensor):
            if not (isinstance(result, tuple) and all(isinstance(r, torch.Tensor) for r in result)):
                warnings.warn("Using non-full backward hooks on a Module that does not return a "
                              "single Tensor or a tuple of Tensors is deprecated and will be removed "
                              "in future versions. This hook will be missing some of the grad_output. "
                              "Please use register_full_backward_hook to get the documented behavior.")
                return
        else:
            result = (result,)

        if not isinstance(inputs, torch.Tensor):
            if not (isinstance(inputs, tuple) and all(isinstance(i, torch.Tensor) for i in inputs)):
                warnings.warn("Using non-full backward hooks on a Module that does not take as input a "
                              "single Tensor or a tuple of Tensors is deprecated and will be removed "
                              "in future versions. This hook will be missing some of the grad_input. "
                              "Please use register_full_backward_hook to get the documented behavior.")
                return
        else:
            inputs = (inputs,)

        # At this point we are sure that inputs and result are tuple of Tensors
        out_grad_fn = {r.grad_fn for r in result if r.grad_fn is not None}
        if len(out_grad_fn) == 0 or (len(out_grad_fn) == 1 and grad_fn not in out_grad_fn):
            warnings.warn("Using a non-full backward hook when outputs are nested in python data structure "
                          "is deprecated and will be removed in future versions. This hook will be missing "
                          "some grad_output.")
        elif len(out_grad_fn) > 1:
            warnings.warn("Using a non-full backward hook when outputs are generated by different autograd Nodes "
                          "is deprecated and will be removed in future versions. This hook will be missing "
                          "some grad_output. Please use register_full_backward_hook to get the documented behavior.")
        else:
            # At this point the grad_output part of the hook will most likely be correct
            inputs_grad_fn = {i.grad_fn for i in inputs if i.grad_fn is not None}

            next_functions = {n[0] for n in grad_fn.next_functions}

            if inputs_grad_fn != next_functions:
                warnings.warn("Using a non-full backward hook when the forward contains multiple autograd Nodes "
                              "is deprecated and will be removed in future versions. This hook will be missing "
                              "some grad_input. Please use register_full_backward_hook to get the documented "
                              "behavior.")

    def register_forward_pre_hook(

        self,

        hook: Union[

            Callable[[T, Tuple[Any, ...]], Optional[Any]],

            Callable[[T, Tuple[Any, ...], Dict[str, Any]], Optional[Tuple[Any, Dict[str, Any]]]],

        ],

        *,

        prepend: bool = False,

        with_kwargs: bool = False,

    ) -> RemovableHandle:
        r"""Register a forward pre-hook on the module.



        The hook will be called every time before :func:`forward` is invoked.





        If ``with_kwargs`` is false or not specified, the input contains only

        the positional arguments given to the module. Keyword arguments won't be

        passed to the hooks and only to the ``forward``. The hook can modify the

        input. User can either return a tuple or a single modified value in the

        hook. We will wrap the value into a tuple if a single value is returned

        (unless that value is already a tuple). The hook should have the

        following signature::



            hook(module, args) -> None or modified input



        If ``with_kwargs`` is true, the forward pre-hook will be passed the

        kwargs given to the forward function. And if the hook modifies the

        input, both the args and kwargs should be returned. The hook should have

        the following signature::



            hook(module, args, kwargs) -> None or a tuple of modified input and kwargs



        Args:

            hook (Callable): The user defined hook to be registered.

            prepend (bool): If true, the provided ``hook`` will be fired before

                all existing ``forward_pre`` hooks on this

                :class:`torch.nn.modules.Module`. Otherwise, the provided

                ``hook`` will be fired after all existing ``forward_pre`` hooks

                on this :class:`torch.nn.modules.Module`. Note that global

                ``forward_pre`` hooks registered with

                :func:`register_module_forward_pre_hook` will fire before all

                hooks registered by this method.

                Default: ``False``

            with_kwargs (bool): If true, the ``hook`` will be passed the kwargs

                given to the forward function.

                Default: ``False``



        Returns:

            :class:`torch.utils.hooks.RemovableHandle`:

                a handle that can be used to remove the added hook by calling

                ``handle.remove()``

        """
        handle = hooks.RemovableHandle(
            self._forward_pre_hooks,
            extra_dict=self._forward_pre_hooks_with_kwargs
        )
        self._forward_pre_hooks[handle.id] = hook
        if with_kwargs:
            self._forward_pre_hooks_with_kwargs[handle.id] = True

        if prepend:
            self._forward_pre_hooks.move_to_end(handle.id, last=False)  # type: ignore[attr-defined]
        return handle

    def register_forward_hook(

        self,

        hook: Union[

            Callable[[T, Tuple[Any, ...], Any], Optional[Any]],

            Callable[[T, Tuple[Any, ...], Dict[str, Any], Any], Optional[Any]],

        ],

        *,

        prepend: bool = False,

        with_kwargs: bool = False,

        always_call: bool = False,

    ) -> RemovableHandle:
        r"""Register a forward hook on the module.



        The hook will be called every time after :func:`forward` has computed an output.



        If ``with_kwargs`` is ``False`` or not specified, the input contains only

        the positional arguments given to the module. Keyword arguments won't be

        passed to the hooks and only to the ``forward``. The hook can modify the

        output. It can modify the input inplace but it will not have effect on

        forward since this is called after :func:`forward` is called. The hook

        should have the following signature::



            hook(module, args, output) -> None or modified output



        If ``with_kwargs`` is ``True``, the forward hook will be passed the

        ``kwargs`` given to the forward function and be expected to return the

        output possibly modified. The hook should have the following signature::



            hook(module, args, kwargs, output) -> None or modified output



        Args:

            hook (Callable): The user defined hook to be registered.

            prepend (bool): If ``True``, the provided ``hook`` will be fired

                before all existing ``forward`` hooks on this

                :class:`torch.nn.modules.Module`. Otherwise, the provided

                ``hook`` will be fired after all existing ``forward`` hooks on

                this :class:`torch.nn.modules.Module`. Note that global

                ``forward`` hooks registered with

                :func:`register_module_forward_hook` will fire before all hooks

                registered by this method.

                Default: ``False``

            with_kwargs (bool): If ``True``, the ``hook`` will be passed the

                kwargs given to the forward function.

                Default: ``False``

            always_call (bool): If ``True`` the ``hook`` will be run regardless of

                whether an exception is raised while calling the Module.

                Default: ``False``



        Returns:

            :class:`torch.utils.hooks.RemovableHandle`:

                a handle that can be used to remove the added hook by calling

                ``handle.remove()``

        """
        handle = hooks.RemovableHandle(
            self._forward_hooks,
            extra_dict=[self._forward_hooks_with_kwargs, self._forward_hooks_always_called],
        )
        self._forward_hooks[handle.id] = hook
        if with_kwargs:
            self._forward_hooks_with_kwargs[handle.id] = True
        if always_call:
            self._forward_hooks_always_called[handle.id] = True
        if prepend:
            self._forward_hooks.move_to_end(handle.id, last=False)  # type: ignore[attr-defined]
        return handle

    def _slow_forward(self, *input, **kwargs):
        tracing_state = torch._C._get_tracing_state()
        if not tracing_state or isinstance(self.forward, torch._C.ScriptMethod):
            return self.forward(*input, **kwargs)
        recording_scopes = torch.jit._trace._trace_module_map is not None
        if recording_scopes:
            # type ignore was added because at this point one knows that
            # torch.jit._trace._trace_module_map is not Optional and has type Dict[Any, Any]
            name = torch.jit._trace._trace_module_map[self] if self in torch.jit._trace._trace_module_map else None  # type: ignore[index, operator] # noqa: B950
            if name:
                tracing_state.push_scope(name)
            else:
                recording_scopes = False
        try:
            result = self.forward(*input, **kwargs)
        finally:
            if recording_scopes:
                tracing_state.pop_scope()
        return result

    def _wrapped_call_impl(self, *args, **kwargs):
        if self._compiled_call_impl is not None:
            return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
        else:
            return self._call_impl(*args, **kwargs)

    def _call_impl(self, *args, **kwargs):
        forward_call = (self._slow_forward if torch._C._get_tracing_state() else self.forward)
        # If we don't have any hooks, we want to skip the rest of the logic in
        # this function, and just call forward.
        if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
                or _global_backward_pre_hooks or _global_backward_hooks
                or _global_forward_hooks or _global_forward_pre_hooks):
            return forward_call(*args, **kwargs)

        try:
            result = None
            called_always_called_hooks = set()

            full_backward_hooks, non_full_backward_hooks = [], []
            backward_pre_hooks = []
            if self._backward_pre_hooks or _global_backward_pre_hooks:
                backward_pre_hooks = self._get_backward_pre_hooks()

            if self._backward_hooks or _global_backward_hooks:
                full_backward_hooks, non_full_backward_hooks = self._get_backward_hooks()

            if _global_forward_pre_hooks or self._forward_pre_hooks:
                for hook_id, hook in (
                    *_global_forward_pre_hooks.items(),
                    *self._forward_pre_hooks.items(),
                ):
                    if hook_id in self._forward_pre_hooks_with_kwargs:
                        args_kwargs_result = hook(self, args, kwargs)  # type: ignore[misc]
                        if args_kwargs_result is not None:
                            if isinstance(args_kwargs_result, tuple) and len(args_kwargs_result) == 2:
                                args, kwargs = args_kwargs_result
                            else:
                                raise RuntimeError(
                                    "forward pre-hook must return None or a tuple "
                                    f"of (new_args, new_kwargs), but got {args_kwargs_result}."
                                )
                    else:
                        args_result = hook(self, args)
                        if args_result is not None:
                            if not isinstance(args_result, tuple):
                                args_result = (args_result,)
                            args = args_result

            bw_hook = None
            if full_backward_hooks or backward_pre_hooks:
                bw_hook = hooks.BackwardHook(self, full_backward_hooks, backward_pre_hooks)
                args = bw_hook.setup_input_hook(args)

            result = forward_call(*args, **kwargs)
            if _global_forward_hooks or self._forward_hooks:
                for hook_id, hook in (
                    *_global_forward_hooks.items(),
                    *self._forward_hooks.items(),
                ):
                    # mark that always called hook is run
                    if hook_id in self._forward_hooks_always_called or hook_id in _global_forward_hooks_always_called:
                        called_always_called_hooks.add(hook_id)

                    if hook_id in self._forward_hooks_with_kwargs:
                        hook_result = hook(self, args, kwargs, result)
                    else:
                        hook_result = hook(self, args, result)

                    if hook_result is not None:
                        result = hook_result

            if bw_hook:
                if not isinstance(result, (torch.Tensor, tuple)):
                    warnings.warn("For backward hooks to be called,"
                                  " module output should be a Tensor or a tuple of Tensors"
                                  f" but received {type(result)}")
                result = bw_hook.setup_output_hook(result)

            # Handle the non-full backward hooks
            if non_full_backward_hooks:
                var = result
                while not isinstance(var, torch.Tensor):
                    if isinstance(var, dict):
                        var = next(v for v in var.values() if isinstance(v, torch.Tensor))
                    else:
                        var = var[0]
                grad_fn = var.grad_fn
                if grad_fn is not None:
                    for hook in non_full_backward_hooks:
                        grad_fn.register_hook(_WrappedHook(hook, self))
                    self._maybe_warn_non_full_backward_hook(args, result, grad_fn)

            return result

        except Exception:
            # run always called hooks if they have not already been run
            # For now only forward hooks have the always_call option but perhaps
            # this functionality should be added to full backward hooks as well.
            for hook_id, hook in _global_forward_hooks.items():
                if hook_id in _global_forward_hooks_always_called and hook_id not in called_always_called_hooks:  # type: ignore[possibly-undefined]
                    try:
                        hook_result = hook(self, args, result)  # type: ignore[possibly-undefined]
                        if hook_result is not None:
                            result = hook_result
                    except Exception as e:
                        warnings.warn("global module forward hook with ``always_call=True`` raised an exception "
                                      f"that was silenced as another error was raised in forward: {str(e)}")
                        continue

            for hook_id, hook in self._forward_hooks.items():
                if hook_id in self._forward_hooks_always_called and hook_id not in called_always_called_hooks:  # type: ignore[possibly-undefined]
                    try:
                        if hook_id in self._forward_hooks_with_kwargs:
                            hook_result = hook(self, args, kwargs, result)  # type: ignore[possibly-undefined]
                        else:
                            hook_result = hook(self, args, result)  # type: ignore[possibly-undefined]
                        if hook_result is not None:
                            result = hook_result
                    except Exception as e:
                        warnings.warn("module forward hook with ``always_call=True`` raised an exception "
                                      f"that was silenced as another error was raised in forward: {str(e)}")
                        continue
            # raise exception raised in try block
            raise


    __call__ : Callable[..., Any] = _wrapped_call_impl

    def __getstate__(self):
        state = self.__dict__.copy()
        state.pop("_compiled_call_impl", None)
        return state

    def __setstate__(self, state):
        self.__dict__.update(state)

        # Support loading old checkpoints that don't have the following attrs:
        if '_forward_pre_hooks' not in self.__dict__:
            self._forward_pre_hooks = OrderedDict()
        if '_forward_pre_hooks_with_kwargs' not in self.__dict__:
            self._forward_pre_hooks_with_kwargs = OrderedDict()
        if '_forward_hooks_with_kwargs' not in self.__dict__:
            self._forward_hooks_with_kwargs = OrderedDict()
        if '_forward_hooks_always_called' not in self.__dict__:
            self._forward_hooks_always_called = OrderedDict()
        if '_state_dict_hooks' not in self.__dict__:
            self._state_dict_hooks = OrderedDict()
        if '_state_dict_pre_hooks' not in self.__dict__:
            self._state_dict_pre_hooks = OrderedDict()
        if '_load_state_dict_pre_hooks' not in self.__dict__:
            self._load_state_dict_pre_hooks = OrderedDict()
        if '_load_state_dict_post_hooks' not in self.__dict__:
            self._load_state_dict_post_hooks = OrderedDict()
        if '_non_persistent_buffers_set' not in self.__dict__:
            self._non_persistent_buffers_set = set()
        if '_is_full_backward_hook' not in self.__dict__:
            self._is_full_backward_hook = None
        if '_backward_pre_hooks' not in self.__dict__:
            self._backward_pre_hooks = OrderedDict()

    # On the return type:
    # We choose to return `Any` in the `__getattr__` type signature instead of a more strict `Union[Tensor, Module]`.
    # This is done for better interop with various type checkers for the end users.
    # Having a stricter return type doesn't play nicely with `register_buffer()` and forces
    # people to excessively use type-ignores, asserts, casts, etc.
    # See full discussion on the problems with returning `Union` here
    # https://github.com/microsoft/pyright/issues/4213
    def __getattr__(self, name: str) -> Any:
        if '_parameters' in self.__dict__:
            _parameters = self.__dict__['_parameters']
            if name in _parameters:
                return _parameters[name]
        if '_buffers' in self.__dict__:
            _buffers = self.__dict__['_buffers']
            if name in _buffers:
                return _buffers[name]
        if '_modules' in self.__dict__:
            modules = self.__dict__['_modules']
            if name in modules:
                return modules[name]
        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")

    def __setattr__(self, name: str, value: Union[Tensor, 'Module']) -> None:
        def remove_from(*dicts_or_sets):
            for d in dicts_or_sets:
                if name in d:
                    if isinstance(d, dict):
                        del d[name]
                    else:
                        d.discard(name)

        params = self.__dict__.get('_parameters')
        if isinstance(value, Parameter):
            if params is None:
                raise AttributeError(
                    "cannot assign parameters before Module.__init__() call")
            remove_from(self.__dict__, self._buffers, self._modules, self._non_persistent_buffers_set)
            self.register_parameter(name, value)
        elif params is not None and name in params:
            if value is not None:
                raise TypeError(f"cannot assign '{torch.typename(value)}' as parameter '{name}' "
                                "(torch.nn.Parameter or None expected)"
                                )
            self.register_parameter(name, value)
        else:
            modules = self.__dict__.get('_modules')
            if isinstance(value, Module):
                if modules is None:
                    raise AttributeError(
                        "cannot assign module before Module.__init__() call")
                remove_from(self.__dict__, self._parameters, self._buffers, self._non_persistent_buffers_set)
                for hook in _global_module_registration_hooks.values():
                    output = hook(self, name, value)
                    if output is not None:
                        value = output
                modules[name] = value
            elif modules is not None and name in modules:
                if value is not None:
                    raise TypeError(f"cannot assign '{torch.typename(value)}' as child module '{name}' "
                                    "(torch.nn.Module or None expected)"
                                    )
                for hook in _global_module_registration_hooks.values():
                    output = hook(self, name, value)
                    if output is not None:
                        value = output
                modules[name] = value
            else:
                buffers = self.__dict__.get('_buffers')
                if buffers is not None and name in buffers:
                    if value is not None and not isinstance(value, torch.Tensor):
                        raise TypeError(f"cannot assign '{torch.typename(value)}' as buffer '{name}' "
                                        "(torch.Tensor or None expected)"
                                        )
                    for hook in _global_buffer_registration_hooks.values():
                        output = hook(self, name, value)
                        if output is not None:
                            value = output
                    buffers[name] = value
                else:
                    super().__setattr__(name, value)

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._buffers:
            del self._buffers[name]
            self._non_persistent_buffers_set.discard(name)
        elif name in self._modules:
            del self._modules[name]
        else:
            super().__delattr__(name)

    def _register_state_dict_hook(self, hook):
        r"""Register a state-dict hook.



        These hooks will be called with arguments: `self`, `state_dict`,

        `prefix`, `local_metadata`, after the `state_dict` of `self` is set.

        Note that only parameters and buffers of `self` or its children are

        guaranteed to exist in `state_dict`. The hooks may modify `state_dict`

        inplace or return a new one.

        """
        handle = hooks.RemovableHandle(self._state_dict_hooks)
        self._state_dict_hooks[handle.id] = hook
        return handle

    def register_state_dict_pre_hook(self, hook):
        r"""Register a pre-hook for the :meth:`~torch.nn.Module.state_dict` method.



        These hooks will be called with arguments: ``self``, ``prefix``,

        and ``keep_vars`` before calling ``state_dict`` on ``self``. The registered

        hooks can be used to perform pre-processing before the ``state_dict``

        call is made.

        """
        handle = hooks.RemovableHandle(self._state_dict_pre_hooks)
        self._state_dict_pre_hooks[handle.id] = hook
        return handle

    def _save_to_state_dict(self, destination, prefix, keep_vars):
        r"""Save module state to the `destination` dictionary.



        The `destination` dictionary will contain the state

        of the module, but not its descendants. This is called on every

        submodule in :meth:`~torch.nn.Module.state_dict`.



        In rare cases, subclasses can achieve class-specific behavior by

        overriding this method with custom logic.



        Args:

            destination (dict): a dict where state will be stored

            prefix (str): the prefix for parameters and buffers used in this

                module

        """
        for name, param in self._parameters.items():
            if param is not None:
                destination[prefix + name] = param if keep_vars else param.detach()
        for name, buf in self._buffers.items():
            if buf is not None and name not in self._non_persistent_buffers_set:
                destination[prefix + name] = buf if keep_vars else buf.detach()
        extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
        if getattr(self.__class__, "get_extra_state", Module.get_extra_state) is not Module.get_extra_state:
            destination[extra_state_key] = self.get_extra_state()

    # The user can pass an optional arbitrary mappable object to `state_dict`, in which case `state_dict` returns
    # back that same object. But if they pass nothing, an `OrderedDict` is created and returned.
    T_destination = TypeVar('T_destination', bound=Dict[str, Any])

    @overload
    def state_dict(self, *, destination: T_destination, prefix: str = ..., keep_vars: bool = ...) -> T_destination:
        ...

    @overload
    def state_dict(self, *, prefix: str = ..., keep_vars: bool = ...) -> Dict[str, Any]:
        ...

    # TODO: Change `*args` to `*` and remove the corresponding warning in docs when BC allows.
    # Also remove the logic for arg parsing together.
    def state_dict(self, *args, destination=None, prefix='', keep_vars=False):
        r"""Return a dictionary containing references to the whole state of the module.



        Both parameters and persistent buffers (e.g. running averages) are

        included. Keys are corresponding parameter and buffer names.

        Parameters and buffers set to ``None`` are not included.



        .. note::

            The returned object is a shallow copy. It contains references

            to the module's parameters and buffers.



        .. warning::

            Currently ``state_dict()`` also accepts positional arguments for

            ``destination``, ``prefix`` and ``keep_vars`` in order. However,

            this is being deprecated and keyword arguments will be enforced in

            future releases.



        .. warning::

            Please avoid the use of argument ``destination`` as it is not

            designed for end-users.



        Args:

            destination (dict, optional): If provided, the state of module will

                be updated into the dict and the same object is returned.

                Otherwise, an ``OrderedDict`` will be created and returned.

                Default: ``None``.

            prefix (str, optional): a prefix added to parameter and buffer

                names to compose the keys in state_dict. Default: ``''``.

            keep_vars (bool, optional): by default the :class:`~torch.Tensor` s

                returned in the state dict are detached from autograd. If it's

                set to ``True``, detaching will not be performed.

                Default: ``False``.



        Returns:

            dict:

                a dictionary containing a whole state of the module



        Example::



            >>> # xdoctest: +SKIP("undefined vars")

            >>> module.state_dict().keys()

            ['bias', 'weight']



        """
        # TODO: Remove `args` and the parsing logic when BC allows.
        if len(args) > 0:
            if destination is None:
                destination = args[0]
            if len(args) > 1 and prefix == '':
                prefix = args[1]
            if len(args) > 2 and keep_vars is False:
                keep_vars = args[2]
            # DeprecationWarning is ignored by default
            warnings.warn(
                "Positional args are being deprecated, use kwargs instead. Refer to "
                "https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict"
                " for details.")

        if destination is None:
            destination = OrderedDict()
            destination._metadata = OrderedDict()

        local_metadata = dict(version=self._version)
        if hasattr(destination, "_metadata"):
            destination._metadata[prefix[:-1]] = local_metadata

        for hook in self._state_dict_pre_hooks.values():
            hook(self, prefix, keep_vars)
        self._save_to_state_dict(destination, prefix, keep_vars)
        for name, module in self._modules.items():
            if module is not None:
                module.state_dict(destination=destination, prefix=prefix + name + '.', keep_vars=keep_vars)
        for hook in self._state_dict_hooks.values():
            hook_result = hook(self, destination, prefix, local_metadata)
            if hook_result is not None:
                destination = hook_result
        return destination

    def _register_load_state_dict_pre_hook(self, hook, with_module=False):
        r"""Register a pre-hook for the :meth:`~torch.nn.Module.load_state_dict` method.



        These hooks will be called with arguments: `state_dict`, `prefix`,

        `local_metadata`, `strict`, `missing_keys`, `unexpected_keys`,

        `error_msgs`, before loading `state_dict` into `self`. These arguments

        are exactly the same as those of `_load_from_state_dict`.



        If ``with_module`` is ``True``, then the first argument to the hook is

        an instance of the module.



        Arguments:

            hook (Callable): Callable hook that will be invoked before

                loading the state dict.

            with_module (bool, optional): Whether or not to pass the module

                instance to the hook as the first parameter.

        """
        handle = hooks.RemovableHandle(self._load_state_dict_pre_hooks)
        self._load_state_dict_pre_hooks[handle.id] = _WrappedHook(hook, self if with_module else None)
        return handle

    def register_load_state_dict_post_hook(self, hook):
        r"""Register a post hook to be run after module's ``load_state_dict`` is called.



        It should have the following signature::

            hook(module, incompatible_keys) -> None



        The ``module`` argument is the current module that this hook is registered

        on, and the ``incompatible_keys`` argument is a ``NamedTuple`` consisting

        of attributes ``missing_keys`` and ``unexpected_keys``. ``missing_keys``

        is a ``list`` of ``str`` containing the missing keys and

        ``unexpected_keys`` is a ``list`` of ``str`` containing the unexpected keys.



        The given incompatible_keys can be modified inplace if needed.



        Note that the checks performed when calling :func:`load_state_dict` with

        ``strict=True`` are affected by modifications the hook makes to

        ``missing_keys`` or ``unexpected_keys``, as expected. Additions to either

        set of keys will result in an error being thrown when ``strict=True``, and

        clearing out both missing and unexpected keys will avoid an error.



        Returns:

            :class:`torch.utils.hooks.RemovableHandle`:

                a handle that can be used to remove the added hook by calling

                ``handle.remove()``

        """
        handle = hooks.RemovableHandle(self._load_state_dict_post_hooks)
        self._load_state_dict_post_hooks[handle.id] = hook
        return handle


    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,

                              missing_keys, unexpected_keys, error_msgs):
        r"""Copy parameters and buffers from :attr:`state_dict` into only this module, but not its descendants.



        This is called on every submodule

        in :meth:`~torch.nn.Module.load_state_dict`. Metadata saved for this

        module in input :attr:`state_dict` is provided as :attr:`local_metadata`.

        For state dicts without metadata, :attr:`local_metadata` is empty.

        Subclasses can achieve class-specific backward compatible loading using

        the version number at `local_metadata.get("version", None)`.

        Additionally, :attr:`local_metadata` can also contain the key

        `assign_to_params_buffers` that indicates whether keys should be

        assigned their corresponding tensor in the state_dict.



        .. note::

            :attr:`state_dict` is not the same object as the input

            :attr:`state_dict` to :meth:`~torch.nn.Module.load_state_dict`. So

            it can be modified.



        Args:

            state_dict (dict): a dict containing parameters and

                persistent buffers.

            prefix (str): the prefix for parameters and buffers used in this

                module

            local_metadata (dict): a dict containing the metadata for this module.

                See

            strict (bool): whether to strictly enforce that the keys in

                :attr:`state_dict` with :attr:`prefix` match the names of

                parameters and buffers in this module

            missing_keys (list of str): if ``strict=True``, add missing keys to

                this list

            unexpected_keys (list of str): if ``strict=True``, add unexpected

                keys to this list

            error_msgs (list of str): error messages should be added to this

                list, and will be reported together in

                :meth:`~torch.nn.Module.load_state_dict`

        """
        for hook in self._load_state_dict_pre_hooks.values():
            hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)

        persistent_buffers = {k: v for k, v in self._buffers.items() if k not in self._non_persistent_buffers_set}
        local_name_params = itertools.chain(self._parameters.items(), persistent_buffers.items())
        local_state = {k: v for k, v in local_name_params if v is not None}
        assign_to_params_buffers = local_metadata.get("assign_to_params_buffers", False)
        use_swap_tensors = torch.__future__.get_swap_module_params_on_conversion()

        for name, param in local_state.items():
            key = prefix + name
            if key in state_dict:
                input_param = state_dict[key]
                if not torch.overrides.is_tensor_like(input_param):
                    error_msgs.append(f'While copying the parameter named "{key}", '
                                      'expected torch.Tensor or Tensor-like object from checkpoint but '
                                      f'received {type(input_param)}'
                                      )
                    continue

                # This is used to avoid copying uninitialized parameters into
                # non-lazy modules, since they dont have the hook to do the checks
                # in such case, it will error when accessing the .shape attribute.
                is_param_lazy = torch.nn.parameter.is_lazy(param)
                # Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+
                if not is_param_lazy and len(param.shape) == 0 and len(input_param.shape) == 1:
                    input_param = input_param[0]

                if not is_param_lazy and input_param.shape != param.shape:
                    # local shape should match the one in checkpoint
                    error_msgs.append('size mismatch for {}: copying a param with shape {} from checkpoint, '
                                      'the shape in current model is {}.'
                                      .format(key, input_param.shape, param.shape))
                    continue

                if param.is_meta and not input_param.is_meta and not assign_to_params_buffers:
                    warnings.warn(f'for {key}: copying from a non-meta parameter in the checkpoint to a meta '
                                  'parameter in the current model, which is a no-op. (Did you mean to '
                                  'pass `assign=True` to assign items in the state dictionary to their '
                                  'corresponding key in the module instead of copying them in place?)')

                try:
                    with torch.no_grad():
                        if use_swap_tensors:
                            new_input_param = param.module_load(input_param, assign=assign_to_params_buffers)
                            if id(new_input_param) == id(input_param) or id(new_input_param) == id(param):
                                raise RuntimeError("module_load returned one of self or other, please .detach() "
                                                   "the result if returning one of the inputs in module_load")
                            if (isinstance(param, torch.nn.Parameter)):
                                if not isinstance(new_input_param, torch.nn.Parameter):
                                    new_input_param = torch.nn.Parameter(new_input_param, requires_grad=param.requires_grad)
                                else:
                                    new_input_param.requires_grad_(param.requires_grad)
                            torch.utils.swap_tensors(param, new_input_param)
                            del new_input_param
                        elif assign_to_params_buffers:
                            # Shape checks are already done above
                            if (isinstance(param, torch.nn.Parameter)):
                                if not isinstance(input_param, torch.nn.Parameter):
                                    input_param = torch.nn.Parameter(input_param, requires_grad=param.requires_grad)
                                else:
                                    input_param.requires_grad_(param.requires_grad)
                            setattr(self, name, input_param)
                        else:
                            param.copy_(input_param)
                except Exception as ex:
                    action = "swapping" if use_swap_tensors else "copying"
                    error_msgs.append(f'While {action} the parameter named "{key}", '
                                      f'whose dimensions in the model are {param.size()} and '
                                      f'whose dimensions in the checkpoint are {input_param.size()}, '
                                      f'an exception occurred : {ex.args}.'
                                      )
            elif strict:
                missing_keys.append(key)

        extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
        if getattr(self.__class__, "set_extra_state", Module.set_extra_state) is not Module.set_extra_state:
            if extra_state_key in state_dict:
                self.set_extra_state(state_dict[extra_state_key])
            elif strict:
                missing_keys.append(extra_state_key)
        elif strict and (extra_state_key in state_dict):
            unexpected_keys.append(extra_state_key)

        if strict:
            for key in state_dict.keys():
                if key.startswith(prefix) and key != extra_state_key:
                    input_name = key[len(prefix):]
                    input_name = input_name.split('.', 1)[0]  # get the name of param/buffer/child
                    if input_name not in self._modules and input_name not in local_state:
                        unexpected_keys.append(key)

    def load_state_dict(self, state_dict: Mapping[str, Any],

                        strict: bool = True, assign: bool = False):
        r"""Copy parameters and buffers from :attr:`state_dict` into this module and its descendants.



        If :attr:`strict` is ``True``, then

        the keys of :attr:`state_dict` must exactly match the keys returned

        by this module's :meth:`~torch.nn.Module.state_dict` function.



        .. warning::

            If :attr:`assign` is ``True`` the optimizer must be created after

            the call to :attr:`load_state_dict` unless

            :func:`~torch.__future__.get_swap_module_params_on_conversion` is ``True``.



        Args:

            state_dict (dict): a dict containing parameters and

                persistent buffers.

            strict (bool, optional): whether to strictly enforce that the keys

                in :attr:`state_dict` match the keys returned by this module's

                :meth:`~torch.nn.Module.state_dict` function. Default: ``True``

            assign (bool, optional): When ``False``, the properties of the tensors

                in the current module are preserved while when ``True``, the

                properties of the Tensors in the state dict are preserved. The only

                exception is the ``requires_grad`` field of :class:`~torch.nn.Parameter`s

                for which the value from the module is preserved.

                Default: ``False``



        Returns:

            ``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:

                * **missing_keys** is a list of str containing the missing keys

                * **unexpected_keys** is a list of str containing the unexpected keys



        Note:

            If a parameter or buffer is registered as ``None`` and its corresponding key

            exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a

            ``RuntimeError``.

        """
        if not isinstance(state_dict, Mapping):
            raise TypeError(f"Expected state_dict to be dict-like, got {type(state_dict)}.")

        missing_keys: List[str] = []
        unexpected_keys: List[str] = []
        error_msgs: List[str] = []

        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = OrderedDict(state_dict)
        if metadata is not None:
            # mypy isn't aware that "_metadata" exists in state_dict
            state_dict._metadata = metadata  # type: ignore[attr-defined]

        def load(module, local_state_dict, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            if assign:
                local_metadata['assign_to_params_buffers'] = assign
            module._load_from_state_dict(
                local_state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    child_prefix = prefix + name + '.'
                    child_state_dict = {k: v for k, v in local_state_dict.items() if k.startswith(child_prefix)}
                    load(child, child_state_dict, child_prefix)  # noqa: F821

            # Note that the hook can modify missing_keys and unexpected_keys.
            incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys)
            for hook in module._load_state_dict_post_hooks.values():
                out = hook(module, incompatible_keys)
                assert out is None, (
                    "Hooks registered with ``register_load_state_dict_post_hook`` are not"
                    "expected to return new values, if incompatible_keys need to be modified,"
                    "it should be done inplace."
                )

        load(self, state_dict)
        del load

        if strict:
            if len(unexpected_keys) > 0:
                error_msgs.insert(
                    0, 'Unexpected key(s) in state_dict: {}. '.format(
                        ', '.join(f'"{k}"' for k in unexpected_keys)))
            if len(missing_keys) > 0:
                error_msgs.insert(
                    0, 'Missing key(s) in state_dict: {}. '.format(
                        ', '.join(f'"{k}"' for k in missing_keys)))

        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               self.__class__.__name__, "\n\t".join(error_msgs)))
        return _IncompatibleKeys(missing_keys, unexpected_keys)

    def _named_members(self, get_members_fn, prefix='', recurse=True, remove_duplicate: bool = True):
        r"""Help yield various names + members of modules."""
        memo = set()
        modules = self.named_modules(prefix=prefix, remove_duplicate=remove_duplicate) if recurse else [(prefix, self)]
        for module_prefix, module in modules:
            members = get_members_fn(module)
            for k, v in members:
                if v is None or v in memo:
                    continue
                if remove_duplicate:
                    memo.add(v)
                name = module_prefix + ('.' if module_prefix else '') + k
                yield name, v

    def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
        r"""Return an iterator over module parameters.



        This is typically passed to an optimizer.



        Args:

            recurse (bool): if True, then yields parameters of this module

                and all submodules. Otherwise, yields only parameters that

                are direct members of this module.



        Yields:

            Parameter: module parameter



        Example::



            >>> # xdoctest: +SKIP("undefined vars")

            >>> for param in model.parameters():

            >>>     print(type(param), param.size())

            <class 'torch.Tensor'> (20L,)

            <class 'torch.Tensor'> (20L, 1L, 5L, 5L)



        """
        for name, param in self.named_parameters(recurse=recurse):
            yield param

    def named_parameters(

            self,

            prefix: str = '',

            recurse: bool = True,

            remove_duplicate: bool = True

    ) -> Iterator[Tuple[str, Parameter]]:
        r"""Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.



        Args:

            prefix (str): prefix to prepend to all parameter names.

            recurse (bool): if True, then yields parameters of this module

                and all submodules. Otherwise, yields only parameters that

                are direct members of this module.

            remove_duplicate (bool, optional): whether to remove the duplicated

                parameters in the result. Defaults to True.



        Yields:

            (str, Parameter): Tuple containing the name and parameter



        Example::



            >>> # xdoctest: +SKIP("undefined vars")

            >>> for name, param in self.named_parameters():

            >>>     if name in ['bias']:

            >>>         print(param.size())



        """
        gen = self._named_members(
            lambda module: module._parameters.items(),
            prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate)
        yield from gen

    def buffers(self, recurse: bool = True) -> Iterator[Tensor]:
        r"""Return an iterator over module buffers.



        Args:

            recurse (bool): if True, then yields buffers of this module

                and all submodules. Otherwise, yields only buffers that

                are direct members of this module.



        Yields:

            torch.Tensor: module buffer



        Example::



            >>> # xdoctest: +SKIP("undefined vars")

            >>> for buf in model.buffers():

            >>>     print(type(buf), buf.size())

            <class 'torch.Tensor'> (20L,)

            <class 'torch.Tensor'> (20L, 1L, 5L, 5L)



        """
        for _, buf in self.named_buffers(recurse=recurse):
            yield buf

    def named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> Iterator[Tuple[str, Tensor]]:
        r"""Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.



        Args:

            prefix (str): prefix to prepend to all buffer names.

            recurse (bool, optional): if True, then yields buffers of this module

                and all submodules. Otherwise, yields only buffers that

                are direct members of this module. Defaults to True.

            remove_duplicate (bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.



        Yields:

            (str, torch.Tensor): Tuple containing the name and buffer



        Example::



            >>> # xdoctest: +SKIP("undefined vars")

            >>> for name, buf in self.named_buffers():

            >>>     if name in ['running_var']:

            >>>         print(buf.size())



        """
        gen = self._named_members(
            lambda module: module._buffers.items(),
            prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate)
        yield from gen

    def children(self) -> Iterator['Module']:
        r"""Return an iterator over immediate children modules.



        Yields:

            Module: a child module

        """
        for name, module in self.named_children():
            yield module

    def named_children(self) -> Iterator[Tuple[str, 'Module']]:
        r"""Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.



        Yields:

            (str, Module): Tuple containing a name and child module



        Example::



            >>> # xdoctest: +SKIP("undefined vars")

            >>> for name, module in model.named_children():

            >>>     if name in ['conv4', 'conv5']:

            >>>         print(module)



        """
        memo = set()
        for name, module in self._modules.items():
            if module is not None and module not in memo:
                memo.add(module)
                yield name, module

    def modules(self) -> Iterator['Module']:
        r"""Return an iterator over all modules in the network.



        Yields:

            Module: a module in the network



        Note:

            Duplicate modules are returned only once. In the following

            example, ``l`` will be returned only once.



        Example::



            >>> l = nn.Linear(2, 2)

            >>> net = nn.Sequential(l, l)

            >>> for idx, m in enumerate(net.modules()):

            ...     print(idx, '->', m)



            0 -> Sequential(

              (0): Linear(in_features=2, out_features=2, bias=True)

              (1): Linear(in_features=2, out_features=2, bias=True)

            )

            1 -> Linear(in_features=2, out_features=2, bias=True)



        """
        for _, module in self.named_modules():
            yield module

    def named_modules(self, memo: Optional[Set['Module']] = None, prefix: str = '', remove_duplicate: bool = True):
        r"""Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.



        Args:

            memo: a memo to store the set of modules already added to the result

            prefix: a prefix that will be added to the name of the module

            remove_duplicate: whether to remove the duplicated module instances in the result

                or not



        Yields:

            (str, Module): Tuple of name and module



        Note:

            Duplicate modules are returned only once. In the following

            example, ``l`` will be returned only once.



        Example::



            >>> l = nn.Linear(2, 2)

            >>> net = nn.Sequential(l, l)

            >>> for idx, m in enumerate(net.named_modules()):

            ...     print(idx, '->', m)



            0 -> ('', Sequential(

              (0): Linear(in_features=2, out_features=2, bias=True)

              (1): Linear(in_features=2, out_features=2, bias=True)

            ))

            1 -> ('0', Linear(in_features=2, out_features=2, bias=True))



        """
        if memo is None:
            memo = set()
        if self not in memo:
            if remove_duplicate:
                memo.add(self)
            yield prefix, self
            for name, module in self._modules.items():
                if module is None:
                    continue
                submodule_prefix = prefix + ('.' if prefix else '') + name
                yield from module.named_modules(memo, submodule_prefix, remove_duplicate)

    def train(self: T, mode: bool = True) -> T:
        r"""Set the module in training mode.



        This has any effect only on certain modules. See documentations of

        particular modules for details of their behaviors in training/evaluation

        mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,

        etc.



        Args:

            mode (bool): whether to set training mode (``True``) or evaluation

                         mode (``False``). Default: ``True``.



        Returns:

            Module: self

        """
        if not isinstance(mode, bool):
            raise ValueError("training mode is expected to be boolean")
        self.training = mode
        for module in self.children():
            module.train(mode)
        return self

    def eval(self: T) -> T:
        r"""Set the module in evaluation mode.



        This has any effect only on certain modules. See documentations of

        particular modules for details of their behaviors in training/evaluation

        mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,

        etc.



        This is equivalent with :meth:`self.train(False) <torch.nn.Module.train>`.



        See :ref:`locally-disable-grad-doc` for a comparison between

        `.eval()` and several similar mechanisms that may be confused with it.



        Returns:

            Module: self

        """
        return self.train(False)

    def requires_grad_(self: T, requires_grad: bool = True) -> T:
        r"""Change if autograd should record operations on parameters in this module.



        This method sets the parameters' :attr:`requires_grad` attributes

        in-place.



        This method is helpful for freezing part of the module for finetuning

        or training parts of a model individually (e.g., GAN training).



        See :ref:`locally-disable-grad-doc` for a comparison between

        `.requires_grad_()` and several similar mechanisms that may be confused with it.



        Args:

            requires_grad (bool): whether autograd should record operations on

                                  parameters in this module. Default: ``True``.



        Returns:

            Module: self

        """
        for p in self.parameters():
            p.requires_grad_(requires_grad)
        return self

    def zero_grad(self, set_to_none: bool = True) -> None:
        r"""Reset gradients of all model parameters.



        See similar function under :class:`torch.optim.Optimizer` for more context.



        Args:

            set_to_none (bool): instead of setting to zero, set the grads to None.

                See :meth:`torch.optim.Optimizer.zero_grad` for details.

        """
        if getattr(self, '_is_replica', False):
            warnings.warn(
                "Calling .zero_grad() from a module created with nn.DataParallel() has no effect. "
                "The parameters are copied (in a differentiable manner) from the original module. "
                "This means they are not leaf nodes in autograd and so don't accumulate gradients. "
                "If you need gradients in your forward method, consider using autograd.grad instead.")

        for p in self.parameters():
            if p.grad is not None:
                if set_to_none:
                    p.grad = None
                else:
                    if p.grad.grad_fn is not None:
                        p.grad.detach_()
                    else:
                        p.grad.requires_grad_(False)
                    p.grad.zero_()

    def share_memory(self: T) -> T:
        r"""See :meth:`torch.Tensor.share_memory_`."""
        return self._apply(lambda t: t.share_memory_())

    def _get_name(self):
        return self.__class__.__name__

    def extra_repr(self) -> str:
        r"""Set the extra representation of the module.



        To print customized extra information, you should re-implement

        this method in your own modules. Both single-line and multi-line

        strings are acceptable.

        """
        return ''

    def __repr__(self):
        # We treat the extra repr like the sub-module, one item per line
        extra_lines = []
        extra_repr = self.extra_repr()
        # empty string will be split into list ['']
        if extra_repr:
            extra_lines = extra_repr.split('\n')
        child_lines = []
        for key, module in self._modules.items():
            mod_str = repr(module)
            mod_str = _addindent(mod_str, 2)
            child_lines.append('(' + key + '): ' + mod_str)
        lines = extra_lines + child_lines

        main_str = self._get_name() + '('
        if lines:
            # simple one-liner info, which most builtin Modules will use
            if len(extra_lines) == 1 and not child_lines:
                main_str += extra_lines[0]
            else:
                main_str += '\n  ' + '\n  '.join(lines) + '\n'

        main_str += ')'
        return main_str

    def __dir__(self):
        module_attrs = dir(self.__class__)
        attrs = list(self.__dict__.keys())
        parameters = list(self._parameters.keys())
        modules = list(self._modules.keys())
        buffers = list(self._buffers.keys())
        keys = module_attrs + attrs + parameters + modules + buffers

        # Eliminate attrs that are not legal Python variable names
        keys = [key for key in keys if not key[0].isdigit()]

        return sorted(keys)

    def _replicate_for_data_parallel(self):
        replica = self.__new__(type(self))
        replica.__dict__ = self.__dict__.copy()

        # replicas do not have parameters themselves, the replicas reference the original
        # module.
        replica._parameters = OrderedDict()
        replica._buffers = replica._buffers.copy()
        replica._modules = replica._modules.copy()
        replica._is_replica = True  # type: ignore[assignment]

        return replica

    def compile(self, *args, **kwargs):
        """

        Compile this Module's forward using :func:`torch.compile`.



        This Module's `__call__` method is compiled and all arguments are passed as-is

        to :func:`torch.compile`.



        See :func:`torch.compile` for details on the arguments for this function.

        """
        self._compiled_call_impl = torch.compile(self._call_impl, *args, **kwargs)